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Abstract
1.	 Statistical techniques exist for inferring community assembly processes from 
community patterns. Habitat filtering, competition, and biogeographical effects 
have, for example, been inferred from signals in phenotypic and phylogenetic 
data. The usefulness of current inference techniques is, however, debated as a 
mechanistic and causal link between process and pattern is often lacking, and 
evolutionary processes and trophic interactions are ignored.

2.	 Here, we revisit the current knowledge on community assembly across scales and, 
in line with several reviews that have outlined challenges associated with current 
inference techniques, we identify a discrepancy between the current paradigm of 
eco-evolutionary community assembly and current inference techniques that focus 
mainly on competition and habitat filtering. We argue that trait-based dynamic eco-
evolutionary models in combination with recently developed model fitting and 
model evaluation techniques can provide avenues for more accurate, reliable, and 
inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-
evolutionary model and discuss steps of model modification, fitting, and evaluation 
as an iterative approach enabling inference from diverse data sources.

3.	 Through a case study on inference of prey and predator niche width in an eco-
evolutionary context, we demonstrate how inclusive and mechanistic ap-
proaches—eco-evolutionary modelling and Approximate Bayesian Computation 
(ABC)—can enable inference of assembly processes that have been largely ne-
glected by traditional techniques despite the ubiquity of such processes.

4.	 Much literature points to the limitations of current inference techniques, but con-
crete solutions to such limitations are few. Many of the challenges associated with 
novel inference techniques are, however, already to some extent resolved in other 
fields and thus ready to be put into action in a more formal way for inferring pro-
cesses of community assembly from signals in various data sources.
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1  | INTRODUC TION

Community assembly processes are difficult to observe in the field 
and revealing processes using manipulative experiments is not al-
ways feasible. Consequently, there is a considerable need to infer 
processes from observations, such as trait distributions, species 
distributions, abundances, and phylogenies (Cadotte et al., 2010; 
Mouquet et al., 2012; Pausas & Verdu, 2010; Ricklefs & Travis, 1980).

Current techniques that aim to infer assembly processes from 
community data have limitations. Most methods consider one or 
a few processes, although community assembly occurs via mul-
tiple processes including eco-evolutionary feedbacks (Leibold, 
Economo, & Peres-Neto, 2010). Patterns observed in nature may 
be consistent with multiple explanations (Vellend, 2010) and 
current techniques may thus fail to provide accurate inference, 
particularly if evolutionary processes and trophic interactions 
that are known to be important for macroevolution are poorly 
integrated (Pausas & Verdu, 2010; Pontarp & Petchey, 2016). 
Fundamental assumptions (e.g., that competition will result in 
overdispersed trait distributions), on which current inference 
techniques often rely, have also been questioned (Mayfield & 
Levine, 2010). Existing inference techniques and their shortcom-
ings are covered in several reviews (Adler, Fajardo, Kleinhesselink, 
& Kraft, 2013; Cadotte et al., 2010; Cavender-Bares, Kozak, Fine, 
& Kembel, 2009; Emerson & Gillespie, 2008; Mouquet et al., 
2012; Pausas & Verdu, 2010; Vamosi, Heard, Vamosi, & Webb, 
2009). Here, we also outline the most relevant features of some of 
the common inference techniques (Tables 1–2 and Appendix S1), 
but our major aim is to motivate transformation and improvement 
of the practice of inferring process from pattern in ecology and 
evolutionary biology.

Such transformation, already underway, involves models of 
community assembly and we highlight specific components in-
cluding mechanistic modelling, parameter estimation, and model 

selection (see also Cabral, Valente, & Hartig, 2017; Csillery, Blum, 
Gaggiotti, & Francois, 2010; van der Plas et al., 2015). We present 
a trait-based and spatially explicit dynamic eco-evolutionary com-
munity model of adaptive radiations that includes intra- and inter-
specific competition, trophic interactions, dispersal as well as trait 
evolution within trophic levels and co-evolution among trophic lev-
els. We use this model in a case study to illustrate how model mod-
ification (including or excluding processes), Approximate Bayesian 
Computation (ABC) statistics, and multiple data sources can be 
used for inference. We focus on predator–prey interactions and 
co-evolution processes that are important in structuring communi-
ties but are largely overlooked in traditionally inference techniques 
(Mouquet et al., 2012).

2  | THE C A SE FOR INCLUSIVE AND 
MECHANISTIC PROCESS INFERENCE

Current inference techniques have both been praised and criti-
cized, and calls for more inclusive and mechanistic approaches have 
been made due to challenges associated with: (a) basic assumptions 
on which the methods rely, (b) quantification of processes acting 
in concert on different spatiotemporal scales, and (c) the identi-
fication of particular mechanisms that link process and pattern 
(Table 1, Appendix S1). We now describe each category of chal-
lenges in turn.

2.1 | Basic assumptions of classical approaches

The most common inference methods involve analysis of trait or 
phylogenetic community patterns, to find signals consistent with 
community assembly processes. Community overdispersion or un-
derdispersion has been determined by comparing the trait/phylo-
genetic distribution of the focal community with that of randomly 

TABLE  1 Methods that infer assembly processes from community patterns (column 1) and the information that they consider (columns 
2–5)

Input data Inference of processes

Reference exampleMethod Phenotype Phylogeny Abundance Environment Space Eco. Evo. Bio.geo

Analysis of pheno-
typic structure

✓ ✓* ✓ Petchey and Gaston 
(2006)

Analysis of phyloge-
netic structure

✓* ✓ ✓+ ✓* ✓ Webb et al. (2002)

Fourth corner ✓ ✓ ✓ ✓ ✓* ✓ ✓+ Dray and Legendre 
(2008)

Variance partitioning ✓ ✓ ✓ ✓ ✓ Borcard, Legendre 
and Drapeau 
(1992)

Co‐occurrence 
analysis

✓ ✓ (Harris, 2016)

Tick mark denotes which data/processes are considered explicitly. Superscript denotes data/processes that are implicitly considered (*) or included in 
extensions of the basic method (+). “Eco” processes include habitat filtering and competitive exclusion; “Evo” includes the evolution of phenotypes, for 
example, via character displacement; “Bio. geog.” includes dispersal limitation.
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assembled null communities and interpreted as competitive exclu-
sion or habitat filtering respectively (Webb, Ackerly, McPeek, & 
Donoghue, 2002). Other methods interpret correlation between 
traits and environmental variables as a signal of habitat filtering 
(Legendre, Galzin, & HarmelinVivien, 1997; Mouquet et al., 2012). 
Furthermore, variance partitioning aims to decompose variation in 
community composition into fractions determined by environmen-
tal factors and spatial location to reveal environmental filtering and 
spatial contingencies (Borcard, Legendre, & Drapeau, 1992). A fun-
damental challenge associated with the methods listed above is that 
a particular trait or set of traits cannot always be assumed to reflect 
the ecological niche (Trisos, Petchey, & Tobias, 2014). Conclusion 
based on null models, to which patterns are contrasted, is also criti-
cized (Mittelbach & Schemske, 2015). Even common assumptions 
about competitive exclusion are contradicted by studies showing 
that competition can eliminate more different and less related taxa 
(Mayfield & Levine, 2010).

2.2 | Processes acting in concert

Other challenges are associated with the complex nature of com-
munity ecology (Appendix S2). Communities are structured through 
multiple processes, acting on different spatiotemporal scales, and 
different processes can give similar patterns (Vellend, 2010). Existing 
methods, however, often only infer the net effect of processes or the 
dominant process. This introduces challenges even in the simplest 
case when processes on local geographical and ecological temporal 
scale are considered. The communities may be structured through 
a combination of environmental filtering and competition (Kraft, 
Valencia, & Ackerly, 2008), but the relative strength of these pro-
cesses varies continuously with abiotic and biotic variables (Pontarp, 
Ripa, & Lundberg, 2012; Trisos et al., 2014). The focus of current 
inference methods on habitat filtering and competition is also sur-
prising as both empirical (Alto, Malicoate, Elliott, & Taylor, 2012) 
and theoretical (Pontarp & Petchey, 2016) studies show that trophic 

TABLE  2 Challenges and limitations associated with current inference techniques and methods categorized into three overarching 
categories (column 1)

Challenge category Challenge/Limitation Description Reference example

Basic assumptions 
of the methods

Identifying traits that 
can be used as a 
proxy for niche

Phenotypic inference techniques assume that trait(s) can be used as a proxy 
for niche. Identifying the traits that define an organism’s niche and thus 
drive the assembly processes can, however, be difficult and must be 
supported by expert knowledge of organisms’ natural histories. Appropriate 
weighting of traits can also be difficult to establish

Petchey and 
Gaston (2006)

Identifying the 
relationship 
between niche, 
traits, and 
phylogeny

Phylogenetic inference techniques assume a mapping between relatedness 
and niche. The interpretation of phylogenetic patterns is contingent on trait 
evolution and the distribution of traits over the phylogeny. The degree of 
community clustering given by a certain process will, in other words, be 
contingent on whether the niche is conserved or labile.

Wiens et al. 
(2010)

Assuming a fixed 
species pool and no 
evolution or no 
explicit space

The current theory is mainly focused on local community assembly from a 
fixed regional species pool and assumes that dispersal is not limiting. This 
implies that local community composition results only from local processes 
(e.g., habitat filtering and competition)

Pausas and Verdu 
(2010)

Assuming that only 
similar species 
exclude each other 
due to competition.

A current paradigm in ecology states that species that are closely related, 
share traits, and thus also have similar niches cannot co-exist due to 
competitive exclusion. Recent studies have, however, showed that 
competition can sometimes eliminate more different and less related 
species

Mayfield and 
Levine (2010)

Method specificity 
and scale-
dependent 
processes

Single process 
inference

Most methods only allow for inference on the net effect of processes and do 
not partition the relative importance of ecological, evolutionary, and spatial 
processes acting in concert

Petchey (2007)

Evolution is ignored Evolutionary contingencies are largely ignored in current inference tech-
niques. This is limiting, in particular when analysing phylogenetic patterns

Emerson and 
Gillespie (2008)

Scale-dependent 
processes

Different traits may be affected by different processes at different temporal 
and spatial scales.

Trisos, Petchey 
and Tobias 
(2014)

Lack of mechanis-
tic links between 
process and 
pattern

Unknown 
mechanisms

Methods that take environmental factors and explicit spatial components 
into account (e.g., variance partitioning) are mainly phenomenological or 
statistical. A mechanistic understanding of the causal link between pattern 
and process is thus often lacking

Gotelli et al. 
(2009)

Trophic interactions 
are often ignored

Even though it is well known that trophic interactions can structure 
communities, trophic processes are largely ignored when patterns are 
interpreted

Mouquet et al. 
(2012)
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interactions also structure communities. Furthermore, spatial struc-
ture can facilitate coexistence of similar species and high dispersal 
may lead to increased co-occurrence of species. Current methods 
do, however, rarely consider spatiotemporal dynamics. Finally, cur-
rent process inference methods focus largely on ecological pro-
cesses (Leibold et al., 2010) although the importance of evolutionary 
processes is well known (Cortez & Ellner, 2010; Leibold et al., 2010).

2.3 | Lack of mechanistic inference

The final major challenge associated with current inference tech-
niques that emerge from the literature is their inability to provide 
explicit information about the mechanistic link between process and 
pattern (Adler et al., 2013). Lack of information about the underlying 
mechanisms can lead to misinterpretations of patterns. For example, 
trophic interactions and evolution are seldom considered in process 
inference (Pausas & Verdu, 2010) despite evidence of major effects 
on both trait distributions and phylogenetic patterns (Pontarp & 
Petchey, 2016, 2018).

3  | IMPLEMENTING MECHANISTIC AND 
INCLUSIVE APPROACHES

In line with advances in other fields, such as macroecology (Cabral 
et al., 2017; D’Amen, Rahbek, Zimmermann, & Guisan, 2015) and 
ecological forecasting (Niu et al., 2014; Urban et al., 2016), more 
general and flexible methodological inference frameworks can be 
adopted. Here, we present a generic macroevolutionary modelling 
framework coupled with Bayesian statistical methods for model 

fitting and model improvement (Fig. 1). The framework makes use of 
a priori knowledge for both model construction and parameter esti-
mation. Evolutionary processes can be turned on or off, competitive 
and/or predator–prey interactions can be included, different types 
of data can be utilized, and the level of mechanistic detail can be 
adjusted as needed.

3.1 | Developing an eco-evolutionary model 
for inference

A community model for inference needs to be flexible, include 
multiple processes, and output multiple types of data. With this in 
mind, we base our model on the generalized Lotka–Volterra (GLV) 
equations (Case, 2000) extended into geographical space (Fig. 2, 
Appendix S3). This model thus includes ecological and spatial pro-
cesses and we combine available microevolutionary theory and 
simulations of macroevolutionary patterns in the form of adaptive 
radiations.

For simplicity, we assume that space is represented by three 
patches R, G, and B denoted with subscripts R, G, and B below. 
Dispersal between any two patches is assumed symmetrical and oc-
curs at given per capita rates (see Appendix S3 for implementation). 
The dynamics of n prey populations and m predator populations in 
patch R are given by:

(1)
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F IGURE  1 The proposed process inference approach including (1) model construction, (2) model fitting and parameter estimation, 
and (3) model selection. Dynamic community models are suitable as they are often based on simple population dynamical models but can 
be extended to include mechanisms through trait-based dynamics and population- or individual-based implementation (red section in a). 
Prior knowledge informs model construction and implementation (b, I, II). Theoretical model investigation can identify different processes 
that may give rise to similar patterns and thus may be difficult to distinguish between (b, III). Parameter estimation provides quantitative 
information on the processes that are modelled given the data (b, IV, V) and the model selection procedure guide the model construction 
and inclusion or exclusion of particular processes (b, VI, VIII)
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for i = 1 to n and k = 1 to m. Here, Vi,s and Pk,s denote prey and pred-
ator population size in patch s, respectively, with s referring to patch 
R, G, or B. The equations for the other two patches are similar. The 
parameters r and d are the intrinsic prey growth rate and the preda-
tor mortality rate, respectively. Here, we assume that all patches are 
similar, but variation can be implemented through species-  and/or 
patch-specific growth and death (formulated as ri,S and dk,s).

The trait-dependent functions on the right-hand side of 
Equations 1 and 2 are given by:

 

 and

where K(ui, uopt) represents the carrying capacity for a monomor-
phic population i of prey individuals with trait value ui in a habitat 
characterized by a resource distribution with its peak resource 
availability at the point uopt. Resource availability declines sym-
metrically as u deviates from uopt according to σK. The interac-
tion, α(ui,uj), between prey populations i and j is modelled with a 
Gaussian function where σα determines the degree of competition 
between populations with traits ui and uj and can thus be viewed 

as the niche width of the prey. Equation 5 models the interaction, 
a(ui, zk), between a focal predator population k with trait value z 
and a prey population i with trait value u. The parameter bmax de-
notes the maximum attack rate obtained when ui = zk and this rate 
then falls of symmetrically as ui deviates from zk according to σa. 
Similar to the σα parameter, σa can be viewed as the niche width 
of the predator. Again parameters bmax and K0 can be made patch- 
and species-specific if needed.

The model is flexible enough to model newly established com-
munities of organisms with low evolutionary potential by seeding 
only one patch with interacting populations and by omitting disper-
sal. With this being said, for more complex systems, explicit space 
and dispersal may be required. For old communities or fast-evolving 
organisms (e.g., microbes), implementing evolutionary process is 
desirable. The model is thus able to capture a range of scenarios 
ranging from ecological assembly across space to macroevolution-
ary processes where, for example, ecological opportunity is followed 
by adaptive radiations. For this, we use an adaptive dynamics ap-
proach (Brännström, Johansson, & von Festenberg, 2013; Geritz, 
Kisdi, Meszena, & Metz, 1998; Metz, Geritz, Meszena, Jacobs, & Van 
Heerwaarden, 1996) (see also Appendix S3). With full complexity, 
the simulation model includes intra- and interspecific competition, 
trophic interactions, dispersal, and trait evolution, and can exhibit 
evolutionary branching (Fig. 2). The model outputs population dy-
namics, equilibrium population sizes, and trait distributions for 
each evolutionary step (Fig. 3). By assigning a species identity to 
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F IGURE  2 Model illustration (a–c) and initial conditions for the most complex model scenario presented this paper (d). Predators (a) and 
prey (b) can coexist and disperse between three habitats, defined by their resource distributions (c). Species and resources are distributed 
in trait space (colour gradient) and consumption is dictated by consumer-resource trait matching. As an example, red prey is optimized for 
utilizing red parts of the resource distribution and green predators are optimized to consume green prey. Competition between species 
is dictated by their niche width (black and grey kernels). Large overlap between niche kernels indicates high competition and predation 
pressure respectively. In the most complex case, we initiate the model with three habitats each with their own resource distribution 
(solid red, green and blue lines in d). Maximum carrying capacity in each habitat is set to 10,000, 12,000, and 13,000 and the peak of the 
distributions is situated at trait value 0, 1, and 2 respectively. We initiate the system with three prey and three predators (one in each 
habitat) with trait values equal to the resource distribution peaks. Prey and predators have the same trait value, but we set niche widths for 
prey (dashed lines) to be slightly wider than predator niche width (dotted lines). Colour coding in (d) denotes habitats and niche kernels are 
coded according to where the species occurs initially. Note that the y-axis has no direct association with the niche kernels in d
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individuals, for example, using a trait-based species definition (see 
also Pontarp, Ripa, & Lundberg, 2015; Pontarp et al., 2012), we can 
follow trait evolution, diversity, and phylogenetic and phenotypic 
community structure throughout evolutionary history (see also 
Pontarp & Petchey, 2018). Code for the model implementation is 
provided at https://zenodo.org/badge/latestdoi/158187026 and a 
guide to model modification is found in Appendix S5.

3.2 | Quantifying assembly processes through 
parameter estimation and model selection

While classical parameter estimation methods assign each param-
eter a given value or range of values based on the data provided, 
Bayesian methods additionally make use of prior knowledge of 
reasonable parameter values to arrive at parameter estimates. 
This knowledge takes the form of a prior probability of a given 
model and prior distribution for each model parameter. The data 
are then used to determine corresponding posterior distributions 
that reflect the best estimate of each parameter value and model 

selection is made through Bayes factors (Appendix S4). The un-
certainty associated with the distributions provides information 
about model sensitivity or lack of signal in data for a given param-
eter while comparisons of estimates among parameters help re-
veal the relative strength and importance of different processes. 
Furthermore, by each time evaluating an increasingly complicated 
model (Fig. 1), it is possible to circumvent potential problems of 
using an overly complex model.

There are several benefits associated with using the proposed 
approach (Fig. 1). First, and before the models are fitted to real 
data, a theoretical model investigation can identify different pro-
cesses that may give rise to similar patterns. In this case, it will be 
difficult to distinguish between those processes and additional 
information or experimentation may be needed for successful in-
ference. Second, it is possible to evaluate the model and inference 
techniques by simulating data and then using the suggested infer-
ence method to retrieve known parameters. The amount of prior 
information about the system necessary for correct inference can 
be evaluated. If processes cannot be inferred in simulated data, 

F IGURE  3 Representative data outputs from the model, including time series (a, e), trait distributions (n, c, f, g), and adaptive radiations 
(d, h) for prey (a, e, b, c, d) and predators (a, e, f, g, h). We compute ecological dynamics and equilibrium for each subpopulation in each 
habitat (a) and for each prey (circles) and predator (triangles) population across habitats (e). Trait distributions at equilibrium for the initiated 
community are shown for the initiated community of three prey (b) and three predators (f) distributed in space. The spatial distribution and 
trait distributions of prey (c) and predators (g) evolved through adaptive radiations of co-evolving prey (d) and predators (h). Colour coding 
in (e) illustrates spatial distribution. Pure red, green, and blue denote sole occupancy in habitat A, B, and C, respectively. Occupancy in 
multiple habitats is illustrated as a mix of colours proportional to the spatial distribution. Parameters for this simulation are K0,A = 10,000; 
K0,B = 12,000; K0,C = 13,000; uopt,A = 0; uopt,B = 1; uopt,C = 2; σK = 1; σα = 0.5; σa = 0.4; r = 1; d = −0.2; cp = 0.3; bmax = 0.0001; M = 0.05; 
Pmut,prey = 0.01; Pmut,pred = 0.1; σmut,prey = 0.02; σmut,pred = 0.03, with initial conditions u1 = 0; u2 = 2; u3 = 3; v1 = 0; v2 = 2; v3 = 3
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even though the model that underlies the patterns is known, cor-
rect inference on non-simulated (real) data is unlikely. Third, while 
fitting models to data (Fig. 1), one can evaluate a model that in-
cludes fewer ecological processes against models that include 
more processes and thus guiding the inclusion or exclusion of par-
ticular processes.
Approximate Bayesian Computation (ABC) is a parameter estimation 
and model fitting technique (Beaumont, 2010; Csillery et al., 2010; 
Sisson, Fan, & Tanaka, 2007) with promise for overcoming the diffi-
culty of fitting complex models to diverse data. ABC takes priors for 
each model parameter as input, data are simulated with the model 
many times given parameters that are each time drawn randomly 
from the priors, and then, the distance (often Euclidean distance) 
between model output and observed data is evaluated through a 
set of summary statistics. Parameter combinations that render small 
distance (defined through some user-defined threshold) constitute 
the posterior distributions. The mean, mode, variance, and other 
metrics of the posteriors define the actual parameter estimates. The 
simplest way of generating posterior distributions is through a sim-
ple rejection algorithm where parameters are drawn from a constant 
prior, but more powerful global optimization techniques such as 
Kalman filters (Kalman, 1960), Markov chain Monte Carlo (Gao et al., 
2011), or Sequential Monte Carlo (Sisson et al., 2007) are commonly 
used. The model selection procedure is based on the same general 
principles, except that the summary statistics is defined somewhat 
differently (Prangle, Fearnhead, Cox, Biggs, & French, 2014). The 
output from the ABC model selection is focused on acceptance/re-
jection ratio between models rather than posterior parameter distri-
butions (Liepe et al., 2014; Toni, Welch, Strelkowa, Ipsen, & Stumpf, 
2009).

3.3 | Inferring competitive and trophic 
interactions—an illustrative case study

We asked whether it is possible to use the framework, model, and 
tools presented above to discriminate and quantify competition and 
trophic interactions from data on trait distributions, phylogenetic 
data, and species abundances. The answer to this question is non-
trivial for two reasons. First, competition and predation have been 
shown to have similar effects on trait distributions which may limit 
inference of the two processes (Pontarp & Petchey, 2016). Second, 
as far as we know, no one has considered predatory effects on prey 
community structure in an inference framework before.

We generate our own observed, “empirical”, data through simu-
lations (Zurell et al., 2010) (Fig. 4). We start simulations with mono-
morphic population(s) at the centre of the resource distribution and 
we simulate the eco-evolutionary assembly of four local consumer 
communities for 5,000 evolutionary time steps. Our simulated data 
are thus representing a macroevolutionary scenario where ecolog-
ical opportunity facilitates diversification through adaptive radia-
tions. Two of the observed communities includes competitive prey 
only (no predators) and we set prey niche width σα = 0.1 and σα = 0.3 
for the two communities respectively. In our simulations, we also set 
the width of the resource distribution σK = 1 which means that di-
verse communities can evolve (Geritz et al., 1998). Furthermore, we 
simulate the assembly of two communities of co-evolving predators 
and prey. We use the same values for σα as above and we set pred-
ator niche width σa = 0.7. Constant model parameters for all simula-
tions were K0 = 10,000; σK = 1; r = 1; d = 0.2; c = 0.3; bmax = 0.0001. 
Mutation size for both predators and prey was defined as a random 
trait value drawn from a normal distribution with mean equal to the 

F IGURE  4 Four simulated communities used as “observed” data in our illustrative case study. Radiations and trait distributions for prey 
(grey) and predators (red). Two of the communities contain competitive consumers only (a–d) with low (0.1) niche width (a,b) and high (0.3) 
niche width (c,d). Two communities are assembled through co-evolving competitive consumers and predators (e–h). The competitors in the 
predator–prey communities have the same high (e, h) and low (g, h) niche widths. The predators have niche width
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trait value of the mutating population and a variance (σmut) equal to 
0.02 and mutation probability for the prey and predators were kept 
constant at 0.01. We will refer to data, including species richness, 
species abundance, trait distributions, and phylogenetic structure, 
from these four communities as “observed data” from now on.

To infer the processes that underpin patterns in observed 
data, we consider prior information about the observed system 
and available theory while constructing the candidate model sce-
narios (Fig. 1). For this case, we assume that the system is known 
well enough for us to focus on eco-evolutionary predator–prey 
interactions and we use established predator–prey models in our 
simulations. To illustrate how model modification can facilitate 
process inference, we generate model output for two candidate 
models: one that includes consumer competition only and one 
that includes competition and predation. We also implement the 
model such that multiple data types are produced and we gen-
erate model output given parameters from wide non-informative 
prior distributions. We infer the processes for each of our four 
observed communities by selecting the best model and by ap-
proximating the posterior parameter distribution for the param-
eters that are relevant for prey competition (prey niche width) 
and predator niche width, using ABC and a rejection algorithm 
(Beaumont, 2010; Sisson et al., 2007). As summary statistics for 
the ABC, we utilize as much of the available data as possible. We 

use well-known community structure metrics in the field of infer-
ence, including the number of prey species, mean abundance, the 
width of the trait distribution, mean trait distance, mean nearest 
trait distance, net relatedness index, and nearest phylogenetic 
taxon index (Appendix S4). The output from the ABC analysis con-
stitutes the distance between simulated and observed data, eval-
uated as the Euclidean distance between summary statistics, as a 
function of model structure and model parameters (Figs S1–S3, 
Appendix S4). The Euclidean distance approximates the likelihood 
for a given model and parameter set (Beaumont, 2010; Liepe et al., 
2014; Prangle et al., 2014), and hence also the posterior parameter 
distribution (Fig. 5).
We find that the minimum Euclidean distance between the ob-
served data and the correct model is always smaller than the 
distance obtained by fitting the wrong model, and the accep-
tance ratio provided by the rejection algorithm is always larger 
for the correct model compared to the wrong model (Figs S1–S3, 
Appendix S4). The correct model is thus selected for each of the 
four observed communities, suggesting that prey only communi-
ties can indeed be distinguished from predator–prey systems. This 
is encouraging as previous studies (Pausas & Verdu, 2010; Pontarp 
& Petchey, 2016; Schluter, 1984) have raised concerns about in-
ferring predator–prey interactions, using traditional techniques. 
The parameter estimates were also largely correct for the best 

F IGURE  5 Posterior distributions for each of the prey only, predator–prey, narrow prey niche width, and wide prey niche width scenarios, 
when the correct models were fitted to observed data. Prey niche width was estimated for the prey only scenario (a,c); hence, the one-
dimensional posterior distribution plotted as a histogram with superimposed fitted normal density (red curve) for the number of simulation 
realizations that did fall within Euclidean threshold value (ε) equal to 1. In predator–prey scenarios, both predator and prey niche width were 
estimated, hence the two-dimensional posterior distribution (b,d). The posterior is shown as a scatter plots with the parameter combinations 
that did fall within ε =1 together with marginal distributions illustrated as blue curves. Red lines denote the correct parameter values in true data

σa
0.2 0.4 0.6 0.8 1

0.4 0.6 0.8 1

σα

σα

σa

0.06

0.1

0.14

0.18

0.2

0.3

0.4

(b)

(d)

c.

(a)

(c)

10

20.

30.

0

20

40.

60.

0

0.1 0.130.08

0.3 0.450.2

N
um

be
r s

im
ul

at
io

n 
re

al
is

at
io

ns
N

um
be

r s
im

ul
at

io
n 

re
al

is
at

io
ns

ε = 1

Competitors only Predator and prey

eh
ci

n 
ye

rp
 e

di
W

eh
ci

n 
ye

rp
 

wo
rr

a
N

σα

σα

ε = 1

ε = 1

ε = 1



     |  9Methods in Ecology and Evolu
onPONTARP et al.

performing models (Fig. 5), showing that quantitative measures of 
the strength of competition and predation can be obtained in a 
scenario described by our case study. This is an advantage over 
more traditional inference where quantitative or relative measures 
of processes are rarely presented.

4  | DISCUSSION

Ecological communities are complex, with diverse processes and 
actors (e.g., Urban, De Meester, Vellend, Stoks, & Vanoverbeke, 
2012; Vellend, 2010) and it is clear that several of the current in-
ference techniques are too simplistic (Adler et al., 2013; Cadotte 
et al., 2010; Cavender-Bares et al., 2009; Emerson & Gillespie, 
2008; Mouquet et al., 2012; Pausas & Verdu, 2010; Vamosi et al., 
2009). A novel, more mechanistic, more inclusive, and more uni-
fied approach, like the one proposed here, for future assembly-
process inference techniques is desirable as this will allow for a 
causal and quantitative link between multiple processes and com-
munity patterns.

Although the approach has not been synthesized for process 
inference explicitly before, inference does seem to be moving in 
the proposed direction (e.g., van der Plas et al., 2015). Several 
modelling approaches (Harris, 2016; Jabot & Bascompte, 2012; 
May, Giladi, Ristow, Ziv, & Jeltsch, 2013) and statistical tech-
niques can be used, but the trade-off in model complexity and 
tractability needs to be considered. We present dynamical eco-
evolutionary modelling in combination with ABC as particularly 
suitable. Dynamic modelling is simple in the sense that it is based 
on simple, often phenomenological population dynamical models 
(Brännström et al., 2012), but they can be extended to include de-
tailed mechanisms through the inclusion of trait-based dynamics 
and through a population- or individual-based implementation. A 
major advantage is a clear link between ecological and microevolu-
tionary processes and macroevolutionary patterns. The trade-off 
between realism, computational costs, and model tractability can 
be monitored and controlled as the models gain in complexity. By 
iterating over model construction and model evaluation, each time 
evaluating different models that include/exclude particular assem-
bly processes, a type of robustness check can be accomplished 
and the best model for the data identified. Similarly, by evaluating 
increasingly complex versions of the models, the optimal model 
for inference about the study system can be found (see details in 
Appendix S4). Any model that includes several processes will, how-
ever, tend to be complex and computationally costly. Likelihood 
functions are often intractable, leading to the need for fitting and 
model selection techniques like ABC.

In our case study, we illustrate how dynamical modelling and 
ABC can be used for inference, through model selection and param-
eter estimation. We test multiple models against simulated data and 
the correct models were selected for our observed data, indicating 
that the different processes can be distinguished between with a 
simple rejection algorithm (Sisson et al., 2007) and without explicit 

summary statistics optimization (Prangle et al., 2014). Our case 
study emphasizes the importance to include the correct processes 
and thus to test different models. For example, a predator–prey 
system that is evaluated by a prey only model (Fig. S4c, Appendix 
S4) can lead to seemingly good estimates of prey niche width, but 
the overall model fit compared to the true model is relatively poor 
with overestimation of the niche width parameter. These results are 
promising and they indicate that our suggested approach is working 
under the ideal conditions associated with our case study. It will be 
intriguing to see how the approach will perform in practice.

Our case study also emphasizes the possibility and value of 
taking prior information and multiple data sources into account. 
The fact that we are using both phylogenetic and trait distribution 
data seems to be one of the reasons why we are able to distin-
guish between predator and prey processes as such signals can 
be diffuse in trait data only (Pontarp & Petchey, 2016). This also 
highlights the empirical side of inference, namely data to which 
the models are fitted. As noted above, data inform the models 
and are thus imperative for the model fitting. Data also dictate 
model construction as the model output needs to be compara-
ble with data (e.g., diversity, size distributions, or phylogenetic 
patterns). In our case study, we are thus not only illustrating the 
technical aspects of novel inference but also provide an indication 
of what type of data may be useful in the future for inference to 
become more inclusive and detailed. Furthermore, data provide 
the knowledge of the natural history of the study system that also 
informs model construction. A priori information of a particular 
system can narrow down the priors for ABC and thus facilitate 
parameter estimation by reducing the parameter space that needs 
to be searched in the optimization procedure. For certain systems, 
reasonable parameter values may already be available in the lit-
erature and it might be possible to measure some parameters in 
independent studies. With this in mind, we envision that process 
inference will continue to move away from simple statistical and 
non-mechanistic inference techniques for approaches with a con-
stant flow of information between experimental and field data, 
model construction, parameter estimation, and model selection. 
This will come with technical challenges as well as increased de-
mands on data, computational power, and experimental progress. 
Many of these difficulties are, however, already identified and to 
some extent resolved.
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