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Abstract 

Implementing the Paris agreement to prevent dangerous climate change requires energy 

system transformation and rapid diffusion of low-carbon innovations. In this paper we 

investigate both the temporal and spatial dynamics of formative phases by which energy 

technologies prepare for growth. Drawing on a review of diverse literatures, we offer a 

definition of the formative phase which clarifies its scope and duration, and identifies its main 

technological and economic determinants. We use parametric hazard models to assess the 

relative strengths of these determinants on formative phase durations for a sample of 15 

energy technologies diffusing over time in their respective initial markets. We find that 

substitutability has stronger effects in accelerating the end of formative phases than installed 

capacity and prices. We extend our analysis using nonparametric models to analyze the 

spatial diffusion of formative phase durations from initial to follower markets. We find that 

formative phase durations are long outside initial markets as well, showing only signs of 

acceleration in latecomer regions. Our results imply risks for policies trying to accelerate the 

diffusion of large innovations without ready markets in both initial and follower markets. 
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1. Introduction 

The historical diffusion of energy technologies shows long periods of emergence within 

changing energy systems (Fouquet, 2016; Grubler et al., 2016). Energy technologies often 

take several decades in the early phase of their life-cycle prior to mass commercialization 

(Fouquet, 2014; Smil, 2010, 2016). This period is also known as the formative phase which 

can be defined in the following terms: a period marked by high uncertainties (Van de Ven, 

2017), during which the conditions (standardization, performance improvement, etc.) are 

created for a new technology to emerge and prepare for large-scale commercialization 

(Jacobsson & Lauber, 2006, Arthur, 2009; Bento & Wilson, 2016). This interactive process of 

testing and improvement, and aligning market and user needs, tends to occur in a small 

number of initial markets. At the end of the formative phase the technology becomes ready to 

leave the initial markets and diffuse out into new markets (Binz et al., 2017; Grubler, 2012). 

Understanding both the temporal and spatial dynamics that shape the formative phase is 

important in the debate on how to accelerate energy innovation for climate change mitigation 

(Winskel & Radcliffe, 2014).  

Different strands of the literature cover the dynamics and determinants of the formative phase. 

These include the identification of key changes in the type of innovation (e.g., product vs 

process) (Huenteler et al., 2016; Taylor & Taylor, 2012), the strategic management of new 

industries around innovations (e.g. changes in companies’ demography) (Peltoniemi, 2011; 

Gustafsson et al., 2016), and the dynamics of emerging systems in socio-technical transitions 

(Bergek et al., 2015; Markard et al., 2012; Geels, 2005). 

In terms of what determines the duration of formative phase, studies in management science 

emphasize the role of demand variables, such as heterogeneity in price sensitivity and 

adopters’ risk avoidance (Golder & Tellis, 1997; Tellis et al., 2003, 2012; Peres et al., 2010). 

The diffusion of innovations literature shows that diffusion rates depend on the characteristics 

of both the technology and the adoption environment (Rogers, 2003). These factors include: 

relative advantage (Mansfield, 1968; Chandrasekaran et al., 2013); compatibility and 
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complexity (Arthur, 2009); disruptiveness, inter-relatedness and infrastructural needs (Grubler 

et al., 1999); and market size (Wilson, 2012). 

Technology growth out of the initial markets is typically investigated with the focus on the 

constraints to adoption like distance in economic geography (e.g. Comin et al., 2012; Griffith 

e al., 2013), or interactions with existing contextual structures in system theories (Bergek et 

al., 2015; Hansen & Coenen, 2015). 

In this paper we pose the question: What determines the duration of formative phases for 

energy innovations in different markets? We are interested both in initial markets (also: core, 

lead, first mover, early adopter) where formative phases prepare technologies for mass 

commercialization, and in follower markets (also: periphery, lag, late adopter) where 

accelerated formative phases may benefit from diffusion and spillovers. To understand the 

temporal dynamics of energy innovation within initial markets (growth over time), we apply a 

hazard model to a time series dataset of 15 diverse energy technologies (including both new 

and old, energy supply and end-use). To understand the spatial dynamics of energy 

technology diffusion between markets (growth through space), we use Kaplan-Meier curves 

to compare the dynamics of formation in follower regions. 

The paper is structured as follows. Section 2 reviews the relevant literature on formative 

phases to identify definitions, patterns and determinants. Section 3 explains the methodology 

including data sources, model and variables. Section 4 applies the concepts and methods 

presented in the previous sections to measure formative phase durations across regions and 

to estimate the effect of the determinants in accelerating formative periods. Section 5 

concludes and derives policy implications. 
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2. The formative phase 

2.1 Definition 

The term formative phase appears in the technological innovation system literature to 

designate the early period of diffusion during which new technologies are first used, improved 

and prepared for commercialization: “the value of this very first phase” is “in the opportunities 

[given] for experimentation, learning and the formation of visions” (Jacobsson & Lauber, 2006: 

271). A similar concept is ’era of ferment’ which is used in the industry life-cycle literature to 

designate the period of intense rivalry and competition among variations, initiated by a 

technological breakthrough and eventually leading to the selection of a single dominant design 

(Abernathy & Utterback, 1978; Anderson & Tushman, 1990; Murmann & Frenken, 2006). 

Other terms have been suggested in marketing studies such as the ‘time to take off’ (Golder 

& Tellis, 1997; Tellis et al., 2003; Tellis & Chandrasekaran, 2012), which designates the period 

from product introduction to “substantial” growth. A related concept is the ‘incubation time’ 

(Kohli et al., 1999) which includes product development as well. Other terms are used in the 

innovation literature to designate the first period of development and commercialization 

including: ‘embryonic’ (Taylor & Taylor, 2012), ‘nascent and emerging’ (Markard & Hekkert, 

2013), ‘nurturing’ (Smith & Raven, 2012), and ‘installation’ (Perez, 2002). The content of all 

these definitions can change in terms of the scope of technological change and the types of 

activities included.   

The scope of technological changes expected to occur during the formative phase vary across 

different streams of the literature. The industry life-cycle literature focuses on modifications to 

the technology, the nature of innovation, and industry structure (Peltoniemi, 2011; Gustafsson 

et al., 2016). A technological opportunity introducing a new product encourages the entry of a 

large number of firms that will improve the quality of production and reduce prices (e.g. 

Agarwal & Bayus, 2002). According to this perspective, the transition to technological maturity 

is typically characterized by a shift from product to process innovation as product variety 
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decreases and eventually a design becomes dominant (Abernathy & Utterback, 1978; 

Klepper, 1997). 

The technological innovation systems (TIS) perspective considers the coevolution of 

technologies and context (Bergek et al., 2015). Bergek et al. (2008: 419-420) distinguish a 

formative phase in which “the constituent elements of the new TIS begin to be put into place, 

involving entry of some firms and other organizations, the beginning of an institutional 

alignment and formation of networks” from a growth phase when “the focus changes to system 

expansion and large-scale technology diffusion through the formation of bridging markets and 

subsequently mass markets”. While traditional TIS studies emphasize changes in the structure 

of innovation systems (e.g. Jacobsson, 2008), more recent work provides a functional analysis 

of influential processes in the early period including: knowledge creation, entrepreneurial 

experimentation, and influence on the direction of search (Hekkert et al., 2007 Bergek et al, 

2008, Markard et al., 2012). 

The innovation literature emphasizes some characteristics of the formative period such as: 

lengthy process (Klepper, 1997); experimentation (Arrow, 1962; Jacobsson & Lauber, 2006); 

coexistence of a range of competing designs (Abernathy & Utterback, 1978); high uncertainty 

regarding technologies, markets and institutions (Van de Ven, 2017; Kemp et al., 1998; Bergek 

et al, 2008). The focus on one or several of those formative features distinguishes theoretical 

approaches. 

2.2 Duration 

How long formative phases last depends on what is included in their scope. The delimitation 

of the formative phase also has a wide range of interpretation in the literature (see also 

Gustafsson et al., 2016). 

Jacobsson and Lauber (2006: 260) suggest that the end of the formative phase “may occur 

when investments have generated a large enough, and complete enough, system for it to be 

able to ‘change gears’ and begin to develop in a self-sustaining way”. Indicators of formative 
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phase end point include the establishment of dominant designs (Abernathy & Utterback, 1978; 

Anderson & Tushman, 1990), industry “shake-outs” (Klepper, 1997), sales take-off—identified 

either by analyzing the evolution of annual rates (Agarwal & Bayus, 2002) or by comparing 

them with an empirically-derived take-off curve (Golder & Tellis, 1997; Tellis et al., 2003). 

Other studies estimate the end of the formative phase using a threshold like 2.5% market 

share, corresponding to the innovator segment of potential adopters (Rogers, 2003). This is 

consistent with research on new consumer products which shows evidence of market take-off 

at an average market penetration of 2.5%-3% (Tellis et al. 2003; Golder & Tellis, 1997). Other 

thresholds such as 10-20% of total adoption have also been used to approximate the point of 

self-sustaining market growth (Mathur et al., 2007).    

Clearly identifying a start point for formative phases is also problematic as definitions vary 

from recognized date of invention (Agarwal & Bayus, 2002; Hanna et al., 2015), or start of 

development (Kohli et al., 1999) to first commercialization (Golder & Tellis, 1997; Tellis et al., 

2003; Smil, 2010). 

Bento & Wilson (2016) test different indicators for the duration of the formative phase for a 

sample of technologies in their initial markets (Figure 1). The central estimates assume the 

formative phase starts in the year of first sequential commercialization, and ends when 

diffusion reaches 2.5% of potential adopters (in line with Rogers’ (2003) definition of 

“innovators”). Alternative indicators of formative phase start and end points reveal the 

uncertainty ranges. Results show the long time scale of formative phases, rarely shorter than 

a decade, varying from 4 years for fluid catalytic cracking in refineries to 85 years for stationary 

steam engines.   
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Figure 1 Duration of formative phase for energy technologies 

     
 

In decadal scale. Light green represents uncertainty ranges by using alternative 

indicators for start and end points of formative phases (cf.Bento & Wilson, 2016). 

See the methodological section for more details on indicators and data sources.  

 

2.3 Determinants of duration 

The duration of formative phases is shaped by both technology and market context. It is thus 

important to understand the factors associated with shorter and longer formative phases. 

Systemic theories such as the TIS perspective (Markard et al., 2012; Bergek et al., 2015) are 

concerned with structural elements underlying the emergence of new technologies, but are 

less clear on how these factors affect the duration of the formative phase. 

The technology and market characteristics that determine the speed of diffusion may affect 

the duration of the formative phase as well. The most important determinant of adoption rates 

according to Rogers (2003) is relative advantage: the higher the performance, efficiency or 

price advantage over the incumbent technology, the faster the diffusion. Learning and cost 

reductions improve relative advantage in the early years, and reductions in price can be a sign 

of the formative phase ending (Chandrasekaran et al., 2013). Compatibility also influences 

adoption rates: the higher the compatibility with existing technologies, infrastructures and 

institutions, the faster the diffusion (Rogers 2003). Other factors contribute to slow the pace of 
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diffusion including complexity: the more learning needed to operate and produce, and the 

more interrelated a technology is, the slower the diffusion. 

The takeoff literature has identified several factors that accelerate the early phase of diffusion, 

e.g.: price reductions; market penetration; product category (“brown products” such as CDs 

takeoff faster than “work products” such as home appliances), and cultural factors such as low 

uncertainty avoidance (Golder & Tellis, 1997; Tellis et al., 2003; Tellis & Chandrasekaran, 

2012).  

Other factors influencing formative phase duration include unit scale which affects the risks 

and resource requirements for repeated experimentation with multiple units in the early years 

(Winter, 2008; Wilson, 2012). Up-scaling of unit sizes and/or manufacturing is associated with 

the convergence on a dominant design and a clearly articulated market demand. In addition, 

market characteristics may influence the duration of the formative phase especially in the case 

of radical and novel technologies (Arthur, 2009), in which the diffusion process requires the 

creation of entirely new social, economic and cultural structures (e.g., standards, 

infrastructures, preferences)—rather than substitution of an existing technology to provide a 

similar service using the same infrastructure (see also Adner & Kapoor, 2010). The size of 

potential market also provides a measure of the challenges, for example: technologies that 

give rise to large systems (i.e. more pervasive) take longer to grow (Wilson et al., 2012). 

We can distill these different arguments in the literature into testable hypotheses on formative 

phase duration which operationalize the causal effect of technology (H1, H2, H3) and adoption 

context (H4, H5): 

Hypothesis 1: Formative phase durations are longer for technologies with higher prices. 

Hypothesis 2: Formative phase durations are longer for technologies with higher complexity. 

Hypothesis 3: Formative phase durations are shorter for technologies with faster upscaling. 

Hypothesis 4: Formative phase durations are longer for more pervasive technologies with larger 

market impact. 
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Hypothesis 5: Formative phase durations are shorter for substitute technologies which do not 

provide new services, require additional infrastructure, or open new markets. 

2.4 Spatial diffusion 

Knowledge gained in initial markets may spillover to benefit formative processes in follower 

markets. Hagerstrand (1968) was the first to demonstrate that diffusion typically starts from 

innovative centers (‘core´) and disseminates, through a hierarchy of subcenters, to the 

periphery. This process is sequential rather than simultaneous, and tends to accelerate from 

core to periphery, where diffusion reaches a lower intensity than in the core (Hagerstrand, 

1968; Grubler, 1990; Morrill, 2005). A similar effect of spatial acceleration has been identified 

in marketing research and is known as the “lead-lag effect” (Peres et al., 2010). 

Spatial diffusion influences the duration of formative phases. Deployment in core markets 

increases the knowledge stock related to the technology (e.g., cost, performance, designs, 

applications) that can ‘spillover’ to benefit latecomers (Perkins & Neumayer, 2005; Battke et 

al., 2016). Still, innovations do not spread automatically but require from the later adopters the 

capacity to absorb and assimilate the new technology and knowledge spillovers (Cohen & 

Levinthal, 1990). Institutional and organizational changes are needed to enhance local 

absorptive capacity for adopting new technologies (Bergek et al., 2015). Examples include the 

importance of early experimental projects to create system learning that accelerated the 

adoption of wind technologies in Portugal (Bento & Fontes, 2015), the role of industrial policy 

promoting both demand and supply in the development of wind energy in China (Surana & 

Anadon, 2015), and the difficulties for followers to assimilate knowledge spillovers in the case 

of solar energy technologies (Binz et a., 2017). 

Formative phases in follower countries can thus be accelerated by capturing knowledge 

spillovers (e.g. through experimentation for performance improvements codified in hardware), 

by developing local capacity (e.g. through experimentation for performance improvements 

embedded in tacit knowledge), or by appropriating elements from other TISs (e.g. skilled 
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personnel, technology standards). Studies of energy technologies support the tendency for 

accelerated diffusion times in follower regions (Wilson & Grubler, 2015; Gosens et al, 2017; 

Binz et al., 2017; Surana & Anadon, 2015). 

In sum, formative phase duration in later adopting regions is determined by the accelerating 

effect of knowledge spillovers and the time needed to adapt the technology to local conditions 

and create enough absorptive capacity in latecomer regions. 

Hypothesis 6: Formative phase durations are shorter in follower countries because of 

knowledge spillovers. 

Figure 2 summarizes the hypothesized factors affecting formative phase durations, which we 

test empirically in the following sections. 

Figure 2 Modelling the effect of technological and market drivers on the duration of the formative phase 
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3. Method: Modelling the determinants of formative phase duration 

3.1. Models 

We assess the determinants of formative phase duration of technologies in different markets 

using parametric and non-parametric survival analysis. We use parametric analysis in core 

markets with lengthy formative phases as data is more available. We then use non-parametric 

analysis to compare formative phase durations in follower regions. 

The (parametric) hazard model explains the event of finishing the formative phase conditional 

on the change of covariates shown in Figure 2. We use Cox’s (1972) proportional hazard 

model which has the advantage of estimating the hazard ratios without specifying the baseline 

hazard, i.e. the effect of time since introduction of a technology (Wooldridge, 2010). This model 

has been used to analyse market take-off of consumer products in marketing studies (Golder 

& Tellis, 1997, 2004; Agarwal & Bayus, 2002; Chandrasekaran & Tellis, 2007; Tellis & 

Chandrasekaran, 2012). The model has the following representation:  

ℎ𝑖 (𝑡) = ℎ(𝑡; 𝑿it) = ℎ0 (𝑡) exp(𝑿it 𝛽) 

where ℎi (𝑡) is the hazard of ending the formative phase of technology i, ℎ0 (𝑡) is an 

unspecified baseline hazard function that depends on time only, 𝑿it is the vector of 

independent variables of the technology i  at time 𝑡 (where t0 and tf  are the start and end 

years of the formative phase, respectively), and 𝛽 is the vector of coefficients to be 

estimated. The 𝛽 measures the effect of covariates on the hazard function, which is captured 

by the hazard ratio exp(𝛽). Positive 𝛽 coefficients increase the hazard function and so the 

probability of ending the formative phase and negative 𝛽 coefficients decrease the hazard of 

ending the formative phase. However, the interpretation of 𝛽 is not straightforward. An 

increase of one unit in any independent variable results in a (exp(𝛽) -1) x 100% increase of 

the dependent variable (here the probability of ending the formative phase).  
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The dependent variable (hazard) is binary (0,1) and assumes the value one when a 

technology reaches 2.5% of its potential market share. This metric marks the end of the 

innovator segment in Rogers’ (2003) adopter categories (see also Mahajan et al., 1990), and 

is the preferred metric of the end of the formative phase identified in a comparative analysis 

of different indicators (Bento & Wilson, 2016). 

The independent variables affecting the duration of the formative phase include both 

technology and market characteristics (see Fig.2). 

Price is a time-dependent variable and a key determinant of a technology’s relative 

advantage. It is measured in US $ per kW for comparison. Note that price typically declines 

with deployment but the dependent variable is a proportion of the potential market 

(2.5% market share), not the number of units or installed capacity. It is not possible to use 

prices relative to incumbent technologies because of diffusion processes in which new 

technologies introduce new services for which there are no clear incumbents. 

Complexity refers to the degree of technology architecture and hierarchy of sub-components 

as operationalized in Murmann & Frenken (2006). Hobday (1998) also evaluates complex 

products and systems by looking at constituent dimensions. We use technology unit scale as 

a proxy of complexity because, ceteris paribus, larger scale technologies tend to have more 

levels and numbers of sub-components, raising the requirements (e.g. knowledge, learning) 

for production and use. Initial Unit Scale (of first commercialization) is a fixed variable that 

captures the effect of the size of a technology, in megawatts (MW). Average Unit Scale is a 

time-dependent variable that designates the mean capacity of annual unit additions and 

controls for the dynamic impacts of technology up-scaling, also in MW.  

Cumulative Units is a time-dependent variable that records all the history of the number of 

installations up to a given point in time. These variables provide an estimate of the size of 

the system being developed. In addition, Growth in Unit Sales refers to the rate of increase 

in annual unit additions and accounts for the recent gains from experimentation and 
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production with the last units (Arrow, 1962; Jacobsson & Lauber, 2006). Strong and 

sustained growth rates indicate the end of the formative phase according to Surana & 

Anadon (2015). 

Substitute is a categorical variable that is assigned the value one in the case of innovations 

that replace existing technologies in existing markets (Garcia & Calatone, 2002). In contrast, 

diffusion processes involve new technologies with interdependent infrastructures and 

institutions (Grubler, 2012, 1998). In this study, the substitute technologies are product 

goods (compact fluorescent light bulbs (CFLs) and e-bikes), but also energy supply 

technologies (nuclear power and wind power) that benefited from their interaction with 

already existing electricity networks and markets (more details in Section 3.2 and Bento & 

Wilson, 2016). 

The model also controls for the effect of other factors, namely type of technology and timing 

or year of introduction. Type of technology is a categorical variable that assumes the value 

one in the case of end-use technologies (compact fluorescent light bulbs (CFLs), cellphones, 

washing machines, bicycles, e-bikes, motorcycles, cars, jet aircrafts). These technologies 

convert energy into a useful final service such as lighting, mobility or heating; in contrast, 

energy supply technologies extract and transform energy resources into more versatile 

forms of energy. End-use technologies dominate the energy system in terms of energy 

conversion capacity and investment, but directed innovation efforts privilege energy supply 

technologies (Wilson et al., 2012). Therefore this variable controls for any potential 

acceleration effect on the formative phase of energy supply technologies as a result of policy 

emphasis. 

Year of Introduction refers to the start of (sequential) commercialization of a technology. This 

variable tests the effect of time, i.e. whether formative phases are becoming shorter as a 

result of exogenous technological change (Nordhaus, 2014; Mokyr, 2010). Table 1 

summarizes the variables and measurements. 
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After using hazard models to test the determinants of formative phase duration in initial 

markets, we then use non-parametric analysis to compare the formative phase duration in 

follower markets. Specifically, we use Kaplan-Meier curves as a non-parametric statistic of 

the duration function, i.e. the time to end the formative phase. They show the proportion of 

technologies that remain (or “survive”) in the sample since the year of start of (sequential) 

commercialization. Given that there is no censoring of observations—all technologies 

analyzed ended the formative phase—the Kaplan-Meier curves also provide the empirical 

distribution of data.  

We use the software package survival in R for estimation, taking the robust standard errors 

clustered at the technology level. This allows for intra-technology correlation, relaxing the 

requirement of independence within groups. 
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Table 1 Variable construction 

 Variables Rationale for the introduction of the 
variables and metrics used 

Measurement 

Dependent 
variable 

2.5% Market 
Share 

Diffusion passes from the “innovators” 
category to larger groups of adopters 
(Rogers, 2003; Mahajan et al., 1990)  

Share of maximum 
potential adopters 

Independent 
variables 
 

Price Longer formative phase for technologies 
with lower price declines (Rogers, 2003) 

US $ per kW 

Initial Unit 
Scale 

Longer formative phases for large and 
complex innovations with several sub-
components (Murmann & Frenken, 2006) 

Unit scale of first 
commercialization in 
MW 

Average Unit 
Scale 

Longer formative phases for technologies 
with slower up-scaling (Wilson, 2012) 

Annual average unit 
scale in MW 

Cumulative 
Units 

Longer formative phases for technologies 
diffusing into larger markets (Grubler, 1998, 
2012) 

Cumulative unit 
numbers 

Growth in 
Unit Sales 

Longer formative phases for technologies 
with lower annual increase of 
demonstrations and deployment (Arrow, 
1962; Jacobsson & Lauber, 2006)  

Increase in annual unit 
additions in % 

Substitute  Longer formative phases for technologies 
which are not ready substitutes (Garcia & 
Calatone, 2002) 

Substitute technology 
as 1, other as 0 

Control 
variable 

Type  Longer formative phases for energy supply 
technologies  

End-use technology as 
1, other as 0 

Year of 
Introduction 

Longer formative phases for technologies 
introduced a long time ago 

Year of introduction 
(or data availability of 
sales as a surrogate) 

 
 
 

3.2. Data and sources 

The models were applied to a diverse sample of 15 energy technologies of varying vintages 

and characteristics: stationary steam engines; steamships; steam locomotives; bicycles; coal 

power plants; natural gas power plants; passenger cars; washing machines; motorcycles; 

wind power plants; electric bicycles; passenger jet aircrafts; nuclear power plants; mobile 

phones; compact fluorescent light bulbs. Table 2 presents the technologies in the sample, 

information on relevant markets and key sources of data. It also defines the core markets 

into which the technologies first diffused (see more details in the spreadsheet published in 

supplementary material). 
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Table 2 Technologies, region definitions and key sources 

Technology Data & Units 

Time Series 

Core Market Potential * Main Sources 
Costs Installations 

Steam stationary 
Costs, Total 

Capacity  
(#,hp)  

1724-1900 1710-1930 UK, US 
power provided by 
different sources 

Kanefsky, Woytinsky, US 
Census 

Steamships 
Installed Capacity  

(#, hp) 
- 1810-1940 UK, US 

gross tonnage of 
merchant vessel fleet 
(sail, steam, motor) 

Mitchell, Woytinsky, US 
Census 

Steam 
locomotives 

Costs, Installed 
Capacity (#, hp) 

1828-1905 1830-1960 UK, US 
rail passenger traffic 
(million passengers) 

Woytinsky, US Census, 
Daugherty 

Bicycles 
Costs, Bicycles 
production (#, 

MWe) 
1892-2010 1861-2010 

UK, France, 
Germany 

population 
UN, UK and US Census, 

INSEE, DIW 

Coal Power 
Costs, Capacity 

Additions (#, MW) 
1971-2000 1908-2000 OECD 

number of power plants 
in use 

Platts 

Natural  Gas 
Power 

Costs, Capacity 
Additions (#, MW) 

1971-2000 1903-2000 OECD 
number of power plants 

in use 
Platts 

Passenger Cars 

Costs, Cars 
Produced (#) 

& Engine 
Capacity(hp) 

1910-1927 1900-2005 US number of households AAMA, US NHTSA, ACEA 

Washing 
machines 

Washing machines 
production 

(#,MWe) 
- 1920-2008 US number of households UN, Stiftung Warentest 

Motorcycles 
Motorcycles 
production 

(#,MWe) 
1900-2008 1900-2008 

UK, France, 
Germany, Italy 

number of households UN 

Wind Power 
Costs, Capacity 

Additions (#, MW) 
1981-2009 1977-2008 Denmark electricity generation mix DEA, BTM Consult 

Electric bicycles 
Costs, E-bikes 

production 
(#,MWe) 

1999-2010 1997-2010 China number of households 
Weinert, Jamerson& 

Benjamin 

Passenger Jet 
Aircraft 

Aircraft Delivered 
(#, Model) & 

Engine Thrust (kN) 
- 1958-2007 Boeing 

number of air carriers in 
service 

Jane’s, aircraft databases 

Nuclear Power 
Costs, Capacity 

Additions (#, MW) 
1972-1990 1956-2000 OECD total installed capacity Platts 

Mobile Phones 
Costs, Cellphones 

sales (#,MWe) 
1983-2009 1979-2010 

Scandinavia, 
Japan 

population Gartner 

Compact 
Fluorescent 
Light Bulbs 

Costs, Light Bulb 
Sales (#MWe) 

1990-2003 1990-2003 OECD (exc.Japan) light bulb sales IEA 

* Data for same initial markets as time series, except for: stationary steam engines (UK); jet aircraft (US); steamships (US); 
motorcycles (UK). 
e Estimated. 
Main sources show the principal references for time series of installations (unit numbers and installed capacity). For 
complete references on installations and costs, see Bento (2013) and Wilson (2009).  

 

 



17 

4. Results 

4.1 Formative phase duration in initial markets 

Figure 3 compares key innovation measures across the sample of 15 technologies at end 

points of their respective formative phases in initial markets only. Cumulative capacity and 

number of units provide information on experimentation and system size. Average unit scale 

indicates the complexity of technology production and usage (here shown relatively to the 

maximum unit scale identified ex post). Price is indexed to the introductory level when 

technologies were first commercialized and shows the cost reduction by the end of the 

formative phase when technologies reach 2.5% market share. 

On average, cumulative unit numbers and cumulative installed capacity increase intensively 

(four and three orders of magnitude, respectively). Average unit scale rises about 50% across 

technologies. Prices decrease by 57% relatively to the introductory level. This is similar to the 

finding of Chandrasekaran et al. (2013), whose data for seven new consumer electronic 

products shows prices at take-off to be 52% of initial prices. These average values hide 

significant differences between the technologies as shown in Figure 3. End-use technologies 

on average deploy more technologies and have deeper cuts in prices between formative 

phase start and end points (see Appendix 1 for further analysis). 
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Figure 3 Key indicators at formative phase start and end points in core markets, by type of technology (energy 

supply (n=5) in shaded boxes, and end-use (n=9) in unshaded boxes)* 

 
 
* Bicycles are not included in the graphical analysis as not relevant for showing average capacity installed and unit capacity. 
 

 

We apply a hazard model to estimate the effect of the explanatory (independent) variables 

defined in the conceptual framework in accelerating the end of the formative phase 

(dependent variable) in core markets.  

Table 3 presents the descriptive statistics of all (dependent and independent) variables, as 

well as their Pearson correlations. Correlations are generally low (i.e. below 0.3) and not 

significant among the independent variables. 

We check for multicollinearity in the independent variables with a Variance Inflation Factor 

(VIF) test. The VIF values are below 5 for all covariates, indicating no significant problems of 

multicollinearity among the covariates. The time-dependent covariates are lagged one period 

to deal with autocorrelation following a current procedure in these analysis (e.g. Palacios 

Fenech & Tellis, 2016).  
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Table 3 Descriptive statistics and bivariate Pearson correlations 

 N Mean S.D. 1 2 3 4 5 6 7 8 9 10 

1. 2.5% Market Potential 1049 .67 .471 1          

2. Price 755 32,248 182,090 -.176** 1         

3. Initial Unit Scale 1049 7.42 18.555 .122** -.103** 1        

4. Average Unit Scale 1049 47.385 182.516 .152** -.045 .204** 1       

5. Cumulative Units 1049 60,671,717 310,579,930 .091** -.002 -.078* -.051 1      

6. Cumulative Capacity 1049 132,032 467,114 .199** -.043 .080** .047 .047 1     

7. Growth in Unit Sales 992 .43 4.52 -.11** -.001 -.018 -.019 -.012 -.022 1    

8. Substitute 1049 .13 .334 -.257** -.077* -.054 .354** .068* -.088** .068* 1   

9. Type 1049 .45 .498 .007 .214** .082** -.187** .215** .190** .045 .026 1  

10. Year of Introduction 1049 1872 79.437 .063* .181** .318** .218** .197** .110** .038 .467** .477** 1 

              

** The bivariate Pearson correlation is significant at .01 level (bilateral).   
* The bivariate Pearson correlation is significant at .05 level (bilateral). 

 

Table 4 presents the estimates of the Cox proportional hazard model for the end of the 

formative phase. Note that the model explains the effect of the covariates on the probability 

that the end of the formative phase (the event) happens at a particular point in time. This in 

turn determines the duration of the formative phase (as stated in the hypotheses). However 

it is important to note that the expected signs of the coefficients are the opposite of those in 

Figure 2 as an increased probability of the formative phase ending is consistent with a 

shorter formative phase. As an example, price decreases are expected to reduce the 

duration of the formative phase, or alternatively, to increase the probability of the end of the 

formative phase occurring. The end occurs when a technology reaches 2.5% of market 

share (dependent variable). All models but one (model 3 with controls only) are statistically 

significant according to the p-values associated with the Wald test, therefore rejecting the 

null hypothesis that all the coefficients are equal to zero. 

Model 1 regresses the dependent variable on important technology characteristics: price; 

initial unit scale; average unit scale (see H1-H3 in Fig.2). According to the literature review, 

these variables should delay the end of the formative phase. The coefficients are significant 

(except for initial unit scale) and with expected signs. Model 2 examines the effect on the 

end of the formative phase of variables related to the system integration of technologies: 
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growth in sales, cumulative installed units, and whether the technology is a ready substitute 

(see H4-H5 in Fig.3). Again, the coefficients are significant and with expected signs. Model 3 

investigates the effect of the control variables: type of technology (end-use or other) and 

year of introduction. The coefficients are not significant when regressed alone.  

Model 4 is the base model containing all the main covariates and controls. Price, initial unit 

scale and average unit scale have a significant effect on the end of the formative phase. 

Larger, more expensive, technologies and technologies which upscale more rapidly have 

shorter formative phases. This result is against expectation. It is driven by two large scale 

technologies (nuclear power plants and jet aircrafts) which passed through fast formative 

phases associated with the very particular institutional environment of World War II which 

included price insensitive adoption and strong alignment between firms, government and 

users (Delina & Diesendorf, 2013). 

Growth in annual sales increases the possibilities of experimentation and learning which 

accelerates the formative phase, as expected. Substitution processes also have a significant 

and strong effect on the probability of ending the formative phase. 

End-use technologies have a significantly higher probability of reaching the end of the 

formative phase in shorter durations compared to other technologies. In contrast, the year of 

introduction has a significant but negative effect on the end of the formative phase, rejecting 

the argument that formative phases have accelerated over time with a gathering pace of 

technological change.  

To compare the relative effects of variables measured in different units and scales, the 

coefficients need to be standardized so that the results are more easily comparable. We 

estimate the standardized beta coefficients in R, following Gelman’s procedure of subtracting 

the mean of input variables and scaling them by two standard deviations (Gelman, 2008). 

This procedure leaves categorical coefficients unscaled because their coefficients can 

already be interpreted directly. Table 5 shows the standardized estimates for the main model 
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(model 4). The interpretation of these estimates is as follows: a change of two standard 

deviations in the independent variable (or the difference between the two conditions for a 

categorical independent variable) produces a beta standard deviation change in the 

dependent variable. For instance, a two standard deviation increase in initial unit scale (e.g., 

from -1 to +1 standard deviation around the mean) leads to an increase of 1.02 standard 

deviations in the hazard of ending the formative phase—however initial unit scale presents 

confounding effects in model 1 and model 4. This is the largest significant direct effect which 

is followed by (in descending order of the absolute value) substitute, year of introduction, 

price, type, (annual) average unit scale and (annual) growth in unit sales. 

Model 5 re-estimates the base model including interaction terms between the main 

explanatory variables and type of technology to test whether there are significant differences 

in the effects (or coefficients) for end-use technologies. We find that the interaction between 

price and type of technology has a negative and significant effect. This implies that the 

influence of price reductions is more important in the case of end-use technologies. 

We find no significant effects for the interaction between type of technology and the following 

covariates: initial unit scale; average unit scale; cumulative units; growth in sales. However, 

we find that the interaction between substitute processes and type of technology has a 

positive and significant effect. This implies that the influence of substitution processes are 

even stronger in the case of end-use technologies. 

The quality of the fit can be assessed by the pseudo R-square. Model 4 has a pseudo R-

square of .142 which increases to .283 in model 5 when re-estimating with interaction 

effects. These results are in line with prior literature (Chandrasekaran et al. (2013) report a 

pseudo R-square of .34; Tellis et al. (2003) report .18 for the complete model). In addition, 

the concordance is an indicator that measures the proportion of pairs of technologies in 

which the technology with a higher-value predictor ends the formative phase before the other 

technology with a lower-value predictor. The high values for concordance increase the 
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confidence in our findings. Appendix 3 confirms the robustness of the results for a different 

measure of the dependent variable (10% of maximum cumulative unit numbers). 

Table 4 Results of Cox proportional hazard model estimation of drivers of the formative phase (in Core) 
       

  Dependent variable: 2.5% Market Share 

 Expected 
sign 

1  
 

2 
 

3 4 
 

 5 

Price (lag 1) - (H1) .0000*** 
(.00000) 

  .0000*** 
(.00000) 

.0001*** 
(.00001) 

Initial Unit Scale - (H2) -.011 
(.006) 

  .030*** 
(.010) 

-.003 
(.012) 

Average Unit Scale (lag 1) + (H3) -.0003*** 
(.0002) 

  -.001*** 
(.0002) 

-.001* 
(.0003) 

Cumulative Units (lag 1) - (H4)  -.000** 
(.000) 

 -.000 
(.000) 

-.000 
(.000) 

Growth in Unit Sales (lag 1) 
 

+ (H4)  .021*** 
(.006) 

 .015** 
(.007) 

.015*** 
(.018) 

Substitute (1: Yes; 0: No) + (H5)  .531* 
(.098) 

 1.453*** 
(.167) 

.937** 
(.244) 

Type (1:End-use; 0:Others) control   .032 
(.069) 

.407** 
(.129) 

.633*** 
(.196) 

Year of Introduction control   -.001 
(.0005) 

-.005*** 
(.001) 

-.002* 
(.001) 

Price (lag 1) x Type -     -.0001*** 
(.00001) 

Initial Unit Scale x Type -     -307.792 
(479.219) 

Avg.Unit Scale (lag 1) x Type -     -2.441 
(5.332) 

Cumulative Units x Type -     -.000 
(.000) 

Growth in Sales (lag 1) x Type 
 

+     -.004 
(.019) 

Substitute x Type +     .730* 
(.263) 

       

Observations  745 992 1,049 712 711 

Concordance  .769 .754 .511 .855 .938 

Pseudo-R²  .038  .036 .002 .142 .283 

Log Likelihood  -4,171 -5,839 -6,251 -3,913 -3,850 

Wald Test  69.85*** 32.23*** .42 156*** 368.13*** 

*p<0.1; **p<0.05; ***p<0.01. Columns 1-5 report coefficients, robust standard errors clustered at technology level (in 

parentheses) and quality measures from Cox proportional hazard regression model estimations (using the Efron method) for 

drivers of formative phase of 15 technologies observed in core countries. Appendix 1 identifies technologies and sources. 

Database organizes time dependent variables, multiple events and characteristics, per technology, in multiple rows (or 

observations), each of which corresponding to an interval of a year, following the formulation of Andersen and Gill (Therneau 

& Grambsch, 2000). Number of observations can change due to missing values (mostly for technology price). Missing 

values are handled through listwise deletion, i.e., by not taking into account the respective lines in the model estimation. We 

test the assumption of proportional hazard which is not satisfied for several covariates. Some authors argue that this 

problem does not dismiss the model as such parameters represent “average effects” of the variable over time (Allison, 1995; 

Borucka, 2013). Thus we limit the interpretation of the effects, but conclusions can still be drawn from the signs of the 

coefficients to determine whether the covariate has a (significant) positive or negative effect in the dependent variable. 
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Table 5 Standardized coefficients (ordered by absolute value) 

 Model 4 

Initial Unit Scale 1.02*** 

Substitute (1: Yes; 0: No) .97*** 

Year of Introduction -.74*** 

Price (lag 1) .59*** 

Type (1:End-use; 0:Others) .42** 

Average Unit Scale (lag 1) -.41*** 

Cumulative Units (lag 1) -.15 

Growth in Unit Sales (lag 1) .13** 
 

*p<0.1; **p<0.05; ***p<0.01. 

4.2 Spatial differences in formative phase duration 

The hazard model analyzes the determinants of formative phase duration in each 

technology's initial market. Extending this parametric analysis to follower markets is not 

possible due to the lack of available data in multiple markets for the full set of independent 

variables including knowledge spillovers. Consequently, we show (non-parametric) Kaplan-

Meier curves for three regions marking spatial diffusion: core (initial markets analyzed in the 

hazard model); rim; periphery. The core-rim-periphery markets are defined for each 

technology based on adoption timings. To identify the end of the formative phase in the 

different regions, we use 10% of the estimated maximum cumulative unit numbers as a 

proxy of 2.5% market share (market potential is not available for all regions in rim and 

periphery). 

The Kaplan-Meier curves in Fig.3 show no clear tendency from core to rim, but a steeper 

curve in periphery indicates shorter formative phases. The “installation period” of a new 

technology (cf. Perez, 2002, 2016) can be shorter in periphery because of a lower resistance 

from incumbents associated with the previous technology or low requirements of 

infrastructure to create the local market (Grubler, 2012). Therefore, we find only weak 

evidence of formative phases accelerating from core to periphery (Hypothesis 6).  
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Figure 4. Duration of formative phases across regions: Kaplan-Meier (nonparametric) estimator of the duration 

function 

 
Technologies included in the Kaplan-Meier analysis: steam stationary; steamships; steam 

locomotives; bicycles; coal power; natural  gas power; passenger cars; washing machines; 

motorcycles; wind power; electric bicycles; passenger jet aircraft; nuclear power; mobile 

phones; compact fluorescent light bulbs. End of the formative phase measured at 10% of 

the estimated maximum cumulative unit numbers as a proxy of 2.5% market share (cf. 

Bento & Wilson, 2016). 

 

One interpretation of these results is that slow formative phases in follower regions indicate 

the difficulties of building the requisite technological and institutional capacity to compress 

for diffusion in new markets. In particular, it might be more difficult to short-circuit the 

accumulation of human and institutional capacity in the formative phase than to accelerate 

diffusion once formation is completed. This is examined further in Appendix 2. 

 

Discussion and conclusion 

Different strands of the innovation literature cover the dynamics and determinants of 

formation and diffusion. In this paper, we develop a coherent theoretical framework on 

formative phase duration. We apply this framework to estimate the duration of the formative 
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phase for a diverse sample of energy technologies, and test the determinants of varying 

durations using a hazard model. Table 6 summarizes the key definitions and findings. 

The paper confirms that certain drivers of formative phase duration cited in the literature are 

positively associated with shorter formative phases whereas others are not. Despite the 

literature that points to the effect of cost reductions in the takeoff of consumers products 

(e.g. Chandrasekaran et al., 2013), this study finds a stronger effect of substitutability on 

ending the formative phase, i.e., the larger the extent to which the technology is substitutable 

the easier it is to have faster formative phases.  

This study contributes to the literature in several ways. First, we establish a new theoretical 

framework specifically on the formative phase. Previous research provides insights about the 

patterns and drivers of innovation in the early years, but these are dispersed across different 

streams of the literature. We contribute to bring together the most relevant theories and 

concepts on the formation of technologies into a unified and coherent framework. We also 

help modeling of formative phases by clearly defining variables and providing 

parameterizations of different effect sizes. 

Our modeling improves understanding of the factors that govern formative phase duration 

and so informs policy-makers about the potential levers for accelerating formative phases for 

new energy technologies. Policy-makers should be particularly aware of the long time scales 

(typically taking 2-3 decades) of formation of innovations which give weak signs (if at all) of 

acceleration. To accelerate the growth of technologies, policy-makers have particularly 

focused directed innovation efforts on energy-supply technologies (Wilson et al., 2012) but 

our results refute the advantages of this strategy. They should also pay attention to the risks 

involved in accelerating novel, large scale concepts in terms of the potential for high costs of 

experimentation and slow progress towards large-scale diffusion. In practice, policy-makers 

should diversify their technology policy and avoid focusing solely on radical innovations, 

such as carbon capture and sequestration, with large potential of low-carbon energy 

production but that have not yet entered into the formative phase.  
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Our analysis also offers valuable lessons about the potential and limits of accelerating 

innovation formation and diffusion in follower countries, namely by showing the limits of 

knowledge spillovers effects in streamlining the technological adaptation and local 

institutional build up necessary for the formative phases in new spaces. We only find 

evidence of formative phase acceleration in the transition of technologies to periphery. This 

is consistent with the results of recent research which suggests a harder catching up in the 

knowledge dimension of spatial technology diffusion (Binz et al., 2017). Policy-makers from 

countries that are typically fast followers need to pay attention to the conditions, namely in 

terms of the development of local knowledge, to accelerate innovation growth. Further 

research is needed to analyze more in detail the process of institutional build up in a multi-

technology, multi-country framework. 

Future work should test the findings with more technologies to understand the effect of 

prices on formative phase durations, as well as whether this effect is contingent on type and 

size of technologies. Finally, data on the covariates from several regions will allow for a 

spatial disaggregation of the effects, i.e. to understand the changes in the impact of 

variables in different regions, and the rates and extents of formative phases in follower 

regions. 
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Table 6 Summary of definitions and findings 

Definition 
 

Formative phase: The early stage of development that prepares a new technology 
to emerge and become established in the market. 
 

Determinants of the duration of the formative phase 
 

Theoretical 
Section 

Hypothesis Description Result  

(Section 4.1 if not 
stated otherwise) 

Section 2.3 1 We expect formative phase durations to 
be longer for technologies with higher 
prices. 

Confirmed price 
effect, stronger for 
end-use 
technologies 
 
 

2 We expect formative phase durations to 
be longer for (larger) technologies with 
higher complexity. 

Not confirmed 

3 We expect formative phase durations to 
be shorter for technologies with faster 
upscaling. 
 

Not confirmed 

4 We expect formative phase durations to 
be longer for (more pervasive) 
technologies with larger market impact. 
 

Not confirmed 

5 We expect formative phase durations to 
be shorter for substitute technologies 
which do not provide new services, 
require additional infrastructure, or open 
new markets. 
 

Confirmed 
substitutability effect 

Section 2.4 
 

6 
 

We expect that formative phase durations 
to be shorter in follower countries 
because of knowledge spillovers. 

Confirmed for 
periphery (Section 
4.2) 
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Appendixes 

 

Appendix 1 Change in unit cost of technologies (US$(2005)/ kWeq.) with formative phase start and end points  

 

 

Appendix 1 shows the changes in technology costs per capacity against cumulative installed 

capacity, which is the typical representation of learning curves, for six technologies. All 

technologies but nuclear power reduce costs per capacity over time. This pattern continues 

in subsequent stages with the exception of e-bikes for which the cost stabilize at the end of 

the formative phase. Nuclear power is a different case of negative learning largely due to 

knowledge obsolescence and increasing complexity with technology scale-up (e.g. stricter 

safety standards) (Grubler, 2010). Overall, experimentation and testing produce important 

learning and cost reductions in the formative phase. 
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Appendix 2 Spatial differences in formative phases across regions 

 
The duration of diffusion is measured by the Δt—the time from 10% to 90% of saturation—

which is inversely proportional to the rate of diffusion with higher Δt values meaning 

slower diffusion (see Wilson & Grubler, 2015). The time needed to reach 10% of total 

cumulative unit numbers (proxy of the formative phase—not available for rim and 

periphery) is almost as long as from 10 to 90% (diffusion) in all regions.  

In addition, the diffusion accelerates in follower regions in 8 out of 13 technologies for 

which we have data for the different regions, whereas the period prior to diffusion is only 

shorter in followers in 5 out of 13 technologies.  
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Appendix 3 Robustness check 

Dependent variable: 10% Cumulative Units 

 Coefficient 
 

Robust Standard Errors P-value 

Price (lag 1) .000*** .000 .000 
Initial Unit Scale .020** .010 .029 
Average Unit Scale (lag 1) -.001*** .0002 .000 
Cumulative Capacity (lag 1) -.0000*** .000 .000 
Growth in Unit Sales (lag 1) .011*** .003 .001 
Substitute (1: Yes; 0: No) .734*** .241 .002 
Type (1:End-use; 0:Others) .561** .229 .014 
Year of Introduction -.008*** .001 . 000 

Observations 712   

Concordance .871   

Pseudo-R² .221   

Log Likelihood -3,880   

Wald Test 242.62***   

*p<0.1; **p<0.05; ***p<0.01. Robust standard errors clustered at technology level. Cox proportional hazard regression model 

estimations using the Efron method for drivers of formative phase of 15 technologies observed in core countries. Note that we 

use here cumulative capacity rather than cumulative units like in Table 4 to avoid endogeneity with the dependent variable.  

 

The analysis checks the robustness of the results from the previous models by re-estimating 

the base model 4 using an alternative proxy for the end of the formative phase based on 

10% of cumulative unit numbers (see more details in Bento & Wilson, 2016). The coefficients 

are similar to the ones obtained by using the main dependent variable, underlining the 

stability of the results while reinforcing the confidence in the models.  


