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ABSTRACT

For underlying skew distributions, Student+t confidence intervals about the mean have
unequal tail probabilities — the interval does not cover the mean in a "balanced” way. This
study uses Monte-Carlo methods to estimate, for a class of highly skew, stretched-tail distribu-
tions, the population characteristic covered by the t-interval with symmetric loss. Results indi-
cate that this "balanced™ population characteristic depends on the degree of skewness and

stretch, the desired significance level, and the sample size.

Estimates of the balanced population characteristic can be used to modify Student
confidence intervals about the mean to achieve symmetric loss. The resulting tail probabilities
are estimated and are found to be reasonably close to desired levels for many cases. Most of
the discrepancy between true tail probabilities and tabled Studentt values is corrected, for the

distributions of this study, by this simple modification.

The reults of this study are applicable to a family of underlying distributions that are more
skew and stretched-tail than generally considered in robustness studies of the t-statistic. Furth-

ermore, the approach does not require large samples — results are given for small to moderate

sample sizes.






The t-Statistic for Underlying Skew/Stretched-tail Distributions

Susan Peterson Arthur

1. INTRODUCTION

For non-gaussian underlying distributions, the distribution of sample t values is in general
unknown. Nevertheless, critical values of the Student-t distribution are frequently used to
form approximate confidence intervals about the population mean. When the underlying distri-
bution is skew, this produces unequal tail probabilities. If x,...,x, are a sample from a

gaussian underlying distribution, then

t(E—p)ls, , s2= 3> (x,~2)(n=1), s = sm~M2

i=1

has a Student-t distribution with n-1 degrees of freedom and we can form confidence intervals

P(g—r s, <p<E+7 5, )=12a,
P(u< &—1,5,)= P(p> T+1.5,)= a,

where 7 is the Student-t critical point corresponding to one-sided probability . For a skew
underlying distribution,
P(g—1 5, < 4< TH1,8,)= 1—ap—a, ,

P{p< f—‘fd&n)=aﬂn P(u> f+T°‘Sn)=aL ’

where in general a,# a, , and ag+a; is not necessarily equal to 2a. The interval is doing a
poor job of capturing the population mean, g, since u is more likely to lie outside the interval
on one side than the other (asymmetric loss). We may say, in this case, that the t-interval does

not cover the mean in a balanced way.

This study uses Monte Carlo methods to find, for sample sizes n= 5,10,20 and a class of
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highly skew/stretched-tail underlying distributions, the population characteristic which the t
confidence interval does cover in a balanced way. That is, the population characteristic, ¢, for
which ¢=(%—c)/s, has equal tail probabilities P(c < £—r s5,)= P(c> £+7,5,)= a®. In a sense,

this is the population characteristic which is captured by Student-t intervals.

Once the balanced population characteristic is known, it can be used to modify t
confidence intervals about the mean to achieve equal tail probabilities. After the t-statistic has
been thus modified, tail probabilities are estimated and compared to the nominal Student-t pro-
bability, «. Tail probabilities for the modified intervals are found to be reasonably close to a in
many cases, and are much closer than are the tail probabilities associated with unmodified
Student-t intervals. Most of the discrepancy between true tail probabilities for t-statistics based
on the underlying distributions of this study and tabled Student-t values is corrected by this

simple modification.

Further modifications in the choice of t-distribution critical values to achieve desired
significance levels are developed for a class of symmetric, stretched-tail distributions. These
modifications can also be used for some of the skew distributions, applied to t-statistics previ-

ously modified for equal tails (i.e. balanced).

Robustness of t with respect to non-normality has been of considerable interest to statisti-
cians. For a comprehensive review of the literature, see Hatch and Posten {1966). In contrast
to this paper, however, most studies are primarily interested in how close a,+a, isto 2a, not
in the asymmetry of loss found for underlying skew distributions. Furthermore, suggested
modifications of the Student-t procedure are based almost entirely on series approximation
techniques — requiring either that the underlying distribution be relatively close to gaussian, or
that the sample size be large. Neither is required for the modifications proposed in this study.

The next section of the paper describes the underlying distributions to be considered (a
class of distributions suggested by Tukey — the so-called g/h family). In Section 3 the popula-
tion characteristic covered by Student-t confidence intervals with equal tail probability is

estimated for several of the skew g/h distributions, for sample sizes n= 5, 10, 20, and one-
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sided significance levels a= 0.01, 0.025, 0.05, and 0.10. In Section 4, tail probabilities are
estimated — for t-statistics from a class of symmetric, stretched-tail distributions and for
modified t-statistics from the skew distributions of Section 3. Tail probabilities are compared, to
tabled Student-t values and modifications of critical values are developed for the symmetric h-

distributions.

2. The Distributions

The distributions used in this study belong to a four-parameter family suggested by Tukey
(1976), the g/h class of distributions. This family is particularly well-suited for robustness stu-
dies, as it covers a range of shapes much wider than the distributions usually encountered in

empirical work.

The g/h family is based on simple monotonic functions of a unit gaussian variate, making
the generation of samples and the derivation of densities and moments easy. One function

induces skewness (and some stretch), while another stretches the tails symmetrically.

The transformation for skewness is:
where z is a unit gaussian variate, and skewness is indexed by g. Re-expressions of this type
form the familiar family of lognormal distributions. The —I in the numerator and g in the

denominator cause $(0) to be zero and y(e)=~ e for € close to zero.

The transformation for symmetric stretching of tails is:

y= z exp(hz2/2), k>0, (2.2
where z is again a unit gaussian variate, and h is the index of stretch. Large values of h imply
more stretching. Re-expressions of this type form a family we will refer to as the class of h-

distributions. Squeezed-ail distributions cannot be generated by taking h< 0, as (2.2) is then

no longer monotonic.

The two transformations can be combined,

9= (eF_Dglexp(A2?12), g=0, k>0 (2.9)
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to generate distributions which are skew and more stretched than the log-normals. Distribu-

tions generated by these transformations form the g/h family.

In this study we consider values of g from 0.1 to 2.5 and values of h from 0.05 to 0.9.
Although we look only at positive skewness, the development and results are analogous for

negative skewness (g< 0).
Densities can be derived by simple transformation-of-variable techniques. Letting f(y)
denote the density of y, we have for the log-normals (2.1),

f(3)= (2m) 72 (gy+ 1) exp{ {in(gy+ 1))%2gD, 9> —lig (2.4)
For the h-distributions (2.2),

f(3)= (2m) 712 (hz%+ 1) exp(—2%( 1+ £)/2), (2.5)
where z is such that y=z exp(lzzzl2). Finally, the density for the combined g/h distributions
is:

f(9)= (2m) V228 + hz(e8 1)/ g) exp(—zX 1+ 4)/2) , (2.6)
where z is such that y=(e& —1)g™ lexp(/z?/2). Some of the log-normal densities are plotted in
Figure A. In Figure B the square root of the density is plotted for a few of the g/h-

distributions, to magnify tail behaviour.

Clearly, these are highly non-normal distributions. To see just how non-normal, we com-
pare them to the well-known Karl Pearson curves. The Pearson curves are often used in
empirical work, and form the basis of E.S. Pearson’s two extensive robustness studies of the t-

statistic ( 1929 and 1975).

Pearson curves rely heavily on moments for measuring characteristics of shape. For the
g/h family moments do not play such a central role — in fact, moments often do not exist.
However, since the log-normal, h- and g/h-distributions are simple re-expressions of a unit
gaussian, moments can be derived in éstraighrforward manner. Detailed derivations are given
in Arthur (1979). Table 1 lists population moments for various log-normal, h- and g/h-
distributions. Note that for the h- and g/h-distributions, g, exists only for h< 1, u, for

h< 1/2, pq for h< 1/3, and p, for h< 1/4 Of course, since the h-distributions are symmetric
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Table 1. Moments of the Distributions

a. Log-normal Distributions

g= u Hy By1/2 B,

0.1 0.050 1.015 0.302 3.162
0.2 0.101 1.062 0.614 3.678
0.3 0.153 1.145 0.950 L.645
0.4 0.208 1.273 1.322 6.260
0.5 0.266 1.459 1.750 8.898
0.7 0.397 2.106 2.888 20.790
1.0 0.649 4.671 6.185 113.900
1.5 1.387 35.790 33.470 1.008x104
2.0 3.194 731.600 414.400 9.221x10%
2.5 8.704  4.285x10" 1.182x104 >1.00x1010

b. h-Distributions

h= u oy B,1/2 B,

0.05 0 1.171 0 3.820
0.10 0 1.398 0 5.508
0.15 0 1.708 0 10.169
0.20 0 2.152 0 36.224
0.40 0 11.180 0 -
0.60 0 - -
0.80 0 - -
0.90 0 - -
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0.059
0.180
0.314
0.471
0.783
1.750
4.336
13.160

0.070
0.216
0.378
0.572
0.971
2.296
6.251
21.780

0.108
0.335
0.598
0.930
1.680
4,752
17.450
93.880

1.621
5.991
15.750
47.830
466.200
1.621x10°
7.671x108
>1.00x1010
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Moments of the Distributions

g/h-Distributions

My 811/2
1.425 0.521
1.66U 1.702
2.272 3.407
3.628 6.517
9.948 21.040
131.200 450.200
6.131x103 4.577x104
1.092x106 1.886x107
2.210 1.299
2.738 4.840
4.183 13.160
7.872 44.780
30.600 713.600
1.025x103 1.405x106
1.992x10°> >1.00x1010
>1.00x1010 >1.00x1010
12.180
23.610
84.130
585.400
4.920x104
5.874x109
>1.00x1010
>1.00x1010

By

6.192
13.410
44,240

220.100
7.942x103
1.584x108

>1.00x1010
>1.00x1010

56.035
625.100
4.290x104
4.883x107
>1.00x1010
>1.00x1010
>1.00x1010
>1.00x1010
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and centered on zero, p,=0, i odd, for these distributions. Also, since the three types of distri-

bution have y= 0 at 2= 0, the population median is zero in all cases.

Figure C is adapted from a diagram pre‘sented in the 1963 paper of Johnson, Nixon,
Amos, and ES. Pearson on percentage points of Pearson curves. It plots values of
BU%=pglu'? and Bf=u,Jpu?) for various types of Pearson curves. Values of 8//% and B,
have been added for several g/h-distributions. In contrast to the Pearson curves, the g/h-
distributions have only one sharp boundary, at h= 0, and cover the entire (8/%8,)-plane
below the h= 0 line (log-normals) in a smooth way. However, they do not include any distri-

butions with tails less stretched than the log-normals.

The shaded area in Figure C shows the boundaries of the distributions included by. E.S.
Pearson and Please in their 1975 study of the effects of non-normality on t, the most extensive
empirical study to date. The g/h-distributions to be used in this study include only about one-
third of this area, but extend to distributions with much more extreme skewness and stretch

than those of the Pearson and Please study.

In sum, the g/h-distributions are a family particularly well suited to studies of extreme
distributions. ‘Their simple relation to the gaussian makes densities, percent points and
moments easy to find, for any values of g and h. Extensive tables such as those required by
the Pearson curves are unnecessary. Using this family allows us to look at the robustness of t
with respect to underlying distributions with much more extreme skewness and stretch than has

been done before.

3. The Balanced Center for Underlying Skew Distributions

In this section we estimate the population characteristic covered in a balanced way for
several of the g/h distributions, several sample sizes and significance levels. This means finding
¢ such that P(c< £—rs,)= P(c> Z+7_5,)= a*. We do not require that «* be close to the
nominal significance level, &, only that the right- and left-hand tails be equal. The value of a*

is, of course, also important and will be discussed in the next section. The population charac-
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teristic ¢ will be referred to as the balanced center.

The actual numerical value of ¢ is probably of little interest. Other aspects of the bal-
anced center are more important. In this study we look at:
— the location of the balanced center relative to the mean (u) and median (m) of the
underlying distribution, denoted by @ where c=ap+(1—a)m; and
— the percent point of the underlying distribution at which the balanced center lies,
denoted fre(c).
The first of these is the most important for this study because knowing a allows us to modify
t-intervals about g to achieve equal tails. Let

t,=(x —(ap+(l—a)m)) | s,,

where ¢= ap+ (1—a)m is the balanced center. Then we know

P(—r K t,< 7)= 1-2a"%,
P(t,< —1 )=P(t,> 7 )=a".

Re-arranging terms, we can find:

P((g—r s, <1—a)m)la < p < (T+7,5,<1=@)m)la ) = 1-2a%,
Plu< (g7 s,(1—a)m)la ) = P(u> (T+7 s5,~{1-a)m)la) = a*.

In essence, the p confidence interval is no longer symmetric about . The modified confidence
interval for underlying skew distributions has one boundary farther from £ than the other.
However, the probability that p lies outside this confidence interval to the left now equals the
probability that it lies outside the confidence interval to the right. The modified confidence

interval has symmetric loss — it is balanced.

8.1. Estimation

To estimate a, samples are generated for given sample size and given parameters g and h.
The value of &, ;= (¥—{ip+(1—)m))/s,, is calculated for several values of i. Tail probabili-
ties P(t;< —r ) and P(f;> 7,) are estimated for the nominal significance level, «, and are used

to form ratios

r=P(t,< —1 )IP(t> 1 ).
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Interpolation is then done on the 7, to find the value ¢ for which r,= 1. This is our estimate ¢
of @. Accuracy will depend on the step size used in interpolation. Estimate ¢ will be said to be
Interpolated to grid size 0.05 if interpolation is done between 7, and r;, , 5, The variance of ¢
is estimated by jackknife techniques — we generate ten groups of 1000 samples each and esti-
mate @ ten times, leaving out one of the groups of samples each time. This procedure allows
Jckknife estimation of both a and its variance.

In estimating tail probabilities P(z,< —r_) and P(¢,> r ), accuracy can be increased by
taking advantage of the known gaussian tail probabilities, using an estimation technique due to
Fieller and Hartley (1954). Suppose we generate a gaussian sample, Xy, -..,%, and transform
it to ag/h sample y,,...,9,. We can calculate two t-statistics, £, based on the gaussian sam-
ple, and £, based on the g/h sample obtained by transformation. Now suppose we generate N
gaussian samples of size n, divide the range of t into cells, and form cell counts. Let

ny = the number of samples for which ¢, falls in cell i, and ¢, falls in cell }

# = probability that ¢, falls in cell §, £, in cell } |
Then the p,, where dot denotes summation, are known, and the Fieller-Hartley estimate of g

is

A- Eﬂjuzj » Ug=nyln, ¥n;>0
1
. IN ifn;=0

An estimate of the approximate variance is

wr(f) = AU-A)IN - (S(hy-h 1) INp, .
J

Estimates f may be summed to form tail probability estimates.

3.2. Results

The value of @ has been estimated for sample sizes n= 5, 10, 20, a= 0.01, 0.025, 0.05,
0.10, and several values of g and h. These estimates, and estimates of the standard error, are
given in Table 2. All unstarred estimates in Table 2 were interpolated to grid size 0.05 and

were jackknifed using ten groups of of 1000 samples each. Where estimates required more
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TABLE 2. Estimates of a, Log-normals

n=5 n=10 n=20
a 5.e. a s.e. a S.e.
g=0.1
0=0.010 -0.377 0.056 -0.019 0.024 0.449 0.046
=0.025 -0.169 0.050 0.226 0.025 0.626 0.032
=0.050 -0.056 0.025 0.410 0.024 0.671 0.017
=0.100 0.181 0.015 0.577 0.037 0.793 0.018
g=0.3
a=0.010 -0.3904 0.038 0.021 0.026 0.418 0.033
=0.025 -0.218 0.022 0.227 0.018 0.578 0.010
=0.050 -0.032 0.013 0.381 0.012 0.668 0.008
=0.100 0.204 0.009 0.568 0.018 0.772 0.008
g=0.5
0=0.010 -0.378 0.027 0.015 0.016 0.409 0.025
=0.025 -0.203 0.014 0.221 0.013 0.564 0.010
=0.050 -0.039 0.010 0.363 0.010 0.643 0.005
=0.100 0.188 0.009 0.552 0.011 0.752 0.007
g=0.7
0=0.010 -0.342 0.015 0.035 0.012 0.395 0.013
=0.025 -0.196 0.013 0.211 0.011 0.517 0.011
=0.050 -0.036 0.011 0.347 0.008 0.609 0.005
=0.100 0.180 0.009 0.520 0.006 0.722 0.007
£=1.0
x=0.010 -0.282 0.008 0.023 0.011 0.335 0.007
=0.025 ~-0.159 0.012 0.176 0.010 0.446 0.006
=0.050 -0.034 0.007 0.294 0.005 0.548 0.002
=0.100 0.153 0.006 0.465 0.005 0.664 0.007
g=1.5
a=0.010 -0.172 0.005% 0.009 0.000% 0.227 0.006%
=0.025 -0.096 0.007% 0.112 0.005% 0.325 0.005%
=0.050 -0.024 0.006% 0.198 0.003% 0.411 0.003%
=0.100 0.101 0.004* 0.341 0.003% 0.528 0.005%
g=2.0
0=0.010 -0.079 0.004%* 0.002 0.003* 0.133 0.003%
=0.025 -0.054 0.001% 0.055 0.003¢% 0.200 0.00u*
=0.050 -0.016 0.002% 0.114 0.003% 0.267 0.002%
=0.100 0.054 0.002% 0.209 0.002% 0.366 0.005%
g=2.5
0=0,010 -0.0264 0.0009% 0.0002 0.0010% 0.0621 0.0023%
=0.025 -0.0217 0.0005% 0.0223 0.0017% 0.0995 0.0019%
=0,050 -0.0074 0.000G* 0.0515 0.0015% 0.1410 0.0015¢%
=0.100 0.0238 0.0009* 0.1062 0.0015% 0.2094 0,0036%

*: interpolation grid size 0.01
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-0

-0

-0

-0.
-0.
-0.
-1395

-0

-0

-0

-0

-0.
.0810
.0266
L0731

-0
-0

-0
-0
-0

-0
-0

-Oo
L0147

0

n=5
3

.2962
-0.
-0.
. 1249

1682
0299

.3115
-0.
.0566
LTUT7U

1846

3054
1892
o404

.2838
-0.
.0398
.1304

1626

.2310
1321
.0409
1133

1312

L0571
.0410
.0146
.0369

.0194
.0143

0054

[eNeNoNo] [N No o) OO OO OO0 QOO0 OO OO [eNoNoNo]

[esNeNoNo]

S.

€.

.0537
.0332
.0245
.0196

.0438
.0166
.0129
.0120

.0505
.0199
.C148
.0092

.0219
.0125
.0079
.0071

.0114
.0092
.0049
.0067

.0052%
.0053%
.0032*
.0033%

.0026%
.0012%
.0018%
.0017%

.0006%
.000u*
.0005%
.0006%
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Estimates of a,
n=10
& s.e.
0.1094 0.0720
0.0722 0.0225
0.2879 0.0232
0.5068 0.0297
0.0153 0.0218
0.1664 0.0195
0.2950 0.0120
0.4824 0.0150
-0.0183 0.0169
0.1612 0.0093
0.2847 0.0090
0.4737 0.0114
0.0033 0.0118
0.1525 0.0103
0.2700 0.0069
0.4393 0.0055
-0.0070 0.0098
0.1273 0.0101
0.2304 0.0047
0.3896 0.0051
-0.0035 0.0031%
0.0778 0.0040%
0.1527 0.0037*
0.2734 0.0034%
-0.0013 0.0020%
0.0368 0.0026%
0.0814 0.0025%
0.1568 0.0017%
-0.0008 0.0007%
0.0132 0.0009%
0.0338 0.0009%
0.0713 0.0009%

interpolation grid size 0.01

h=0.10

n=20

a

0.1878
0.5368
0.5772
0.7165

0.3687
0.4816
0.5762
0.6943

0.3315
0.4641
0.5603
0.6790

0.3194
0.4232
0.5275
0.6427

0.2649
0.3713
0.4662
0.5834

0.1732
0.2597
0.3363
0.4475

0.0953
0.1506
0.2016
0.2868

0.0405
0.0667
0.0960
0.1480

[N e e Ne) [eNoNoNe) QO OO [eNoNoNo] OO OO [eNeNoNo) [eNoNoNe]

[eNoNoNo)

5

.e.

0711
.0456
.0230
.0184

.0215
.0107
.0083
.0075

.0145
.0108
.0036
.0064

.0096
.0074
.0036
.0070

.0102
.0050
.0025
.0062

.0057%
.0038%
.0029%
.0057*

.0021%
.0023%
.0018*
.0037%

.0017%
.0013%
.0012%
.0025%
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-0
-0
-0

-0
-0

-0,

-0.

-0
-0

-0

-0.

-0

-0

~-0.

-0

-0.

-0

-0.

-0
-0

-0.

-0

-0.

-0
0

n=5

a

.1215
.2416
.0361
.0765

.3194
.1606
0466
. 1051

2383
. 1403
.0403
.1042

.2195
1316
.0436
.0958

ATHT
1039
L0411
.0819

0947
.0620
0243
.0503

.0377
.0276
0107
.0241

.0112
0087
.0034
.0086

OO OO OO OO eNeoloNe] OO OO OO OO

QO OO

[eNoNoNe)

OO OO0

S.

e.

.0844m
.0724m
.0239m
.0223m

.0582
.0340
.0126
.0120

.0146
.0155
.0105
.0092

.0143
0131
.0068
.0070

.0081
.0081
.0062
.0055

.004T*
.0025%
.0033%
.0028%

.0017*
.000T7*
.0013%
.0014¥%

.0003*%
.0003*%
.0003*
.00Q4u*

est. based on 10 groups of
interpolation grid size 0.01
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Estimates of a,

n=10

El

.0384
. 1449
.2121
1218

OO OO

.0081
. 1137
.2396
L4013

[oleoloeNe]

.0097
.1156
.2237
.3870

OO OO0

.0061
.1068
L2067
.3635

[oNeNoNe]

.0116
.0894
LATTH
.3158

OO OO

.0065
.0536
1113
.2103

OO OO0

.0017
.0226
.0540
L1111

eNeoloNo]

.0012
.0076
.0197
.0u43

OO OO0

eNeoNoNe) [eNeoNeoNe] QOO O OO OO OO OO QOO0 OO OO

OO OO0

S

.e.

.0380m
L0421m
.0212m
.0124m

.0435
.0121
.0127
014y

.0210
.0109
.0076
.0108

L0111
.0107
.0073
.0059

.0054
.0087
.0035
.0042

.0024u%
.0031%
.0028%
.0022%

.0014¥*
.0018%
.0016%
.0014*

.0005%
.0005%
.0006%
.0007%

2000 samples each

OO OO

OO OO0

[eNeoleNe) OO0 O

[eNeolaNe)

OO OO

oleNeNe]

[eNeoloNe]

OO OO OO OO OO OO OO OO OO OO0 OO OO0 OO OO

QOO O

.036Tm
.0301m
.0193m
.0163m

.0119
.0113
.0074
.0066

.0134
.0112
.0037
.0085

L0117
.0050
.0037
.0063

.0103
.0040
.0029
.0047

.0035%
.00u2%
.0015%
.oouT7*

.0015%
.0022%
L001T7*
.0033%

.0007*
.0010%
.0009*
.0016%
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TABLE 2 (cont'd).

-0

-0

-0.
-0.
.0354
.0580

-0

-0.
-0.
.0342
.0496

-0

-0.
.0786
.0306
LouTT

-0
-0

-0

-0

-0.
~-0.
-0.
.0202

-0,
-0.
-0.
.0078

-0

0

n=5

a

2371
-0.
.ou74
.0627

0574

1648
0954

1539
0868

1312

.0928
-0.
.0254
.0381

0590

o411
0307
0129

0131
0098
0040

.0025
-0.
-0.
.0017

0019
0009

[eNeNoNe) [eNeNeNe) [eNoNoNe QOO0 OO OO0 OO OO [eNeNoNe]

QO OO

S

.€.

.0636
.0546
.0274
.0181

.0256
.0237
.0104
.0107

.0136
.0086
.0085
.0079

.0068
.0059
.0055
.0055

.0o44
.0038
.0029
.0034

.0025%
.0006%
.0011%
.0018%

.0006*
.0003*
.0004*
.0004*

.0001%*
L0001 %*
L0001 %%
.0001 %%
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Estimates of a, h=0.40

n=10 n=20
a s.e. a

0.0323 0.0636 0.1880 0
0.0966 0.0716 0.2836 0
0.1423 0.0200 0.3428 O
0.2673 0.0156 0.4174 ©
-0.0228 0.0177 0.1475 0
0.0639 0.0134 0.2408 0
0.1508 0.0103 0.3239 O
0.2509 0.0078 0.4241 O
-0.0209 0.0128 0.1542 0
0.0568 0.0136 0.2253 O
0.1371 0.0055 0.3031 ©
0.2415 0.0077 0.4110 O
-0.0068 0.0078 0.1573 ©
0.0585 0.0080 0.2068 ©
0.1188 0.0050 0.2773 0
0.2208 0.0047 0.3791 O
0.0017 0.0038 0.1092 O
0.0404 0.0055 0.1679 ©
0.0924 0.0025 0.2284 0
0.1838 0.0029 0.3194 O
-0.0040 0.0014% 0.0596 0
0.0207 0.0023*% 0.0968 O
0.0495 0.0017% 0.1314 0
0.1034 0.0016% 0.1941 O
-0.,0013 0.0007% 0.0229 O
0.0071 ©.0007* 0.0377 O
0.0184 0.0006*% 0.0545 O
0.0410 0.0006% 0.0854 O
-0.0003 0.0002%¥* 0.0053 O
0.0014 0.0001%* 0.0096 O
0.0043 0.0001%* 0.0146 O
0.0107 0.0002%* 0.0249 O

¥: interpolation grid size 0.01
¥%¥:interpolation grid size 0.001

S

.€.

.ouz22
.0578
.0243
.0223

.0222
L0175
.0107
.0068

.0157
.0090
.0053
.0059

.0129
.0043
.0038
.0054

.0068

.0033
.0016
.0039

.0014%
.0020%
.0010%
.0034*

.0009*
.0008%
.0007*
.0015%

.0003%*
.0003%%
.0002%*
.0005%*
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TABLE
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-0.
-0.

-0
-0

-0.

-0

-0.

-0

-0

-0.
-0.

-0.
-0.
-0.

2 (cont'd).
n=5
a s.e.

L0141 0.0102%
0047 0.0081%
0029 0.0044%
.0019 0.0034%*
.0067 0.0032%
.0046 0.0015%
0018 0.0013*
.0024 0.0008%
.0046 0.0015%
0033 0.0004%
.0011 0.0006%
.0017 0.0003%
.0018 0.000y¥*%*
0016 0.0001%*
0005 0.0002%%*
.0008 0.0001%*
0002 0.0000Q%%*
0002 0.0000%%*%
0001 0.0000%**
.0001 0.0000%%%
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OO OO0 OO OO

OO OO

interpolation grid size 0.001
interpolation grid size 0.0001

n=10

a

.00uy
.0081
.0090
.0176

.0020
.0034
.0078
.0149

.0002
.0014
.0049
.0094

QOO0

OO OO0

.0001
.0008
.0022
.0045

.0000
.0001
.0003
.0007

OO OO0 OO OO

[oNeoNoNe]

S

.C.

.0038%
.0035¢%
.0ou2%*
.0022%

.0015%
.0012%
.0012%
.0008%

.0005%
.0005%
.0003%
.0003%

OO OO

[eNoNoNe

.0003%%
.0002%%
.0001%*
.0001%*

.0000%%*
.0000%%*
.0000*%*
.0000%%*

Estimates of a, h=0.90

OO OO [eNeNoNo]

OO OO0

.0237
.0180
.0320
.0333

.0103
.0145
.0218
.0290

.0057
.0090
L0131
.0189

.0027
.0042
.0061
.0092

OO OO

.0004
.0006
.0009
.0015

[eNeoNoNe]

OO OO

OO OO

OO OO

[oNoNoNe]

[eNeoNeoNe

.0093%
.0043%
.0035%
.004T7*

.0039*
.0012*%
.0012%
.0014*

.0012%
.0006%
.0004*
.0006%

.0003%#
.0002%%
.0002%%
.0002%%

.0000 %% %
L0000 %**
.0000%*¥
.0000%*¥
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samples or a narrower interpolation grid to achieve a reasonable standard error, this is indicated

in the table.

How does ¢ depend on n, «, and g? Figure D plots ¢ as a function of -10log{a) for n=
5, 10, 20, for the log-normal distributions with g= 0.5 to 2.5. Since a is a simple weighting of
the population mean and median, plots of ¢ show where the balanced center falls relative to

these two population characteristics.

Looking first at the effect of sample size on &, note that for sample size n= 20 the bal-
anced center always falls between the mean and median. As n decreases, holding all other fac-
tors constant, the balanced center moves, in a relative sense, towards the median, and even
past it (a< 0) for n= 5 and some a. Roughly speaking, the balanced center is closer to the
median than to the mean for n= 5 and all combinations of g and a considered. For n= 10 it is

closer in most cases, for n= 20 in some cases.

Unfortunately, the balanced center depends on a as well as the sample size and popula-
tion parameters g and h. The value of @ decreases as « decreases. That is, the balanced center

is closer to the median when we are interested in the extremes of the distribution.

When 0<a< 1, @ depends on g in the way we would expect, decreasing as g increases.
That is, the balanced center is closer to the median as skewness increases. Once the balanced
center lies to the left of the median (a < 0), however, there is what might be called a cross-over
effect, and a increases (becomes less negative) as g increases. This may be due to the fact that
as g increases the left-hand tail of the underlying distribution is being pushed rapidly in toward
zero (see Figure A). Values of @ cannot be too negative as g increases or the balanced center
would lie outside the range of the distribution. If the cross-over effect is in some sense an
artifact of the limits of the distribution we might expect some measure of the balanced center
to be a monotonic function of n, a, and g, showing no cross-over effect. It can be shown that
this is true for the distance from the balanced center to the mean, which always increases as n

decreases, as a decreases, and as g increases.
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The effect of h on the balanced center can be seen most easily from Figures E and F,
which show plots of f£{¢) and & against h for a few values of n, a, and g. On the one hand,
since h stretches the tails of the underlying distribution symmetrically we might expect that
increasing h will not disturb the balanced center. On the other hand, since g moves farther
into the tail of the underlying distribution as h increases, this should have some effect. Figure
E shows that the balanced center as a percent point of the underlying distribution, fct(¢), is
fairly stable over h, particularly for only moderately non-normal distributions. However, the
position of the balanced center relative to the mean and median, measured by a, changes
dramatically (see Figure F). As h increases, ¢ moves rapidly towards zero. We can say that
the balanced center lies ar about the same percent point for underlying distributions with

differing amounts of stretch. However, as stretch increases, the balanced center moves, in a

relative sense, closer to the median.

This section provides tables of the balanced center in terms of a for several values of n,
a, g and h. If the balanced center is needed for values of g and h not tabled, interpolation will
be necessary. It is possible to interpolate in any of the tables presented, but for increased accu-
racy, Table 3 should be used. This gives values of {frt(é)—ge(m))/g, a quantity which is
fairly constant over a reasonable range of g (0.1< g< 1.0) and over h for the higher values of
a. Using this table, interpolation will give the population characteristic covered in a balanced
way by t-intervals for h between 0 and 0.9, g between 0. and 2.5, for three sample sizes and
four significance levels. These estimates of a can then be used to make the appropriate

modifications of t-intervals about the mean to achieve equal tail probabilities.

4. Tail Probabhilities

The previous section estimated the balanced center and indicated how the t-intervals
about the mean must be modified to achieve balanced tail probabilities for a class of skew distri-
butions. The actual values of the balanced tail probabilities were not considered. In this sec-
tion we estimate the balanced tail probabilities for the distributions of the last section, as well as

for several of the symmetric h-distributions (for which the balanced center is, of course, the
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TABLE 3. 1Interpolation Table of (pct(é)—pct(m))/g, n=5

h=0.0 h=0.1 h=0.2 h=0.4 h=0.9

«=0.010
g=0.1 ~7.50 -6.90 -3.40 -10.20 -9.10
g=0.3 ~-8.10 -7.53 -9.23 -7.37 -5.37
g=0.5 ~-8.22 -7.82 -7.34 -T7.42 -5.86
g=0.7 ~8.10 -7.97 -7.46 -7.09 -5.04
g=1.0 =7.99 -7.89 -7.32 -6.41 -3.88
g=1.5 -7.75 -7.35 -6.87 -5.49
g=2.0 ~6.84 -6.64 -6.17 -5.05
g=2.5 ~6.34 -6.23 -5.75 -4.46
a=0.025
g=0.1 ~3.40 -3.90 -6.80 -2.50 -3.00
g=0.3 ~4.47 -4.43 -4.63 -4 .27 -3.67
g£=0.5 ~4,38 -4.80 -4.28 -4.,18 -4.,20
g=0.7 ~4.56 -4.49 -4.40 -4,21 -4,47
g=1.0 ~4.34 -4.35 -4.23 -4.04 -3.88
g=1.5 ~-3.95 -4.,21 -4.,23 -4.,05
g=2.0 ~4.18 -4.33 -4.17 -3.69
g=2.5 -4.,04 -4.00 -4.02 -3.26
n =0.050
g=0.1 ~1.10 -0.70 -1.00 -2.00 -1.90
g=0.3 -0.67 -1.37 -1.33 -1.57 -1.43
g=0.5 ~0.84 -1.02 -1.22 -1.64 -1.38
g=0.7 ~0.80 -1.07 -1.43 -1.63 -1.37
g=1.0 ~0.90 -1.30 -1.62 -1.72 -1.90
g=1.5 ~0.92 -1.28 -1.55 -1.67
g=2.0 -1.09 -1.35 -1.43 -1.44
g=2.5 -1.12 -1.25 -1.30 -1.44
a=0.100
g=0.1 3.60 2.90 2.10 2.70 1.20
g=0.3 4,13 3.53 3.00 2.57 1.90
g=0.5 3.94 3.46 3.12 2.36 2.12
g=0.7 3.97 3.43 3.06 2.50 2.16
g=1.0 3.77 3.39 3.05 2.51 1.81
g=1.5 3.37 3.10 2.83 2.U6
g=2.0 2.96 2.76 2.61 2.53
g=2.5 2.65 2.50 2.44 2.27
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TABLE 3. 1Interpolation Table of (pct(&)-pet(m))/g, n=10
(cont'd)

¢ O
o

=0.01
g=0.1 -0.40 2.60 1.10 1.40 2.80
g=0.3 0.43 0.37 -0.23 -1.03 1.60
g=0.5 0.32 -0.U46 -0.30 -1.00 0.26
g=0.7 0.79 0.09 -0.20 -0.36 -0.27
g=1.0 0.58 -0.22 -0.45 0.1 0.00
g=1.5 0.33 ~-0.17 -0.40 -0.51
g=2.0 0.12 -0.11 -0.22 -0.46
g=2.5 0.03 -0.17 -0.43 -0.46

a=0.025
g=0.1 4.50 1.70 4.00 4,20 5.20
g=0.3 4.60 3.97 3.23 2.83 2.70
g=0.5 4,64 3.98 3.44 2.70 1.74
g=0.7 4,63 3.99 3.40 3.06 2.16
g=1.0 4.30 3.78 3.31 2.66 1.81
g=1.5 3.71 3.29 2.99 2.52
g=2.0 2.98 2.75 2.47 2.32
g=2.5 2.51 2.29 2.20 1.90

a=0.050
g=0.1 8.20 6.70 5.90 6.10 5.80
g=0.3 7.70 7.00 6.80 6.67 6.17
g=0.5 7.52 6.96 6.60 6.44 6.02
g=0.7 7.47 6.93 6.46 6.13 5.76
g=1.0 6.92 6.58 6.30 5.92 5.17
g=1.5 6.07 5.91 5.69 5.69
g=2.0 5.40 5.25 5.07 5.41
g=2.5 4,73 4,69 4.56 4,88

o =0.100
g=0.1 11.50 11.90 11.80 11.50 11.40
g=0.3 11.43 11.40 11.33 11.07 11.67
g=0.5 11.28 11.40 11.22 11.20 11.26
g=0.7 10.90 10.93 10.96 11.10 11.17
g=1.0 10.39 10.47 10.48 11.13 10.80
g=1.5 9.30 9.34 9.36 10.61
g=2.0 8.22 8.26 8.32 9.88
g=2.5 T7.36 T.37 7.44 8.84
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TABLE 3. Interpolation Table of (pct(&)-pct(m))/g, n=20
(cont'd)
h=0.0 h=0.1 h=0.2 h=0.4 h=0.9

a=0.010 -
g=0.1 9.00 4.40 7.70 8.10 15.30
g=0.3 8.47 8.73 6.93 6.53 8.10
g=0.5 8.44 8.08 7.42 7.24 6.98
g=0.7 8.44 8.11 7.84 8.04 6.99
g=1.0 7.80 7.46 7.27 6.92 6.71
g=1.5 6.78 6.56 6.43 6.71
g=2.0 6.04 5.90 5.82 6.47
g=2.5 5.35 5.28 5.31 5.68

aa=0.025
g=0.1 12.50 12.60 10.90 12.20 11.60
g=0.3 11.63 11.37 10.93 10.63 11.37
g=0.5 11.52 11.18 10.72 10.48 10.80
g=0.7 10.86 10.56 10.30 10.43 10.50
g=1.0 10.03 10.04 9.85 10.27 9.52
g=1.5 8.97 8.99 8.97 10.07
g=2.0 7.98 8.05 7.99 9.34
g=2.5 7.10 7.11 7.09 8.32

a=0.,050
g=0.1 13.40 13.50 14.00 14.70 20.60
g=0.3 13.40 13.57 13.67 14.23 16.87
g=0.5 13.04 13.38 13.36 13.92 15.32
g=0.7 12.61 12.91 13.09 13.70 14.56
g=1.0 11.95 12.17 12.29 13.44 13.14
g=1.5 10.66 10.83 10.93 12.69
g=2.0 9.53 9.60 9.69 11.79
g=2.5 8.51 8.56 8.63 10.34

«=0.100
g=0.1 15.80 16.70 16.80 17.90 21.40
g=0.3 15.43 16.27 17.10 18.50 22.13
g=0.5 15.14 16.02 16.80 18.56 21.22
g=0.7 14,70 15.40 16.11 18.11 20.30
g=1.0 13.98 14.58 15.15 17.64 18.70
g=1.5 12.63 13.07 13.47 16,43
g=2.0 11.34 11.58 11.83 14.86
g=2.5 10.14 10.32 10.47 12.83



mean).

Estimation is done as described in Section 3, using Fieller-Hartley and jackknife tech-
niques. In all cases considered in this section, right- and left-hand tail probabilities are equal
(for underlying log-normal and g/h-distributions we assume t-statistics have been modified
using the balanced center to achieve equal tails), so we look at the average of the two tail pro-
bability estimates. For h-distributions, the estimates will be:

&%= (Plp<z—r,8,)+ Plp> z+1,5,)) 2,

= ( P(t> TS+ P(t< -1 ) 2.
For log-normal and g/h-distributions, the estimates will be:

&* = P(p< (-1 5, ~1-a)m)ia ) + P(p> (g+75,~1—a)m)la ) /2.
- (B> 1)+ Blty<—r ) ) 2, t=(¥—ap+(1—a)m)) /s, .

The log-normal, h-, and g/ h-distributions all have stretched tails. For such distributions, t
is conservative — tails are squeezed-in compared to the Student-t distribution. That is, a*< a,
where a is the desired one-sided tail probability. For a review of the many studies demonstrat-

ing this phenomenon, see Hatch and Posten (1966).

Tables 4, 5, and 6 present estimates &* together with their estimated standard errors, for
several of the symmetric h-distributions, and for several of the skew log-normal and g/h-
distributions, respectively. As expected, the t-statistic is conservative in the tails for these
stretched-tail distributions, and intervals will be too wide. The difference between a® and « is
negligible in many cases, but increases as stretch increases (i.e. as h and/or g increases).

Although t-intervals are still too wide, modification using the balanced center has made a
large improvement in tail probabilities for the skew distributions. The estimated summed tail
probability after balancing, 2&", is much closer to the desired significance level, 2a, than is the
tail probability &, + &, associated with the unmodified Student-t interval. In Table 7, &, +dp
and 2&* are compared to 2a= 0.05 for a few of the underlying g/h-distributions, for sample
size n= 10. For very small degrees of skewness (g= 0.1), &, +&, is reasonably close to 2a.

However, as skewness increases, &, + &, becomes rapidly much larger than 2a. For h= 0.2,



TABLE 4.

=<
R}
o
(S}

OSSOSO SIS S o

.05
.10
.15
.20
.40
.60
.80
.90

lof¥oRoRoRoRo o RoPe)

Q
n
(@]

OSSOSO IS o

.05
.10
.15
.20
.40
.60
.80
.90

COOO00OO0OO0OO

n
(%2}

—~
o
i

o e e e die e g die gl

"n o n o un 4

.05
.10
.15
.20
.40
.60

OCOO0OOOOOOO

.90

3
1l

Ul
o

.05
.10
.15
.20
.40
.60
.80
.90

o e e Ja Jo o o e Ne
L I I T T I |

QO OCOOOOOO

Q
1]
o
o

.05
.10
.15
.20
.40
.60
.80
.90

o e Jie jha ja o jo o o)

OO OODOOOO

-27-

Tail Probability Estimates for the h-Distributions

OO OOOOOO0o COOOOOOO0O

QOO OODOOCO

OCOOOOOO0O0O

QO OO OOQO0

.0045
.0042
.0037
.0033
.0021
.0018
.0015
.0012

.0092
.0084
.0074
.0068
.0049
.0038
.0031

.0029

.0236
.0223
.0213
.0197
.0151
.0122
.0099
.0089

.0480
.0464
.0448
L0427
.0368
.0312
.0270
.0252

.0995
.0990
.0973
.0953
.0884
.0822
L0757
.0730

QO OOOCOOO QOO OOOOO COO0OOOOOO0O QOO OOOOO0

QOO0 OOOO0O

.0001
.0001
.0002
.0002
.0002
.0002
. 0002
.0002

.0001
.0002
.0002
.0002
.0001
.0002
.0003
.0003

.0002
.0003
.0003
.0004
.0004
.0002
.0003
.0002

.0002
.0003
.0004
.0004
.0009
.0008
.0010
.0009

.0003
.0004
.0005 -
.0007
.0010
.0015
.0018
.0019

OCOOOOO0O0O0O

QOO OOOOoOO0O QO OO OOO O

OCOO0OO0OOOOO0O

[oNeNoNeNoNoNoNo]

o *

.0041
.0039
.0034
.0029
.0018
.0012
.0006
.0006

.0092
.0084
.0072
.0068
.0052
.0037
.0027
.0021

.0239
.0228
.0210
.0201
.0158
.0126
.0108
.0095

.0497
.0487
LOuT7T
.046ly
.0403
.0348
.0295
.0279

.1007
.1008
.1008
.1002
.0971
.0922
.0867
.0843

n=10
S.e.

.0001
.0001
.0002
.0002
.0003
.0003
.0002
.0002

QO OOOOOO

.0002
.0002
.0002
.0002
.0003
.0003
.0003
.0002

OO O0OOOOOO

.0003
.0003
.0004
.0005
.0005
.0006
.0006
.0006

QOO0 OCOOO0O

.0003
.0005
.0005
.0004
.0004
.0005
.0004
.0005

QO OO OOOO0O

.0002
.0005
.0007
.0010
.0012
.0014
.0010
.0011

eNoNoNeoNoNoNoNel

eNeNoloNoNoRoNe] QOO OOOOC0O [cNeoNoNoloNoNo N OCOOOOOOO

[oNeoloNoNoNoNoNe]

.0045
.0043
.0ou0
.0035
.0024
.0016
.0012
.00M

. 0092
.0087
.0084
.0079
.0056
.0036
.0030
.0026

.0248
.0235
.0230
.0216
L0177
L0143
.0115
.0103

.0498
.0502
L0497
.0u81
.0428
.0370
.0320
.0306

.1000
.0999
.0994
.1001
.1000
.0962
.0925
.0901

[eNeoNoloNeNaNoNol QOOO0OOO0OOO0O [eoNoNoNoloNoeNeNol QO OO OOOO0O

QO OO OO0OO O

.0001
.0002
.0002
.0002
.0003
.0003
.0003
.0003

.0001
.0001
.0001
.0002
.000y
.0004
.0003
.0003

.0002
.0004
.0005
.0005
.0005
.0008
.0008
.0007

.0004
.0006
.0005
.0006
.0007
.0010
.0010
.0011

.0004
.0007
.0011
.0013
.0012
.0014
.0016
.0014
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Table 5. Balanced Tail Probability Estimates for the Log-normals

. h=5 n=10 n=20
o * s.e o* s.e o * s.e
a=0.01
g=0.1 0.0100 0.0001 0.0102 0.0002 0.0094 0.0003
g=0.3 0.0099 0.0003 0.0106 0.0003 0.0099 0.0003
g=0.5 0.0090 0.0004 0.0103 0.0005 0.0095 0.0004
g=0.7 0.0079 0.0003 0.0100 0.0006 0.0099 0.0005
g=1.0 0.0072 0.0004 0.0090 0.0005 0.0090 0.0005
g=1.5 0.0056 0.0004 0.0077 0.0004 0.0080 0.0006
g=2.0 0.0045 0.0004 0.0057 0.0004 0.0069 0.0006
g=2.5 0.0033 0.0004 0.0047 0.0005 0.0058 0.0006
0=0.025
g=0.1 0.0251 0.0002 0.0251 0.0005 0.0252 0.0002
g=0.3 0.0249 0.0003 0.0252 0.0006 0.0264 0.0007
g=0.5 0.0244 0.,0004 0.0249 0.0006 0.0263 0.0008
g=0.7 0.0227 0.0004 0.0249 0.0005 0.0257 0.0009
g=1.0 0.0210 0.0006 0.0237 0.0005 0.0247 0.0012
g=1.5 0.0185 0.0005 0.0220 0.0005 0.0237 0.0013
g=2.0 0.0146 0.0006 0.0187 0.0007 0.0223 0.0011
g=2.5 0.0111 0.0006 0.0170 0.0010 0.0203 0.0011
a=0.50
g=0.1 0.0498 0.0005 0.0498 0.0004 0.0494 0,0007
g=0.3 0.0490 0.0005 0.0498 0.0004 0.0491 0.0012
g=0.5 0.0485 0.0006 0.0504 0.0006 0.0498 0.0012
g=0.7 0.0479 0.0007 0.0508 0.0006 0.0500 0.0013
g=1.0 0.0463 0.0008 0.0515 0.0007 0.0527 0.0015
g=1.5 0.0431 0.0010 0.0497 0.0008 0.0532 0.0015
g=2.0 0.0395 0.0009 0.0477 0.0010 0.0516 0.0015
g=2.5 0.0365 0.0010 0.0439 0.0010 0.0510 10,0014
a =0.10
g£=0.1 0.1003 0.0002 0.0992 0.0004 0.0999 0.0007
g=0.3 0.1010 0.0005 0.1013 0.0006 0.0998 0.0013
g=0.5 0.1020 0.0009 0.1015 0.0012 0.1019 0.0014
g=0.7 0.1030 10,0013 0.1045 0.0013 0.1045 0.0014
g=1.0 0.1043 0.0019 0.1074 0.0018 0.1083 0.0019
g=1.5 0.1031 0.0018 0.1127 0.0021 0.1161 0.0022
g=2.0 0.1020 0.0022 0.1135 0.0023 0.1204 10,0020
g=2.5 0.1003 0.0020 0.1146 0.0024 0.1228 0.0021
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Table 6. Balanced Tail Probability Estimates for the
g/h-Distributions, h=0.1

- n=5 n=10 *n:20
Gk s.e o* s.e a s.e
a=0.01
h=0.1,
symmetric 0.0084 0.0002 0.0084 0.0002 0.0087 0.0001
g=0.1 0.0082 0.0002 0.0083 0.0003 0.0087 0.0003
g=0.3 0.0077 0.0002 0.0089 0.0002 0.0085 0.0003
g=0.5 0.0072 0.0002 0.0088 0.0004 0.0089 0.0005
g=0.7 0.0066 0.0003 0.0088 0.0004 0.0085 0.0005
g=1.0 0.0063 0.0004 0.0079 0.0004 0.0085 0.0005
g=1.5 0.0051 0.0004 0.0066 0.0004 0.0074 0.0006
g=2.0 0.0038 0.0004 0.0053 0.0004 0.0065 0.0007
g=2.5 0.0031 0.0004 0.0042 0.0004 0.0055 0.0006
a=0,025
h=0.1,
symmetric 0.0223 0.0003 0.0228 0.0003 0.0235 0.0004
g=0.1 0.0225 0.0003 0.0229 0.0004 0.0236 0.0004
g=0.3 0.0218 0.0003 0.0227 0.0006 0.0244 0.0005
g=0.5 0.0210 0.0004 0.0231 0.0005 0.0250 0.0008
g=0.7 0.0202 0.0004 0.0227 0.0005 0.0244 0.0008
g=1.0 0.0186 0.0005 0.0223 0.0006 0.0236 0.0012
g=1.5 0.0171 0.0005 0.0203 0.0006 0.0225 0.0014
g=2.0 0.0132 0.0006 0.0177 0.0008 0.0214 0.,0012
g=2.5 0.0106 0.0006 0.0160 0.0009 0.0198 0.0011
a =0.50
h=0.1,
symmetric 0.0464 0.0003 0.0487 0.0005 0.0502 0.0006
g=0.1 0.0462 0.0003 0.0481 0.0003 0.0503 0.0008
g=0.3 0.0457 0.0005 0.0477 0.0003 0.0489 0.0012
g=0.5 0.0452 0.0006 0.0485 0.0005 0.0494 0.0011
g=0.7 0.0445 0.0008 0.0488 0.0005 0.0502 0.0012
g=1.0 0.0434 00,0008 0.0492 0.0005 0.0514 0.0014
g=1.5 0.0411 0.0010 0.0483 0.0009 0.0520 0.0016
g=2.0 0.0374 0.0009 0.0462 0.0009 0.0503 0.0014
g=2.5 0.0342 0.0009 0.0429 0.0010 0.0492 0.0016
a=0.10
h=0.1,
symmetric 0.0990 0.0004 0.1008 0.0005 0.0999 0.0007
g=0.1 0.0991 0.0002 0.0996 0.0006 0.0995 0.0008
g=0.3 0.0989 0.0008 0.1005 0.0007 0.1013 0.0011
g=0.5 0.1001 0.0011 0.1017 0.0013 0.1035 0.0015
g=0.7 0.1005 0.0014 0.1040 10,0014 0.1051 0.0013
g=1.0 0.1015 0.0018 0.1070 0.0017 0.1086 0.0017
g=1.5 0.1008 0.0016 0.1114 0.0021 0.1166 0.0021
g=2.0 0.0990 0.0021 0.1127 0.0021 0.1198 0.0018
g=2.5 0.0980 0.0019 0.1134 0.0023 0.1221 0.0023
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Table 6. Balanced Tail Probability Estimates for the

(cont'd) g/h/Distributions, h=0.2
n=5 n=10 n=20
O s.e. O.* s.e. a* s.e.
a=0.01
h=0.2, |
symmetric 0.0068 0.0002 0.0068 0.0002 0.0079 0.0002
g=0.1 0.0067 0.0002 0.0067 0.0003 0.0078 0.0002
g£=0.3 0.0063 0.0002 0.0073 0.0004 0.0078 0.0004
£=0.5 0.0062 0.0002 0.0072 0.0004 0.0075 0.0004
g=0.7 0.0057 0.0003 0.0070 o0.0004 0.0076 0.0004
g=1.0 0.0052 0.0003 0.0067 0.0004 0.0075 0.0005
g=1.5 0.0046 0.0003 0.0055 0.0003 0.0068 0.0005
g=2.0 0.0035 0.0004 0.0050 0.0004 0.0060 0.0007
g=2.5 0.0028 0.0004 0.0037 0.0004 0.0051 0.0007
a=0.025
h=0.2,
symmetric 0.0197 0.0004 0.0201 0.0005 0.0216 0.0005
g=0.1 0.0193 0.0003 0.0202 0.0004 0.0212 0.0005
g=0.3 0.0192 0.0004 0.0206 0.0005 0.0214 0.0007
g=0.5 0.0189 0.0005 0.0207 0.0004 0.0225 0.0007
g=0.7 0.0180 00,0003 0.0204 0.0005 0.0230 0.0008
g=1.0 0.0169 0.0003 0.0199 0.0007 0.0227 0.0011
g=1.5 0.0150 0.0004 0.0185 0.0007 0.0214 0.0013
g=2.0 0.0115 0.0006 0.0167 0.0008 0.0201 0.0012
g=2.5 0.0096 0.0006 0.0152 0.0008 0.0189 0.0010
o =0.50
h=0.2,
symmetric 0.0427 0.0004 0.0464 0.0004 0.0481 10,0006
g=0.1 0.0428 0.0003 0.0457 0.0005 0.0488 0.0007
g=0.3 0.o424 0.0006 0.0454 0.0007 0.0477 0.0010
g=0.5 0.0417 0.0008 0.0461 0.0005 0.0485 0.0012
g=0.7 0.0410 0.0008 0.0467 0.0006 0.0492 0.0013
g=1.0 0.0402 0.0008 0.0472 0.0004 0.0500 0.0016
g=1.5 0.0385 0.0009 0.0467 0.0010 0.0508 0.0015
g=2.0 0.0359 0.0008 0.0438 0.0009 0.0495 0.0014
g=2.5 0.0326 0.0008 0.0420 0.0011 0.0485 0.0015
o =0.10
h=0.2,
symmetric 0.0953 0.0007 0.1002 0.0010 0.1001 0.0013
g=0.1 0.0963 0.0006 0.0996 0.0010 0.0995 0.0012
g=0.3 0.0969 0.0011 0.0999 0.0010 0.1012 0.0014
g=0.5 0.0967 0.0012 0.1011 0.0014 0.1045 0.0015
g=0.7 0.0981 0.0014 0.1030 0.0016 0.1054 0.0012
g=1.0 0.0991 0.0019 0.1058 0.0017 0.1100 0.0018
g=1.5 0.0984 0.0019 0.1099 0.0018 0.1170 0.0020
g=2.0 0.0973 0.0021 0.1119 0.0022 0.1195 0.0018
g=2.5 0.0962 0.0018 0.1123 0.0024 0.1212 0.0021
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Table 6. Balanced Tail Probability Estimates for

(cont'qd) the g/h-Distributions, h=0.4
. h=b N n=10 n=20
a * S.e a* sS.e Qk s.e
x=0.01
h=0.4,
symmetric 0.0049 0.0001 0.0052 0.0003 0.0056 0.0004
g=0.1 0.0050 0.0002 0.0052 0.0003 0.0057 0.0003
g=0.3 0.0049 0.0002 0.0050 0.0003 0.0056 0.0003
g=0.5 0.0046 0.0002 0.0049 0.0003 0.0058 0.0005
g=0.7 0.0042 0.0002 0.0048 0.0003 0.00617 0.0005
g=1.0 0.00417 0.0002 0.0048 0.0004 0.0060 0.0003
g=1.5 0.0038 0.0003 0.0041 0.0004 0.0053 0.0004
g=2.0 0.0029 0.0003 0.0037 0.0004 0.0049 0.0006
g=2.5 0.0025 0.0003 0.0030 0.0002 0.0045 0.0007
a=0.025
h=0.4,
symmetric 0.0151 0.0004 0.0158 0.0005 0.0177 0.0005
g=0.1 0.0147 0.0005 0.0160 0.0005 0.0177 0.0007
g=0.3 0.0147 0.0004 0.0161 0.0005 0.0176 0.0007
g=0.5 0.0145 0.0004 0.0160 0.0004 0.0179 0.0009
g=0.7 0.0144 0.0005 0.0163 0.0005 0.0186 0.0010
g=1.0 0.0137 0.0006 0.0165 0.0008 0.0197 0.0009
g=1.5 0.0119 0.0004 0.0159 0.0007 0.0192 0.0011
g=2.0 0.0098 0.0005 0.0146 0.0008 0.0185 0.0010
g=2.5 0.0079 0.0004 0.0134 0.0006 0.0177 0.0011
o =0.50
h=0.4,
symmetric 0.0368 0.0009 0.0403 0.0004 0.0428 0.0007
g£=0.1 0.0369 0.0008 0.0397 0.0006 0.0431 0.000R
€=0.3 0.0357 0.0009 0.0406 0.0005 0.0437 0.0011
g=0.5 0.0354 0.0009 0.0412 0.0004 0.0435 0.0013
g=0.7 0.0358 0.0009 0.0416 0.0007 0.0456 0.0016
g=1.0 0.0353 0.0009 0.0416 0.0005 0.0468 0.0016
g=1.5 0.0335 0.0009 0.0418 0.0009 0.0471 0.0016
g=2.0 0.0314 0.0009 0.0410 0.0009 0.0476 0.0015
g=2.5 0.0296 0.0009 0.0389 0.0009 0.0467 0.0013
a=0.10
h=0.4,
symmetric 0.0884 0.0010 0.0971 0.0012 0.1000 0.0012
g=0.1 0.0893 0.0010 0.0959 0.0012 0.0998 0.0013
g=0.3 0.0904 0.0012 0.0967 0.0014 0.1004 0.0015
g=0.5 0.0900 0.0019 0.0983 0.0016 0.1030 0.0016
g=0.7 0.0906 0.0019 0.0999 0.0014 0.1063 0.0014
g=1.0 0.0923 0.0020 0.1025 0.0016 0.1112 0.0015
g=1.5 0.0933 0.0019 0.1079 0.0022 0.1155 0.0018
g=2.0 0.0938 0.0021 0.1100 0.0022 0.1186 0.0018
g=2.5 0.0925 0.0019 0.1109 0.0022 0.1198 0.0020
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Table 6. Balanced Tail Probability Estimates for

(cont'd) the g/h-Distributions, h=0.9
n=5 n=10 n=20
a* s.e. 0 * s.e. o* s.e.
w=0.01
h=0.9,
symmetric 0.0029 0.0003 0.0021 0.0002 0.0026 0.0003
g=0.1 0.0028 0.0003 0.0021 0.0003 0.0027 0.0003
g£=0.3 0.0029 0.0003 0.0024 0.0004 0.0027 0.0003
g=0.5 0.0025 0.0003 0.0025 0.0004 0.0027 0.0003
g=0.7 0.0024 0.0003 0.0024 0.0004 0.0027 0.0003
g=1.0 0.0027 0.0002 0.0025 0.0004 .0.0030 0.0004
a=0.025
h=0.9,
symmetric 0.0089 0.0002 0.0095 0.0006 0.0103 0.0007
g=0.1 0.0089 0.0003 0.0094 0.0005 0.0103 0.0007
g=0.3 0.0090 0.0004 0.0089 0.0006 0.0109 0.0008
g=0.5 0.0091 0.0005 0.0088 0.0006 0.0106 0.0007
g=0.7 0.0086 0.0005 0.0087 0.0006 0.0109 0.0007
g=1.0 0.0083 0.0005 0.0099 0.0006 0.0117 0.0006
OL:O.SO
h=0.9,
symmetric 0.0252 0.0009 0.0279 0.0005 0.0306 0.0011
g=0.1 0.0250 0.0009 0.0279 0.0006 0.0298 0.0012
g=0.3 0.0249 0.0009 0.0282 0.0008 0.0304 0.0014
g£=0.5 0.0248 0.0010 0.0291 0.0009 0.0313 0.001%
g=0.7 0.0248 0.0009 0.0293 0.0008 0.0329 0.0015
g=1.0 0.0241 0.0009 0.0292 0.0009 0.0348 0.0012
a=0.10
h=0.9,
symmetric 0.0730 0.0019 0.0843 0.0011 0.0901 0.0014
g=0.1 0.0733 0.0017 0.083¢ 0.0012 0.0904 0.0015
g=0.3 0.0739 0.0017 0.0847 0.0020 0.0902 0.0015
g=0.5 0.0745 0.0018 0.0852 0.0020 0.0923 0.0017
g=0.7 0.0756 0.0018 0.0871 0.0022 0.0965 0.0017
g=1.0 0.0766 0.0017 0.0912 0.0016 0.1034 0.0015
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Table 7. Tail Probabilities for Modified/Unmodified
t - Intervals, n = 10

A A A A A A~

o o o o* oo o, +o da*

0.025 0.032 0.020 0.025 0.050 0.051 0.050
0.025 0.072 0.006 0.025 0.050 0.078 0.050
0.025 0.157 0.001 0.024 0.050 0.158 0.047
0.025 0.282 0.000 0.022 0.050 0.282 0.044
0.025 0.434 0.000 0.019 0.050 0.434 0.037
0.025 0.586 0.000 0.017 0.050 0.586 0.034

0.025 0.030 0.014 0.020 0.050 0.044 0.040
0.025 0.098 0.002 0.021 0.050 0.100 0.041
0.025 0.243 0.000 0.020 0.050 0.243 0.040
0.025 0.416 0.000 0.018 0.050 0.416 0.037
0.025 0.589 0.000 0.017 0.050 0.589 0.033
0.025 0.733 0.000 0.015 0.050 0.733 0.030

desired one-sided tail probability.

estimated left-hand tail probability for unmodified
student-t interval.

estimated right-hand tail probability for unmodified
student~t interval.

estimated one-sided tail probability for balanced
t-interval (i.e. interval modified using balanced
center to achieve equal tails).
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g= 0.5, @, +d&p is already twice the desired level — s falls outside the Student-t interval twice
as often as desired. The t-interval modified by using the balanced center is, on the other hand,
conservative, and achieves a significance level reasonably close to the desired 0.05 level. For
the worst case tabled, h= 0.2 and g= 2.5, &, +d 5= 0.73, while 2&* is 0.03. Most of the error

in tail probabilities has been corrected simply by balancing the t-statistic.

For t-statistics based on underlying h-distributions, and for modified t-statistics based on
underlying log-normal or g/h-distributions, Tables 4, 5, and 6 can be used to estimate the
actual confidence level achieved for various nominal significance levels. They can also be used
to determine approximately the critical values needed to achieve a given desired significance
level. Suppose we want to find critical values + 7(a) such that

P(—(ap< t< r(ay) = 1-2af,
where ay is the desired one-sided significance level We enter Table 4, 5, or 6 to find the a,
associated with tail probability ag (interpolation will be necessary). The appropriate critical
values are the Student-t distribution critical values associated with one-sided probability «;,. For
example, for n= 5 and the symmetric distribution with h= 0.9, if we want one-sided
significance 0.025, we find from Table 4 that we must use critical values associated with one-

sided probability 0.05, from the Student-t distribution with four degrees of freedom.

The accuracy of critical value modification can be greatly increased if we know how a*
and a are related functionally, i.e. if we know the function f, where a*= f(a). For the h-
distributions, for small values of a {«< 0.1), it is possible to approximate f by a linear function
when a* and a are transformed into their corresponding gaussian critical values. For a> 0.1,
the relationship is no longer linear. For the purposes of this study, let

&~ !'(a) = upper gaussian critical value corresponding to one-sided probability a.
Figure G shows &7!(&") plotted against ®~'(a) for h= 0.2, 0.4, 0.9, n= 5, 10, 20, and
a<0.1 (" a)>1.282). For a< 0.1 the relationship is reasonably linear and appears to be

unaffected by sample size. Suppose we assume



-35 -

-—] L ]
o @) A h=0.2
30}
X
/7 o
w7
el
20| ‘a
D%( o
. On=5
DX/ xn=10
o On=20
1.0 L— ! >
1.0 2.0 3.0 ¢~ {a)
A
o1 (3°) h=04
30 | X
A
o /o
Y
20 a] P/
X
7 Q
D,’. On=658
X xn=10
o) ‘on=20
10 ' —
20 30 ¢~ {a)
A X
o™ (a*) h=09 %
¢, O
30 |- %;/
/
o 7/
X/
'O
//
20 - %
s 0
g On=<5
5 xn=10
on=20
1.0 ' L >
2.0 3.0 ! (a)

FIGURE G. Plots of ¢-1(&*)

against ¢~ ' (a), o > 0.1



-85 -

27 a*) = by(h) + b (k) 2 Ha) .

Now « is recoverable from
@7 (a) = (87'(a®) ~bo(4)) /b ,(h) (4.1)
as the one-sided probability associated with gaussian critical point ® '(a). To form t-intervals

at significance level 2a”, we use the Student-t critical values associated with a.

Table 8 presents least-square estimates b, and b‘l for each h. These equations fit very
well for h<0.4. Note that sample size, n, has been assumed to have no effect, a reasonable
assumption for h<0.4. Use of these equations ﬁows us to determine the appropriate critical
values to use in modifying t-intervals, much more accurately than by interpolation in Table 4.
For values of h other than those tabled, interpolation should be done in Table 9, where b, and

b, are treated as functions of h.

The simple relation (4.1) cannot be extended to the log-normal and g/h distributions.
For these skew distributions the relationship between ® ~!(a) and & (a*) is no longer linear,
and is not independent of sample size. However, in some cases the tail probabi\lities for a given
g/ h distribution are quite close to those for the corresponding h-distribution. In these cases, the
appropriate h-distribution modification can be used with reasonable success. This tends to be
particularly true at high values of h, where the amount of stretch induced by g is negligible
compared to that induced by h. The estimated tail probabilities for distributions with h= 0.9,

g= 0.1to 1.0, for example, are very close to those for the symmetric h-distribution, h= 0.9.

5. Conclusions

This study uses Monte-Carlo methods to estimate, for the g/h class of skew, stretched-tail
distributions, the population characteristic covered by Student-t intervals with symmetric loss
(equal tail probabilities). Results are presented in a series of tables. The "balanced center” is
found to depend on sample size and desired significance level, as well as on the degree of skew-

ness and stretch of the underlying distribution.

Estimates of the balanced center can be used to modify Studentt confidence intervals
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Table 8. Regression Coefficients for ¢_1(a*)= by + b, Cb_1(a)

h = o (a¥) =

0.05 1.036 ' (1) - 0.050

0.10 1.054 & '(a) - 0.070

0.15 1.083d" " (a) - 0.104

0.20 1.110® " (a) - 0.135

0.40 1.198 ®™ 1 (a) - 0.221

0.60 1.257 37 (0) - 0.256

0.80 1.310 @™ " (a) - 0.285

0.90 1.328 @ (o) - 0.287

Table 9. & '(a*) as a Function of h and & ' (a)

h = &1 (a¥) =

0.05 ®1(a) + 0.55h (@ '(a) + 0.4h - 0.009/h - 1.25)
0.10 & 1 (a) + 0.55n (@ '(a) + 0.4h - 0.009/h - 1.25)
0.15 q’j (¢) + 0.55h (@ '(a) + 0.4h - 0.009/h — 1.25)
0.20 P . (a) + 0.55n (@ '(a) + 0.4h - 0.009/h - 1.25)
0.40 ® (@) + 0.50h @ '(@) + 0.4h - 0.009/h - 1.25)
0.60 P (@) +0.43n @ (@) + 0.4n - 0.009/h - 1.23)
0.80 P (a) +0.39n @ (@) + 0.4h - 0.009/h - 1.23)
0.90 ® (a) + 0.36h (@ '(a) + 0.4h - 0.009/h - 1.23)
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about the mean to achieve symmetric loss. The resulting equal tail probabilities are estimated
and tabled. Tail probabilities are reasonably close to desired significance levels in many cases.
There is a large improvement over the tail probabilities associated with unmodified Student-

intervals.

Further modifications of critical values to give confidence intervals at the desired
significance level are given in a general form for the h class of symmetric, stretched-tail distri-
butions. These results can be used to determine approximate further modifications for some of
the skew distributions.

The results of this study are applicable to a family of underlying distributions that are
more skew and stretched-tail than previously considered in robustness studies of the t-statistic.
Results are given for small to moderate sample sizes.

Throughout the study it has been assumed that the parameters g and h of the underlying
distribution are known. In practice, of course, g and h may have to be estimated from a sam-

ple. For a discussion of sample estimates see Tukey ( 1976).
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