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MATHEMATICAL MODEL OF A PROTOTYPE WATER SYSTEM

Consider the model shown in Figure 1. There is a single
stream which yields an annual inflow Xi’ where the index i
represents time. The flow enters a reservoir of capacity
K, from which an annual release of Ri is made. The units
are compatible with respect to annual volumes so that xi
is measured in volume/year, K in volume and R in volume/year.
It is understood that the total amount of water available
at the beginning of any year is the storage at the end of
plus the fnnual l‘i'\(.l\ow)
the previous year p Si—l + Xi' In other words, it is
assumed that the annual inflow is known on the first day
of the current year and that the characteristic time inter-
val of the model is one year so that the inflow and release

values, which are really rates, can be thought of as volumes

for a single year.

The reservoir services some upstream demand in the vicinity
of the dam; typically this might be hydro=electric power.
After leaving the reservoir the channel leads through am

area subject to flood damage. As shown in the figure, this
area is protected by dykes along the channel,  Enough is
known about the hydraulic configuration of the system to
assert that an annual release from the reservoir is associated
with a particular flood surge which, in turn, is attenuated
in some prescribed fashion between the reservoir and the pro-
tected area. Thus in this simplictic model we do not deal
with the realities of flood routing, determination of peak
flows, or other complications. Everything is expressed in

terms of annual flow, and it is assumed that the model is

sufficiently regular in its hydrologic aspects to enable us
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to deduce the downstream consequences associated with
reservoir releases. We express all this by noting that the
channel capacity at the point of potential overflow is
given the symbol D (volume/year),fbr example, if the release
R is 5 and the rhannel capacity D is 5, it implies that
there is associated with the annual release some surge or
peak flow which, when attenuated through the system, pro-
duces at the point of damage a peak flow which can just be
contained within the channel. This does not mean that the
channel capacity is itself 5 units, but rather that it is
convenient to express the channel capacity in terms of an
equivalent upstream release which, when routed through the
system, would be just contained within the banks of the

channel.

The inflow vector X represents a random process without

serial correlation; the probability density of any particular
flcw in a given year is given in Figure 1. The capital cost

of reservoir construction is given by the function Cl(K), and

a geologic investigation of the area shows that it is infeasible
to construct a storage capacity in excess of 6 units. It is
possible, of course, tobuilgo reservoir at all; but even this
action is associated with some cost for investigation, plan-

ning, data collection and decision-making. The storage

capacity K is one of the design variables in the system.

The channel capacity of the unimproved syétem, measured at the

point of potential overflow, is given as 4 units. This is



not really the capacity of the channel because it will

be recalled that the capacity is given in terms of an-
equivalent annual release at the reservoir. Therefore

the value "4" is a surrogate for the actual channel cap-
acity, but for purposes of this model it will be sufficient
to refer only to the annual release from the reservoir

when dealing with , flows through the damage area.

Dykes can be buil% to increase the channel capacity, and

Figure 1 shows the cost, C,(D), for D = 5, 6 and 7. It

2
car: be seen from the figure that the inflow X is divided

into 8 discrete values ranging from zero to 7, so that

uncer ordinary circumstances 1t would be quite unusual for
the release from the reservoir ever to exceed 7 units;

that is, if the reservoir is full and the worst possible flow
is received, it will simply pass that flow without any
stocrage. Therefore the maximal discharge passing the damage
area is that associated with a reservoir release of seven
units per year. Channel improvements, or increases in
carrying capacity, are represented by the second design

parameter for our system, the gquantity D.

We now consider some of the economic characteristics which
govern system ¢peration. Figure 2 A gives the system
operating policy; it is the standard or Z-shaped policy
characterized by the storage capacity K and the target
release, T. If the total amount of water available is
less than the target, all of it is released and the

reservoir remains empty. If more than the target is
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available, the release is set equal to the target until
such a point is reached where additional releases must

be made because the reservoir cannot store the remaining
water. These two constraints, reservoir empty and
reservoir full, define the band within which all feasible
releases necessarily lie. The horizontal distance across
the band width is precisely K, and any point which lies
outside the shaded band cannot be attained by the reservoir

system. The slope of the band is unity.

Figure 2B gives the benefit function for the upstream
(hydroelectric or other) release. The benefit function is
a three-part linear function characterized by a long-term
component and two short-term componenets. The long-term
benefit is a single (in this case, linear) relationship
between annual benefits and target release. It represents
the fact that increasing the capital investment in turbines,
generators, and other facilities, necessarily implies an
increased commitment to deliver water and, moreover, that
the increased physical output can be sold at a constant
marginal price of c¢ per unit of output. In the case of
hydroelectric energy, the output is given in?ﬁg%¥%tt but
for purposes of this model all electrical units are con-
verted to equivalent flows of water required to service
these facilities at their design or nominal operating levels.
Having decided upon the long-term or capital investment
which specifies T, the operation in any year can produce

precisely T units, an. excess,é or a defecit. If there is



a large flow 30 that some excess energy is developed, it can be
sold at a marginal rate of a, but as shown in the figure

a is smaller than ¢ to accommodate the fact that dump energy
is less valuable on the market than firm energy. Similarly,
should there be a water def cit, other sources of energy
will have to be made available at a greater price; this
implies a serious drop in the economic benefits, as
reflected by the slope b being much greater than c.and a.

In other words, there is an economic penelty associated
with failing to meet the target ( or commitment), and the
magnitude of the penalty is greater than the magnitude

of the bonus associated with generating excessive levels

of system output.

In addition to benefits at the reservoir, the system can
provide flood control benefits by reducing the probability and
severity of extreme flows. Ttwill be recalled that flows of 5
6 or 7 are associated with peak discharges which produce
damage in the unimproved reach of the system. The probabilities
of these flood events are Pg+ Pg and P If a system of
reservoir and dykes is built and operated reasonably, we
weuld expect that these three probabilities should be

reduced. For example, if we specify the design D = 5,

the probability of overflow in the area of potential damage
is changed as follows: there can be no overflow if the
release is 5 because the entire discharge can be contained

in the channel, the probability of the firzt level of over-

flow is then given by the probability that the release is 6,



and the probability of the second level of overflow is

then given by the probability that the release is 7.

The probability of the most serious overflow, that which
would have occurred without improvement if the flow had

been 7, goes automatically to zero. We postulate in this
simple model that the flood benefits are equal to the average
annual damages averted, taken over the three potential

flood levels. These damages are defined as Ll’ L2 and L3.

Numerical values for these parameters are shown in Figure 2 B.

It is tempting to claim that the objective function for
system design is the maximization of some combination of
benefits and costs. Typically this might be the ratio, the
difference, or some other function which takes account of
various budgetary constraints and physical requirements. In
the ordinary calculus cf such a system, it is traditional
to specify a discounting factor which trades on the avail-
ability and price of money required for the capital
investment, and which is used to discount to present value
the time stream of annual economic benefits. There are some
difficulties with this notion when dealing with different
economic systems, and in our model we snow the gffect of the
rate of interest by accumulating the present value of benefits
for a few sample interest rates, among which we include zero

to represent the condition of no discounting.



Moreover, it is clear that there might be different social
and political weights assigned to the benefits perceived

by the upstream and downstream users of the the system. These
weights might be widely different so that the optimal

design for the system could vary enormously as a function of
whose weight dominates the benefit calculation. The system
design consists of three numbers; we have already identified
the storage capacity (K) and the dyke level (D) as design
decisions, and to these we now add the target release (T),
These three parameters define a series of points in a
response surface, and the usual . workings of a design pro-
cedure require that this multi-dimensicnal space he
examined in the hope of identifying the optimal response
(however that might be measured). But if the response is
perceived to attain different values for each of the
institutions represented in the decision-making process,

it is clear that the sum of benefits is not necessarily

the best metric for system evaluation.

Therefore, before moving on to discussing the analysis of
the model, it should be clear that we do not purport to
develor an optimal solution because we recognize that opti-
mality implies some judgements concerning the way in which
benefits should be measured, discounted and combined. We
will show only how to calculate some of the physical
responses, how to convert these to benefits at their points
of origin and how to tabulate these in such a way that

additional methological tools (for example, Paretian analysis)



can be employed to identify negotiation frontiers, side
pavments and other cost-and revenue-sharing devices for
reaching a harmonious design under competition. In so

doing we anticipate that the essential economic parameters,
those which must be refined before agreement can be reached,
will be identified; this will lead,in our judgement, to

a program of inquiry which can fruitfully be pursued in ordef
to identify optimal data collection techniques, methodological

issues and, ultimately, an acceptable design program.



Analytical Procedures

We first specify a design vector which consists of nu-
merical assignments for the storage capacity K, the

dyke level D and the target draft T. Thereafter the
analysis is directed at identifying the probability
distribution of releases R from the reservoir. Associated
with each release is some economic benefit which can be
read directly from the benefit function for hydroelectric
energy (Figure 2B) and augmented by the amount of flood
damage alleviation associated with the level assigned to

D.

These economic values are then weighted by their respective
probabilities and summed in accordance with the schemes

(and with attention to the warnings) described above, where-
upcn the trial design vector is then available for ranking
and negotiation as part of the more comprehensive planning

process.

In order to calculate the draft probabilities it is necessary
first to have the steady state reservoir probabilities; these
are identified by the symbol Pi' We tabulate firet all the
possible values associated with the trial system. The
maximai flow is 7, and we assume an initial design vector
(for this example only) of K =4, D=6 and T = 2. This
means that there can be at most 4 units of water available

in storage so that the total amount of water available at

any time cannot exceed 1l or 7 + 4. The operating policy

svecifies that a target release of 2 will be attemdpted; as

Shown in the second column of the attached table, two
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units are released unless there is not enough water or
there is so much water that the capacity is inadequate

to store that which remains. The table shows all the
possible combinations of available flow and release, from

which the remaining storage is deduced by subtraction.

The only way in which there can be no water available is

if there is no storage and no inflow; this is given by the
product pOPO. One unit is available under two possible
combinations: one unit in storage coupled with no inflow

and nothing in storage coupled with one unit of inflow.
These combinations are independent so . . the sum of

their joint probabilities is the probability of the compound
event, as represented by plPO + pOPl' The argument continues
all the way through the table, but it will be noted that
there is no entry beyond P4 because the design vector
specifies that the reservoir cannot contain more than 4 units.
Similarly, there is no inflow probability beyond P+ because

7 units is the maximal annual flow. This suggests that the
compound events are represented by sums of increasing number
of terms until some maximum is reached, after which the
number of terms decreases until the last event, a total
availability of 11 units, is reached if and only if there

are 4 units in storage and the inflow is seven.

We then seek to solve for the steady state probabilities
Pi’ and note that that the only way in which the reservoir
can terminate in an empty condition is if the available

flow is zero, 1 or 2 ; this corresponds to the fact that
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the remaining storage for those 3 events, shown in the

third column of the table, is zero. Now because all of

these events are independent, the probability that the

system shall end in a state with zero storage is the

sum of the probabilities derived from the last column, or

the cumulative probability identified as line 1 in the

set of equations which follow the table. Similar equations

can be derived for all reservoir storace states, resulting

in equations 1 through 5, giving the steady state probabilities

for each of the five possible reservoir conditions.

These conditions, however, are not independeht and an
additional condition is required; this is the requirement
that the sum of all steady state probabilities be precisely
unity because the reservoir must be in one state or another

at any time, and this condition is represented by the 6th
equation. The solution procedure would then be to select any
4 of the first 5 equations and the 6th, noting that all of
these are linear in Pi’ and then to solve directly for the
set of Pi' It would seem to be most sensible to eliminate
equation 5 because it is the most cumbersome, but this is

a matter of individual preference.

For example, the set of 6 equations is shown in the attached
table, alona with the solution for the steady' state prob-
abilities Pi‘ Clearly this vector depends on two of the
three design variables: K and T. The third variable, the

channel capacity or dyke level D, does not enter explicitly
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in determining the reservoir probabilities; under more
complicated operating policies, in which the release
itself is a function of D, it would enter, but this is

not the case in this simple example.

It is a little more compact to generate the solution for

the reservoir's steady state probability vector using matrix
notation. As shown in the attached tables we write first

the 5 X 12 matrix for the probability of the total water
available, given the initial contents. This is essentially
the information inherent in the probability density of in-
flows to the reservoir. We write also the 12 X 5 matrix of
final (or remaining) contents, given the water available.
This matrix contains zeros and ones because the operating
rule, which is contained in this matrix, is deterministic,
so all the probability elements are O or 1. The dimensions
of this matrix correspond to the maximal ®@vailable flow of
11 units and the maximal storage of 4 units. If we multiply
the first matrix by the second, the product has dimension

5 X 5 and is the probability of final storage conditioned on
the initial storage. This result is a Markov matrix whose
elements are the transfer probabilities between reservoir
states in time period i and those in time period (i - 1).
From this Markov matrix it is a trivial matter to write the
simultaneous linear equations (including the condition that
the sum of all steady state probabilities must be in unity)

required to solve for the steady state probabilities Pi'



Available Water, X, * Si—

o) 1 2 3 4 5 6 7 8 9 10 11
.05 .12 .15 .20 .20 .10 .10 .08 0] 0 0] 0
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Final Storage, Si

0 1 2 3 4

0 1 0] @) 0] 0

1 1 0] 0] 0] 0

2 1 0] 0] 0] 0

3 0] 1 0] 0] 0]

4 0 o 1 0] 0]

'+Sl_l 5 ) o) 0] 1 0

6 0] 0] 0 0] 1

7 0] 0 0 0] 1

8 0 o) 0 o) 1

9 0] ) 0 0 1

10 0o 0 o o 1

11 o) 0 0 0 1



p(S)
p(R)

p (R)

it

it

MARKOV MATRIX

Si-1
0 1 2 3 4
0 0.32  0.20 0.20 0.10 0.18
1 0.17 0.15  0.20 0.20 0.28
2 0.05 0.12  0.15  0.20 0.48
3 o 0.05 0.12  0.15 0.68
4 0 0 0.05 0.12 0.83

¢ ]
l0.01, 0.02, 0.07, 0.13, 0.77}
L , "

i:OSO, .120, .150, .200, .200, .100, .100, .0O8O

LY
(originaly

{0.001, .002, .388, .190, .175, .096, .087, .osik (storage)

R

Ben (R)

p(R)Be

n(R)

~.002
0
.7706
.475
.525
.336
.348

.275

2.733

Ap

0.004
0.013

0.019
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On the assumption that the inputs and reservoir states are
independent, it is now an easy maater to identify the several
combinations which give rise to the complete range of

" releases Ri’ to assign specific probabilities to these, and
then to preceed with the economic analysis. In our example,
the table shows the probability associated with each release
for all twelve lines. These are summed according to their
arguments, and the unconditional or marginal release

probabilities are written directly.

The expected gross annual benefit from upstream utilization
is tabulated as shown, and it remains only to calculate down-
stream benefits due to flood control. 1If there were no dyke,
there would still be some reduction in flood probability as
shown in the tables. But because the dykes can contain the
peak flow associated with an annuval release of 5, we assign
to a damaging overflow of magnitude 5 the probability

zero. The damaging overflow occasioned by a release of 6

is assigned a unit damage level associated with that of 5

and the damage level for a release of 7 is assigned the
damage level previously associated with a release of 6.

Thus the effect of the dyke is to change the unit damage
function while the effect of.the reservoir is to reduce

the probabiiity of flood events. As shown in the cal-
culations, this combined effect produces a benefit for the

downstream users. . -

These costs and benefits are now combined over a range of
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interest rates to produce the numerical basis for decision-
making under competition. It is clear that this simplistic
model contains many assumptions which are not tenable in
models of real situations. These are centered around the
independence of the inputs, the highly simplified operating
policy, the use of annual events rather than seasonal or
instantaneous peaks and complete avoidance of the details
of flood routing and other dynamic events associated with
time-varying flow and with releases from the reservoir.

But the point here is to suggest that these geveral-
technological difficulties, and an equivalent number of
economic ones, can be the subject of intensive investigation
by the IIASA Water Resources Projecty what is of interest
is a model framework within which the Tisza, Vistula and

other basins might be structured.

For example, a groundwater resource might be included

and its source and sink effects easily modelled within the
framework of this analysis. Stochastic operating rules,
serial correlation amongst the inputs, and other advanced
control phenomena might be incorporated. These details are
for the moment not important except to note that they do
not perturb the basic structure of the model and that the
essential conflicts between users, between uses and

between difference of geographic locations in the basin

can still be highlighted by the formalisms, even though

they become extremely complex and rigorous.
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