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Current fossil fuel infrastructure does not yet
commit us to 1.5 °C warming
Christopher J. Smith 1, Piers M. Forster 1, Myles Allen2,3, Jan Fuglestvedt4, Richard J. Millar2,5,

Joeri Rogelj 6,7,8 & Kirsten Zickfeld9

Committed warming describes how much future warming can be expected from historical

emissions due to inertia in the climate system. It is usually defined in terms of the level of

warming above the present for an abrupt halt of emissions. Owing to socioeconomic con-

straints, this situation is unlikely, so we focus on the committed warming from present-day

fossil fuel assets. Here we show that if carbon-intensive infrastructure is phased out at the

end of its design lifetime from the end of 2018, there is a 64% chance that peak global mean

temperature rise remains below 1.5 °C. Delaying mitigation until 2030 considerably reduces

the likelihood that 1.5 °C would be attainable even if the rate of fossil fuel retirement was

accelerated. Although the challenges laid out by the Paris Agreement are daunting, we

indicate 1.5 °C remains possible and is attainable with ambitious and immediate emission

reduction across all sectors.
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The Paris Agreement includes the aim to pursue efforts to
limit global mean temperature rise to 1.5 °C above pre-
industrial levels1. How close we are to 1.5 °C depends on

the choice of reference (pre-industrial) period, the methods of
generating global mean temperatures from historic records2 and
whether the human-induced warming contribution is isolated
from the naturally forced warming and internal variability3,4.

The zero emissions commitment4–6 refers to the level of fur-
ther warming that will occur if emissions abruptly cease, and is
related to geophysical inertia. In previous studies, the long-term
zero emissions commitment ranges from around −0.4 to+0.9 °C,
and is sensitive to the carbon cycle response7,8, ocean heat
uptake9, magnitude and pathway of historical warming10, and
whether or not non-CO2 forcing is included10,11. When non-CO2

forcing is included, setting emissions to zero leads to an initial
rapid warming, associated with the removal of short-lived cooling
aerosols, followed by a slower decline and stabilisation of tem-
peratures driven by a reduction in the concentrations of short-
and long-lived greenhouse gases8.

An alternative assessment of committed warming is an infra-
structure commitment12–15. This combines geophysical com-
mitment concepts with knowledge of the possible speed at which
fossil fuel-emitting infrastructure could be phased out. Under an
infrastructure commitment, global society makes a serious effort
to phase-out greenhouse gases but does not go as far as decom-
missioning power plants and other infrastructure before the end
of their expected lifetimes (central estimate of 40 years for fossil
fuel power plants)12,13. Transitioning to a zero carbon energy
system within 40 years will be politically and societally challen-
ging, and opinions are divided on whether this may be technically
and economically possible16–20. We do not seek to assess the
practical feasibility of this transition, but merely to report on the
consequences in the context of keeping global mean temperature
rise below 1.5 °C.

A third type of commitment that is often analysed is a constant
forcing21,22 or constant composition commitment, which is
defined as the further warming that would result if atmospheric
composition and hence radiative forcing were held fixed at
today’s values. Under such a scenario, temperatures continue to
increase, with the rate of warming slowing down as equilibrium is
approached22. The constant forcing commitment is not directly
relevant to assessing warming committed from possible real-
world mitigation scenarios, as constant forcing simulations
require a continually declining but finite net greenhouse gas
emission and would be hard to engineer. No known emission
strategy gives constant forcing. Such constant forcing simulations
have led to the misconception that inertia within the ocean sys-
tem means that significant future warming is inevitable6.

In this work, we explain that committed warming from
present-day fossil fuel infrastructure is below 1.5 °C in 64% of an
ensemble of scenarios with a simple climate model. These results
are on the basis of fossil fuel assets starting to be retired from the
end of 2018 once they reach the end of their design lifetimes, and
accounts for the age distribution of extant stock. We focus on the
energy generation, transport and industrial sectors which have
the best data available for historical lifetimes and cover 85% of
global emissions. The remaining 15% of global emissions are
assumed to follow the retirement curves of the energy sector, as
fewer data are available and in many cases there are cross-overs
(for example, electricity supply and domestic heating). The phase
out is such that the majority of CO2 emissions have been elimi-
nated in 40 years. As fossil fuel combustion emits short-lived
climate forcers (SLCFs, which tend to result in a net negative
forcing dominated by aerosol cooling) alongside CO2, and both
are gradually reduced in an infrastructure phase-out scenario,
there is no sudden increase in warming from reducing emissions

gradually. This is in contrast to a zero emissions commitment,
where the elimination of short-lived pollutants suddenly uncovers
longer-lived greenhouse gas warming.

Results
Scenarios and model. We define infrastructural commitments
based on assumptions around today’s carbon-emitting capital
stock. In our central scenario, CO2 emissions are phased out from
the end of 2018 at a close to linear rate, becoming near zero after
40 years, with cumulative post 2018 CO2 emissions of 195 GtC. In
these scenarios, fossil fuel power plants, cars, aircraft, ships, and
industrial infrastructure are replaced with zero carbon alter-
natives at the end of their life, and are phased out based on
historical retirement data13,23–26 and age profile
distributions13,27–29 (see Methods).

Scenarios are labelled in the form SSP < n > - < year > - <
commitment > (Table 1). The SSP label represents the Shared
Socioeconomic Pathway scenarios30, which are a set of narratives
developed for integrated assessment models (IAMs) defining
regional population growth, economic development and energy
demand. From these narratives, IAMs produce a time series of
global emissions over the 2010 to 2100 period. We investigate
emissions under the SSP1 (green-growth31), SSP2 (middle-of-the-
road32) and SSP3 (regional-rivalry33) narratives developed from
the MESSAGE IAM34. The year label represents the start date of
the commitment assumption, and is either 2018 or 2030, the
latter investigating the effect of delayed mitigation action. For
2030 commitments, scenarios both with and without Nationally
Determined Contributions (NDCs) for the 2020 to 2030 period
are assessed34. NDCs are the set of submitted emissions reduction
pledges by signatory countries to the Paris Agreement, and
include unconditional NDCs (emissions reduction pledges made
unilaterally) and conditional NDCs35 (further emissions reduc-
tion pledges dependent on international cooperation and
finance). Scenarios with conditional NDCs and unconditional
NDCs are differentiated by appending a “c” or a “u”, respectively,
after the SSP scenario number.

For infrastructure commitments, we use the labels FAST, MID
and SLOW to denote retirement rates for fossil fuel infrastruc-
ture. For the energy sector, these correspond to phase-outs over
30, 40 or 50 years based on the analysis of Davis and Socolow13.
Different rates of fossil fuel phase-outs based on infrastructural
lifetimes and age profiles for the transport and industrial sectors
are used and also follow FAST, MID and SLOW trajectories (see
Methods and Supplementary Figure 1), whereas a slower phase-
out for agricultural emissions was assumed on the assumption
that less mitigation potential exists for these predominantly non-
CO2 emissions36. In addition to FAST, MID, SLOW scenarios, a
scenario with emissions set to zero instantaneously in either 2018
or 2030 (ZERO) is analysed for all SSPs considered. Furthermore,
a CONST (constant forcing commitment) is analysed for SSP2-
2018 and SSP2 with conditional NDCs starting in 2030 (SSP2c-
2030).

This provides a total of 38 scenarios (3 SSPs × 3 NDC/start
dates × 4 commitments, plus 2 CONST experiments for SSP2).
The sector-dependent emissions of non-CO2 greenhouse gases
and SLCFs are also considered in our pathways (see Methods and
Supplementary Figure 2).

Our phase-out scenarios are not bottom-up sectoral emissions
projections or derived from detailed modelling. Instead, they
assess the potential speed of emissions phase-out of each sector
based on earlier literature and asset lifetimes. The scenarios
assume mean rates of decarbonisation of 0.30, 0.23 and 0.18 GtC
yr−1 for the FAST, MID and SLOW pathways over the first 30, 40
or 50 years, respectively (Supplementary Table 1). In comparison,
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the mean rate of emissions increase over 2006–2016 was 0.15
GtC yr−1 (ref. 37).

All scenarios are run using version 1.3.6 of the Finite
Amplitude Impulse Response (FaIR) simple climate model38,39.
FaIR includes a simple representation of biogeochemical feed-
backs that reduce the efficiency of land and ocean carbon sinks
with cumulative carbon uptake and increasing temperatures. The
model produces CO2 concentrations and effective radiative
forcing (ERF) from its carbon cycle. ERF from non-CO2 species
are based on relationships between emitted greenhouse gases and
SLCFs39. The generated ERF time series is compared with the
ERF time series in Annex II of the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report (AR5), Work-
ing Group I40 and a time-varying scale factor for forcing strength
is applied throughout the historical period. This ensures that the
best estimate anthropogenic non-CO2 forcing matches the AR5
time series. This scaling factor decays linearly between 2000 and
2011, allowing a smooth transition from the AR5 forcing regime
to the FaIR calculated values used for future projections. No
historical scaling factor is applied to non-CO2 greenhouse gases,
as recent work41 has shown that methane forcing is under-
estimated by ~25% in AR5 and we use the FaIR-generated ERFs
throughout the historical and future periods.

To produce the pathways used in our analysis, emissions of
greenhouse gases and aerosol and ozone precursors from the
Representative Concentration Pathway (RCP) historical sce-
nario42 are used from 1765 to 2000, followed by emissions from
the SSP1, SSP2 or SSP3 scenarios from 2005 to either 2018 or
2030. A linear transition between the historical and SSP emissions
for each species between 2000 and 2005 is implemented. Solar
and volcanic forcing are not included, as we model the
anthropogenic part of climate change. Temperature anomalies
since pre-industrial are calculated using a two time-constant
representation43–45 with a fast component representing the land,
atmosphere and ocean mixed layer, and a slow component
representing the deep ocean. The magnitude of temperature
change due to the fast and slow thermal responses also depends
on the equilibrium climate sensitivity (ECS) and transient climate
response (TCR), which are input parameters to the model.
Atmospheric greenhouse gas compositions and effective radiative
forcing for the SSP2 zero emissions commitments and phase-out
scenarios are shown in Supplementary Figure 3.

We use a 1000-member Monte Carlo sample of model input
parameters for each scenario (Supplementary Table 2). These
include the ECS, TCR, fast and slow ocean thermal response time
constants, parameters governing the carbon cycle, and ERF
strengths for 11 categories of anthropogenic forcing agents. The
scaling of ERF of each forcing component (CO2, CH4, N2O,
minor greenhouse gases, tropospheric O3, stratospheric O3,
aviation contrails, stratospheric water vapour, aerosols, black
carbon on snow and land use) is varied based on their IPCC AR5

ERF uncertainty ranges26. To span carbon cycle uncertainty,
ranges are defined that produce a plausible best estimate of
concentrations of CO2 in the present day of 407 ppm (ref. 39),
with a 5–95% range of 394 to 419 ppm. Although observations of
CO2 concentrations are more constrained than this range46,
allowing present-day CO2 concentrations to assume a distribution
of values lets us explore the uncertainty from the future carbon
cycle response. This uncertainty leads to a range of ERF of ~10%
of the best estimate, which is still only half of the ERF uncertainty
for CO2 quoted in AR5 (ref. 45).

As working definition we employ a 1.1 °C human-induced
warming estimate (the Global Warming Index (GWI))3 by the
middle of 2018 from a base period of 1850–1879 using the in-
filled historical data set of Cowtan and Way47. We constrain the
1000-member ensemble by rejecting members that do not fall
within the 5–95% uncertainty of the GWI of 0.94–1.32 °C over
the 1850–1879 to 2018 period (Supplementary Figure 4). This
results in 310 retained ensemble members for the SSP2 family of
commitment scenarios (312 for SSP1 and 305 for SSP3, where
differences relate to slight differences in the scenario evolutions
between 2010 and 2018). Analysis of results is concentrated on
the warming from 2018 until 2100.

Committed 21st century warming. Figure 1a compares the
committed warming from 2018 from zero emissions (SSP2-2018-
ZERO), constant forcing (SSP2-2018-CONST) and central
infrastructural (SSP2-2018-MID) commitments under SSP2.
Figure 1b shows the same commitments from 2030 (SSP2c-2030-
ZERO, SSP2c-2030-CONST and SSP2c-2030-MID) when
assuming SSP2 and the emissions currently implied the NDCs
submitted under the Paris Agreement based on the central esti-
mate of ref. 34.

In zero-emission scenarios, the warming effect of ocean inertia
is found to be more or less cancelled out by removal of CO2 from
the atmosphere48. Such scenarios are useful in quantifying the
geophysical commitment to past emissions but socioeconomic
constraints render a zero emissions case extremely unlikely. There
is a chance of considerable warming in the short-term owing to a
sudden loss of aerosol-induced cooling, particularly if aerosol-
induced ERF turns out to be at the more negative end of assessed
uncertainty ranges11. The immediate climate response could vary
from a slight cooling to a rapid warming, with a peak warming
exceeding 0.4 °C above the present warming of 1.1 °C in 9% of
ensemble members. By 2100, in contrast, 82% of ensemble
members are cooler than at present, owing to a rapid decline in
short-lived forcers. Excluding the possibility of strongly amplify-
ing carbon cycle feedbacks such as permafrost melt or forest
dieback, which are not included in our model, any peak
temperature increase in such a scenario would be limited to
0.25 °C above present at the 75th percentile.

Table 1 Summary of scenarios used in this study

Shared socioeconomic pathway and start year of commitment Commitment type

SSP1-2018
SSP1c-2030
SSP1u-2030
SSP2-2018
SSP2c-2030
SSP2u-2030
SSP3-2018
SSP3c-2030
SSP3u-2030

• ZERO: zero emissions commitment
• FAST: fast fossil fuel phase out (30 years for energy sector)
• MID: central fossil fuel phase out (40 years)
• SLOW: slow fossil fuel phase out (50 years)
• CONST: constant forcing commitment (only for SSP2-2018 and SSP2c-2030)
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Infrastructure commitment scenarios (Fig. 1, purple curves) do
lead to a long-term warming commitment but they avoid the
rapid increase in temperature caused by the sudden reduction in
aerosol emissions, in the median case peaking when CO2

emissions are close to zero49. In particular, SSP2-2018-MID,
64% of ensemble members show a peak temperature rise < 0.4 °C
above 2018, although there is a large spread in the 5–95% range in
both magnitude and timing of peak temperature change which is
related to present-day aerosol cooling (Supplementary Figure 5).
The constant forcing commitments (blue curves), although not
realistic, show the often-misunderstood concept of committed
warming in which temperatures continue to increase toward their
eventual equilibrium after radiative forcing is stabilised22. In all
scenarios, delaying action until 2030 results in an additional
0.25 °C of warming in the median case, and makes limiting peak
temperature change to 1.5 °C more challenging.

In contrast to Matthews and Zickfeld8 we find an end-of-century
net cooling, rather than a net warming, for a zero emissions
commitment, along with a smaller near-term and peak warming
(Supplementary Figure 6 and associated commentary). This is
owing to both the lower sensitivity of carbon sinks to temperature
in FaIR than in the UVic2.9 model used in ref. 8, and the lower
range of present-day aerosol forcing (5–95% range of −0.2 to −1.4
Wm−2; Supplementary Figure 5b) from our constrained projec-
tions, compared with the −1.0 to −1.5Wm−2 range of ref. 8.

Differing rates of fossil fuel retirement. We investigate FAST,
MID and SLOW phase-outs along with the ZERO commitment
for SSP1 and SSP3 in addition. If the lifetime of fossil power
plants is reduced by 10 years (FAST), resulting in post-2018
cumulative CO2 emissions of 149 GtC, peak warming remains
below 1.5 °C for all SSPs in > 67% of ensemble members (Fig. 2).
Even if infrastructure lifetimes are extended by 10 years (SLOW;
cumulative emissions 248 GtC), less than half of ensemble
members exceed 1.5 °C. In addition, in the FAST phase-out sce-
narios, 2100 warming is below 1.5 °C in 83% or more of ensemble
members in all SSPs and ~ 67% of ensemble members in the
SLOW phase-out (Supplementary Figure 7).

Delaying any infrastructural phase-out to 2030 results in more
than half of ensemble members reaching a peak temperature
exceeding 1.5 °C, even under a FAST phase-out (Fig. 3). However,
under all of these scenarios, > 67% of the ensembles do not exceed
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fossil fuel phase-out (FAST, MID and SLOW) plus an abrupt cessation of all
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until 2018. Supplementary Figure 7 shows the corresponding ranges for
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2 °C. As with the scenarios where phase-outs start in 2018,
temperatures peak before the end of the century, and 2100
warming is < 2 °C in 83% or more of ensemble members except
for SSP3 under a SLOW phase-out (Supplementary Figure 8).

None of these pathways explicitly rely on future negative
emissions of CO2. Nevertheless, carbon dioxide removal tech-
nologies may assist in either further speeding up the emissions
reduction rates during the phase out, or offsetting CO2 emissions
in case infrastructure cannot be decommissioned sufficiently
quickly.

Model parameter uncertainty analysis. The contributions to the
warming commitments for peak temperature and temperature
anomalies in 2050 and 2100 are analysed using a first-order
variance-based sensitivity analysis (Fig. 4). We analyse the first-
order sensitivities50–53, which explain the contribution to the
overall variance from the ECS/TCR, carbon dioxide forcing,
aerosol forcing, other anthropogenic forcing, carbon cycle, and
deep ocean thermal equilibrium time constant. In all cases, the
sum of individual variance contributions does not sum to 100%,
owing to interactions between parameters. In most cases ~ 75% of
the variance can be explained by the first-order sensitivities.

For zero emissions commitments, the strength of present-day
aerosol cooling is the dominant contributing factor in determin-
ing the magnitude of peak warming8, describing between 40 and
60% of the variance in peak temperature projections. This is
apparent in Fig. 1 and would suggest that uncertainties in future
peak warming commitments can be better constrained if the
present-day aerosol forcing is known with greater
accuracy11,54,55. This finding is in contrast to high emission
scenarios where the contribution of aerosol to the overall
uncertainty in the temperature response becomes increasingly
less important56. The prior distribution for year-2011 aerosol
forcing is taken from the AR5 expert judgement assessed

uncertainty range from a combination of CMIP5-era climate
models and satellite observations. Climate models tend to
produce estimates of aerosol ERF that are more negative than
satellite observations, but methodological biases in both
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procedures prevent a conclusive assessment of which product is
more likely to be more representative of the true aerosol ERF57. If
present-day (2018) aerosol forcing is towards the less-negative
end of the uncertainty range, the zero emissions commitment in
SSP2-2018-ZERO is small; a lower bound of −1W m−2

produces a peak warming that remains under 1.5 °C across all
ensemble members (Supplementary Figure 9). For some small
negative values of present-day aerosol ERF, temperatures start to
fall immediately after the zero emissions commitment suggesting
that the decline in other SLCFs, mostly tropospheric ozone and
methane, leads to a cooling that more than offsets a warming
from aerosol removal under this scenario. For the SSP2-2018-
MID infrastructure commitment there is a larger spread in peak
temperature owing to the increased importance of other factors
aside from the present-day aerosol forcing. These include climate
sensitivity and the thermal response of the ocean, both of which
have an extra few decades to act on the temperature evolution
compared with SSP2-2018-ZERO. However, peak temperature
remains below 1.5 °C in the SSP2-2018-MID ensemble when
present-day aerosol ERF is less negative than − 0.6Wm−2.

For end-of-century warming, the ECS and TCR also play an
important role alongside the total present-day aerosol ERF, with
contributions to total variance of between 30 and 40% for 2100
temperature change. Again, this is owing to the long-term action
of climate sensitivity on temperature for a 2100 time horizon
compared to a peak warming. ECS or TCR and aerosol ERF are
anti-correlated in our constrained ensemble (Supplementary
Figure 10), but both have proven difficult to constrain to a
narrow range58.

Discussion
In this paper, we show that limiting warming to 1.5 °C is not yet
geophysically impossible. Exceeding 1.5 °C occurs in only 9% of
ensemble members under a zero emissions commitment if
emissions cease at the end of 2018. Even if current fossil fuel
infrastructure is retired at end of its lifetime and not replaced, it is
possible to limit warming to 1.5 °C (bar the possibility of strongly
amplifying carbon cycle feedbacks such as permafrost melt or
forest dieback). Both reductions in CO2 and other greenhouse
gases are needed in order to take us close to such a temperature
outcome. Aerosols exhibit a net cooling effect in the present day11

but are co-emitted with greenhouse gases59 and tropospheric
ozone precursors. Although a gradual reduction of emissions
from phasing-out fossil fuels does not result in a sudden warm-
ing, near-term (peak and 2050) warming commitments do
depend strongly on the level of present-day aerosol forcing. End-
of-century warming commitments depend on aerosol forcing, but
with an important contribution from ECS and TCR.

The simple climate model used in our analysis may under-
estimate committed warming owing to possible future increases
in climate sensitivity, as it employs a climate sensitivity that is
invariant in time. Under a shifting pattern of surface warming
through time60, climate sensitivity over the historical period may
have been lower than we can expect in the future as both the
Eastern Pacific and Southern Ocean have not yet experienced
strong warming4,61,62. Our simple model includes the biogeo-
chemical feedbacks of decreasing carbon sink efficiency with
increasing temperature and increasing biospheric and ocean
carbon uptake63, but may exclude possible other biogeochemical
feedbacks where the elevated temperatures might affect future
Earth system processes and carbon cycle response64,65. These
feedbacks are expected to play out at timescales of decades to
centuries and may thus be of limited relevance for estimating the
committed warming over the 21st century. In this instance our
results provide a useful first-order estimate of committed

warming based on current knowledge. Our findings contrast with
a recent study by Pfeiffer et al.15, which suggest that the infra-
structure commitment from the energy sector alone is enough to
commit us to warming above 1.5 °C. However, their analysis is
based on allocating a share of the remaining carbon budget to
1.5 °C to energy sector emissions and does not discuss non-CO2

emissions or pathways in non-energy sectors.
The challenge of making emission reductions across many sec-

tors and countries remains very high but our committed warming
scenarios show two important insights. First, geophysics does not
yet commit the world to a long-term warming of > 1.5 °C. Second,
even when phasing out existing CO2-emitting infrastructure at the
end of its expected lifetime, warming is also kept to below 1.5 °C
(or 0.4 °C warmer than today) with > 50% probability, whereas
delaying action until 2030 reduces this probability to below 50%.
This is important information, as it shows that whether global
mean temperature increase will be kept to below 1.5 °C depends on
societal choices made today and emissions reductions implemented
over the coming decades.

Methods
Fossil fuel phase-out scenarios. The ZERO and CONST scenarios are trivially set
to zero emissions or constant forcing in the year of commitment and warrant no
further explanation, so we detail construction of the FAST, MID and SLOW phase-
out scenarios below.

CO2 emissions. In each phase-out scenario starting in 2018, CO2 emissions from
fossil fuels decline at an approximately linear rate of 0.30 (FAST), 0.23 (MID) or
0.18 (SLOW) GtC yr−1 from their 2018 peak (Supplementary Figure 1), consistent
with energy sector fossil fuel phase outs over 30, 40 or 50 years respectively. These
rates are scaled up for the 2030 phase-out scenarios to achieve phase-outs over the
same time periods. The near-linear rate of decline in CO2 emissions is partly
coincidental as each sector is treated differently as detailed below. We extend the
analysis of ref. 12, which considered emissions impacts of fossil fuel energy gen-
eration. At 42% of global CO2 emissions in 2015 (ref. 66), energy generation is the
largest sector but by no means the only significant one. We separately consider
transport (24% of 2015 emissions) and industry (19% of 2015 emissions), covering
85% of global CO2 emissions. The remaining 15% of emissions (from residential,
service and other aggregated sources) are combined with the energy sector in our
scenarios. This is on the basis that it is less straightforward to find robust lifetime
assumptions from these sectors, and in the absence of better information we
proceed on the assumption that any transformation that could be implemented in
the energy sector could also be put into effect elsewhere at the same rate.

Land use-related CO2 is abruptly set to zero in the first year following the
phase-out start. This is on the basis that humanity would be concerned enough
under a phase-out scenario to prevent additional deforestation. In the context of
the simple climate model used in this study this is a conservative estimate, as land
use change (a negative forcing) scales with cumulative land use CO2 emissions39.

Energy generation. The FAST, MID and SLOW rates of fossil fuel energy phase-
out are taken from Davis and Socolow13 based on the historical precedent of power
plant retirements over 30, 40 and 50 years. The MID profile represents their central
40-year estimate and is the one which we give most weight to in this study.
Retirement profile curves from these scenarios were scaled in order to achieve the
30, 40 or 50 year phase-out from the 2018 or 2030 baseline emissions, which differ
slightly to the absolute values in Davis and Socolow who conduct their analysis
from 2012. Our scaled-up emissions project an energy sector commitment of 94
GtC in 2018 based on a 40-year power plant retirement age.

Pfeiffer et al15. recently conducted a study of committed emissions in the energy
generation sector using more up-to-date knowledge, concluding there was 82 GtC
of committed emissions in power plants currently in operation and a further 74
GtC of emissions either planned or under construction. We only consider
emissions from currently operating plants in this study. Our figure of 94 GtC is
therefore a slight overestimate of Pfeiffer et al.15, which is explained by a slower
than expected growth in installed capacity in the last few years.

Transport. The shares of total transport CO2 emissions due to road transport
(75%), aviation (11%) and shipping (11%) in 2015 is taken from ref. 66 and used as
our starting point. The 3% of global transport emissions that do not fall under one
of these three classes is grouped with road transport.

Road transport. We assume that the majority of road transport emissions are due
to passenger cars. Globally, the number of cars manufactured has grown at an
exponential rate of 3% per year, based on data from 2000 to 2017 (ref. 25). We
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assume a historical scrappage rate based on passenger car data from the US which
continues into the future. This is a modified logistic curve:28

F tð Þ ¼ 1
Lþ B exp �κtð Þ ð1Þ

where t is age in years and F(t) defines the probability that a car of age t is scrapped
that year. We make the simplified assumption that every car on the road con-
tributes equally to CO2 emissions, and that in the present day the number of
alternative fuel vehicles is a negligible proportion of the world fleet. By applying the
assumptions for year-on-year growth of number of vehicles produced with the rate
of historical scrappage, we obtain an estimate of the age profile for the current fleet.
We freeze this in the first year of our phase-out scenarios and impose that no new
fossil fuel powered cars are manufactured. The current fleet is then retired at the
rate of eq. (1) given their 2018 (or 2030) age profiles, resulting in a yearly decline in
the number of petrol and diesel cars on the road and associated CO2 emissions.

In the MID case, which we take to be the best estimate of the parameters in
ref. 28. (L= 2.724, B= 314.03, κ=−0.275), this results in a mean vehicle lifetime
of 15.6 years. We also vary the coefficients in eq. (1) for the FAST (L= 4.654, B=
440.658) and SLOW (L= 0.794, B= 187.402) phase outs based on 2σ values of
these parameters in ref. 28 (κ is unmodified to maintain a logistic-shaped curve).
These produce retirement curves with mean vehicle lifetimes of 12.7 and 18.0 years,
respectively.

Aviation. A similar method is applied to aircraft where we assume a 2018 or 2030
age profile based on historical growth rate and scrappage. We assume an expo-
nential growth rate in the number of aircraft of 4.2% per year, which has been
applicable for the last 30 years24,27. The retirement profile for aircraft again follows
a logistic curve27, which defines a mean aircraft lifetime of 26 years for our MID
phase-out. There is no assumed retirement of aircraft in the first 5 years of
operating life in ref. 27. To define our FAST and SLOW phase-outs we shift the
retirement profile by ± 5 years.

Shipping. An yearly exponential growth rate of 3.7% in shipping tonnage is esti-
mated based on data29 between 2000 and 2016. No data on the retirement curve of
ships are available, but a review of asset lifetimes in several countries26 suggests
ships are typically in service for 25–30 years. We therefore use the same retirement
profiles as aircraft for the FAST, MID and SLOW phase-outs of 21, 26 and 31 years,
respectively.

Industry. Estimates of the existing lifetime of industrial infrastructure are not
abundant, and we are therefore limited to using one estimate from the expected
lifetimes of cement kilns of between 30 and 50 years23. The limitations of this are
acknowledged, as industrial emissions cover a wide range of sub-sectors (manu-
facturing, metal processing, paper, chemicals, to name a few), with different profiles
of emissions species. Reducing emissions to net zero in processes requiring heat
input would be challenging without carbon capture and storage, on which our
scenarios seek to avoid any explicit dependence.

We take an approach similar to transport lifetimes for industrial infrastructure
based on eq. (1), with mean retirement ages of 30, 40 or 50 years for FAST, SLOW
and MID and standard deviation of 6 years in all cases.

As the mean of the logistic function represents the year in which half of
industrial infrastructure is retired, industrial emissions reach net zero at a slower
rate than energy emissions, which are phased out entirely after 30–50 years and
transport emissions which follow logistic curves with shorter mean lifetimes
(Supplementary Figure 1). This is a more conservative assumption, which reflects
the increased difficulty of estimating the technical feasibility of phase-outs from
this sector.

Non-CO2 emissions. We model the change in CH4, N2O and SLCFs by using the
fraction of each emissions species from each sector in 2008 in the Emissions
Database for Global Atmospheric Research (EDGAR) v4.2 database67,68 (Supple-
mentary Table 3). SLCFs act as tropospheric ozone and aerosol precursors and
include SO2, CO, non-methane volatile organics, nitrous oxides, black carbon,
organic carbon, and NH3. For the phase-out scenarios, the change in non-CO2

emissions is shown in Supplementary Figure 2.

Energy, industry and transport. For energy generation and industry sectors, the
sectoral fractions in Supplementary Table 3 are applied to the total emissions of
each species in the SSP scenario. In phase-out scenarios, emissions are scaled by the
ratio of CO2 emissions from the energy or industrial sectors, respectively, to the
CO2 emissions from the first year of the phase-out. This treatment therefore
assumes that non-CO2 emissions are co-emitted with CO2 in the same ratios as in
2018 or 2030.

A similar treatment is provided for road transport and non-road transport, in
which phase-out of road and (aviation plus shipping) non-CO2 emissions are
treated individually and scaled to their corresponding CO2 emissions phase-out.

Agriculture. The infrastructure commitment in the agricultural sector is the
hardest to estimate. On the one hand, agricultural practices, diets and their asso-
ciated emissions could in theory be ceased over the course of a couple of seasons or
years. On the other hand, the necessity to continue food production to sustain our
global population and the low amount of mitigation options that are currently
identified for this group of greenhouse gas emissions suggest that a significant
amount of agricultural emissions might persist throughout the remainder of the
century69. Here we take a middle-of-the-road approach to estimate the infra-
structure commitment of the agricultural sector. Livestock emissions could in
theory be reduced quickly, by slaughtering all meat animals. Taking the lifespan of
meat cattle as 36 months, we assume a linear slaughter rate, therefore giving a
phase out of livestock emissions over 3 years. Non-livestock related agricultural
emissions result primarily from fertiliser usage for N2O and rice production for
CH4

70. Emissions from agriculture are linearly phased out over 82 years, so that
they reach zero in 2100 under the 2018 phase-out scenarios. For consistency, this
rate is not altered for the phase-out scenarios beginning in 2030, so agricultural
emissions in these scenarios reach zero in 2112.

The marginal cost abatement curves for emissions reductions from agriculture
show limited opportunity to make deep emissions cuts from existing
technologies71,72. We here do not model this explicitly. Bringing agricultural
emissions down to zero would, however, have to rely on a combination of changing
diets, technological improvement and overall reduction in global population. For
sensitivity cases, we assume alternative pathways: emissions consistent with
RCP2.6, a constant 2018 level of non-livestock emissions, and agricultural
emissions set immediately to zero (both with and without a 3-year phase out of
livestock emissions). Varying these assumptions results in a variation in 2100
temperature change of between −0.08 and+ 0.12 °C different to our default
assumption (Supplementary Figure 11). We do not change our default 82-year
phase out between the FAST, MID and SLOW scenarios.

Biomass. Consistent with setting land use related CO2 to zero immediately, we
assume that no more land is deforested, and biomass-related emissions of other
species are also abruptly zeroed.

Other sectors. Consistent with our use for CO2 emissions, we scale all sectors not
elsewhere considered with energy emissions.

Climate model. We use the FaIR model (version 1.3.6)38,39 to evaluate all future
scenarios. FaIR has been validated against the behaviour of more complex carbon
cycle and earth system models38,73 and has been designed to emulate the historical
effective radiative forcing relationships from the IPCC Fifth Assessment Report40,45

given input emissions. FaIR produces similar 21st century temperature projections
to the more established Model for the Assessment of Greenhouse gas Induced
Climate Change (MAGICC6)42 for the Representative Concentration Pathway
scenarios42 as shown in ref. 39, with the agreement particularly good for the lower-
end RCP2.6 and RCP4.5 scenarios, which are most relevant to this analysis.

FaIR uses a simplified four time-constant representation of atmospheric CO2

concentrations based on the impulse response model used in Chapter eight of the
IPCC AR5 Working Group I74. The atmospheric lifetime of CO2 in FaIR increases
with increasing temperature and cumulative carbon emissions, reproducing the
behaviour seen in contemporary Earth system models75. ERF from non-CO2

greenhouse gases41,45, tropospheric ozone76, stratospheric ozone42, stratospheric
water vapour oxidation from methane45, aviation contrails77, aerosols78,79, black
carbon on snow80 and land use change39 are calculated from simple relationships
or models based on annual, global totals of input emissions of 39 greenhouse gases
and SLCFs.

The emissions time series are used to calculate greenhouse gas concentrations
and ERF. For 1765–2000 we scale the best estimate ERF time series generated by
FaIR to match the extended AR5 time series exactly, which corrects for small
variations in the efficiencies of natural carbon sinks81 and changes in spatial
patterns of aerosol forcing82.

From the ERF, global mean surface temperature change is calculated.
Temperature anomalies at each timestep t are composed of slow (deep ocean; d1)
and fast (upper ocean, atmosphere and land; d2) contributions to the temperature
change

Tt;i ¼ Tt�1;i exp
1
di

� �
þ qiF 1� exp

1
di

� �� �
; i ¼ 1; 2 ð2Þ

Tt ¼ Tt;1 þ Tt;2 ð3Þ

where F is efficacy83-weighed total ERF, and the qi coefficients are the
contributions to temperature change from the fast and slow components, which
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depend on ECS, TCR and ERF from a doubling of CO2 F2´ (ref. 84):

q1 ¼
1

k1 � k2ð ÞF2 ´
TCR � k2ECSð Þ ð4Þ

q2 ¼
1

k1 � k2ð ÞF2 ´
k1ECS� TCRð Þ ð5Þ

ki ¼ 1� di
69:66

1� exp � 69:66
di

� �� �
; i ¼ 1; 2 ð6Þ

We use an efficacy of 1 for all forcing components except black carbon on snow
for which we use an efficacy of 3 (ref. 80), and 69.66 years is the time to a doubling
of CO2 under a compound 1% per year increase in CO2 concentrations, consistent
with the definition of TCR.

The CONST (constant forcing) commitments are performed by running the
model to 2018 or 2030, saving the ERF and contributions to fast and slow
temperature anomalies output in that year, and re-running the model from 2018 or
2030 with just the forcing to temperature routines, bypassing the emissions and
carbon cycle to ERF calculations. This means that in the CONST commitment
there is no feedback from increasing temperatures on the carbon cycle past the date
of commitment, consistent with the definition of constant forcing.

Ensemble generation. Uncertainty in ensemble projections is driven by the
uncertainty in the input parameters to FaIR. ECS and TCR are drawn from a joint
lognormal distribution85 (correlation coefficient 0.81) informed by the ECS and
TCR from the abrupt4xCO2 (instantaneous quadrupling of CO2 concentrations)
and 1pctCO2 (compound annual 1% increase in CO2 concentrations) results from
CMIP5 climate models39,86,87. The slow and fast time constants of ocean thermal
response (d1 and d2) are drawn from normal distributions based on the analysis of
ref. 44, and carbon cycle response parameters drawn from normal distributions
based on ref. 38. The scaling factors for ERF uncertainty for 11 different anthro-
pogenic forcing components are drawn from normal, composite normal or log-
normal distributions and are informed by AR5 estimates45. In total, 1000 sample
parameter sets are drawn and the model spun up for the historical period and then
projected forward. Ensemble members not falling within the historical uncertainty
of observational temperature change47 are rejected.

The posterior (temperature-constrained) distributions of each input parameter
are shown in Supplementary Figure 5, with the correlations between parameters
and each parameter with 2100 temperature change in Supplementary Figure 10. In
the experiment design, uncertainties are uncorrelated with each other except for
ECS and TCR. In reality there is a weak positive correlation between d1 and ECS
(or TCR), but constructing a joint distribution with one lognormal variable and
one normal is problematic, so we take d1 to be uncorrelated with ECS. We find
there is a negative correlation in the posterior distributions between ECS or TCR
and present-day aerosol ERF, which is expected39,84,88, and positive correlations
between total ERF and both aerosol ERF and F2x, although as these factors are not
independent this is also expected.

Global mean surface temperature change. Following ref. 3 we use the Global
Warming Index with observations from Cowtan & Way to estimate an anthro-
pogenic contribution to temperature change of 1.076 °C from 1850 to 1879 average
in May 2017. The Global Warming Index removes an estimate of the natural
component of forcing from the temperature record, and as such our baseline is
slightly higher than observational datasets including the unmodified Cowtan &
Way estimate. At current rates, the anthropogenic warming should have reached
1.1 °C sometime in mid-to-late 2018, and we use this figure as our 2018 level. We
find that future temperature projections in the Representative Concentration
Pathway scenarios are insensitive to which observational data set is used for
constraint39, but our results do depend on our starting point and how close we
currently are to 1.5 °C, which in turn depends on how global mean surface tem-
perature is defined2.

Cowtan & Way use observations from HadCRUT4 (ref. 89), comprising of sea
surface temperatures over the ocean and near-surface air temperatures over land,
in-filled for missing data (blended, in the notation of ref. 2). The missing data is
from regions of the world where no observations exist. The polar regions, where
observations are sparse, are warming faster than the rest of the planet. Therefore,
the HadCRUT4 observations (blended-masked, in the notation of ref. 2) tend to
produce lower estimates of the observed warming than blended (and unmasked)
datasets such as Cowtan & Way. Providing that global temperature observational
coverage continues to increase, and that the in-filling method of Cowtan & Way is
sufficiently accurate, the blended-masked observations will converge towards the
blended observations in the future.

A third possibility is using near-surface air temperatures globally, over ocean
regions as well as the land (tas-only in the notation of ref. 2). This reflects the
estimates of global mean surface temperature usually reported from climate
models, and is typically higher than blended and blended-masked observations
because the air above the sea surface warms faster than the ocean surface itself. A

drawback of this method is that there are limited historical observations of near-
surface air temperature over the ocean, and any observational data set would have
to be infilled and likely correlated with data from other sources such as climate
models.

Variance-based sensitivity analysis. To determine the contributions to overall
variance in Fig. 4, we use the 310 retained members of the SSP2 scenario to obtain
the lower and upper bounds of each of the 18 parameters in the FaIR model that
produce at least one ensemble member within the observed warming trend
(Supplementary Table 4).

We perform a first-order Sobol’ sensitivity analysis50 using inputs of each of the
18 varying parameters from a Saltelli sampling scheme51–53. For each experiment
we generate 2500 samples of each variable, requiring 50,000 model runs in total.
The sampling process, although informed by constrained values of the parameters,
may produce combinations of parameters that are inconsistent with observed
warming, but we do not constrain these sensitivity runs by historical temperature
in order to fully investigate the response of the model. The sensitivity analysis is
performed for both the peak temperature change and the temperature change in
years 2050 and 2100.

Code availability. The FaIR model is available from [https://github.com/OMS-
NetZero/FAIR]. FaIR version 1.3.6 is used for all simulations in this paper. The
analysis code used to produce results in this paper, and all supplementary data
described above, is available from [http://doi.org/10.5281/zenodo.1565230].

Data availability
The RCP historical emissions time series are available at http://www.pik-potsdam.
de/~mmalte/rcps/. SSP emissions datasets can be obtained from the Integrated
Assessment Modelling Consortium (IAMC) Scenario Explorer at https://data.ene.
iiasa.ac.at/iamc-1.5c-explorer/. EDGAR emissions data (v4.2) can be obtained from
http://edgar.jrc.ec.europa.eu/overview.php?v=42. Temperature observations from
the Cowtan & Way data set were downloaded from http://www-users.york.ac.uk/
~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.txt.
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