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Abstract
Our planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly 
exceeding the five mass extinctions in the fossil record. Nevertheless, our lives are strongly based on services provided by 
ecosystems, thus the responses to global change of our natural heritage are of immediate concern. Understanding the rela-
tionship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human 
growth and the conservation of all the natural services that ecosystems provide. Mathematical network models can be used to 
simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand 
ecosystems propensity of returning to its functioning regime after a stress or a perturbation. The use of ecological-network 
models to study the relationship between complexity and stability of natural ecosystems is the focus of this review. The 
concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting 
definitions of complexity and stability. The literature on the relationship between complexity and stability in different types 
of models and in real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. 
The summary of the importance of this line of research for the successful management and conservation of biodiversity and 
ecosystem services concludes the review.
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Introduction

In the geological era of the Anthropocene, our planet is 
changing at paces never observed before (Millennium 
Ecosystem Assessment 2005). Pollution, natural resources 
exploitation, habitat fragmentation, and climate change are 
only some of the threats our biosphere is facing. Species 
extinction is happening at faster rates than ever, greatly 
exceeding the five mass extinctions in the fossil record. Even 

if sometimes we do not realize it, our lives are strongly based 
on services provided by ecosystems, thus the responses to 
global change of our natural heritage are of immediate 
concern for policy makers. As ecosystems are composed 
by thousands of interlinked species that interact directly or 
through their shared environment, such as nutrients, light, 
or space, a holistic perspective on the system as a whole is 
normally required to predict ecosystem responses to global 
changes (Wolanski and McLusky 2011). A systems-analysis 
approach is thus often crucial for acquiring an understand-
ing of all the dynamical feedbacks at the ecosystem level 
and for accurately managing the biodiversity that we rely on 
in terms of ecosystem services. In particular, mathematical 
network models can be used to simplify the vast complex-
ity of the real world, to formally describe and investigate 
ecological phenomena, and to understand how ecosystems 
react to stress and perturbations (Dunne 2006).

Complex-networks models are composed of a set of com-
partments, describing either species or coarser functional 
groups, and a set of links that represent interactions or 
energy or biomass flows among compartments. Thus, such 
models can describe both biotic and abiotic interactions 
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among species, i.e., both interactions among the species 
themselves and interactions with their external environ-
ment, and consequently they can often successfully be used 
to assess ecosystems stability to perturbations. Stability of 
an ecosystem can be understood as its propensity of return-
ing to its functioning regime after a stress or a perturbation 
in its biotic components (e.g., decline in species abundances, 
introduction of alien species, and species extinction) or abi-
otic components (e.g., exploitation, habitat fragmentation, 
and climate change). A challenging and central question 
that has interested ecologists and systems analysts alike for 
decades is how the stability of an ecosystems depend on its 
complexity, as roughly measured by the ecosystems’ diver-
sity in species and their interactions (Johnson et al. 1996; 
Worm and Duffy 2003; Dunne et al. 2005; Hooper et al. 
2005; Kondoh 2005; Loreau and De Mazancourt 2013).

To appreciate the importance of this question, we first rec-
ollect and differentiate between the major different functions 
that ecosystems continuously provide. Natural ecosystems 
sustain life and provide services that can be divided into four 
areas (Millennium Ecosystem Assessment 2005): provision-
ing, such as the production of food and water; regulating, 
such as the control of climate and disease; supporting, such 
as nutrient cycles and crop pollination; and cultural, such as 
spiritual and recreational benefits. For the management and 
conservation of ecosystems services it is important to know 
how the complexity of an ecosystem is related to its stability, 
thus how the diversity of species in the ecosystem and the 
network of their interactions can contribute to maintaining a 
stable supply of services. This is especially important in an 
era in which the pressure exerted on natural ecosystems is 
becoming stronger and stronger, influencing their structure 
and functioning, while the services they provide are vital for 
a continuously increasing number of people. In particular, 
human activities, directly or indirectly, tend to simplify the 
composition and the structure of natural ecosystems. There-
fore, understanding the relationship between complexity and 
stability of ecosystems is of key importance for the mainte-
nance of the balance of human growth and the conservation 
of all the natural services that ecosystems provide. Using 
ecological-network models to study the relationship between 
complexity and stability of natural ecosystems is the focus 
of this review. We first introduce the concept of ecologi-
cal networks and their characteristics, followed by central 
and occasionally contrasting definitions of complexity and 
stability. After that, we review the literature on the relation-
ship between complexity and stability in different types of 
models and in real ecosystems, highlighting the theoretical 
debate and the lack of consensual agreement. We continue 
with describing the importance of considering the dynamic 
adaptation of species behaviour and the resulting changes in 
ecosystems structure, after which we conclude by summariz-
ing the importance of this line of research for the successful 

management and conservation of biodiversity and ecosystem 
services in the current era of the Anthropocene.

Ecological networks defined

An ecological network describes interactions among species 
in a community (Pascual and Dunne 2006). There are dif-
ferent types of interactions, e.g., trophic interactions (feed-
ing), mutualistic interactions (pollination, seed dispersal, 
etc.), and competitive interactions (interference for common 
resources). Ecological networks can be represented as a set 
of S nodes, characterizing the species, connected by a set 
of L links, characterizing possible interactions among each 
ordered pair of species (Newman 2010; Estrada 2012). Links 
can be described by either a binary variable (0 or 1, absence 
or presence of interaction) or by a real number characterizing 
the weight (or strength) of the interaction. In the first case 
the network is called unweighted, while in the second case 
it is called weighted. Moreover, interactions can be undi-
rected (or symmetric), meaning that species i affects species 
j to a certain amount and equally vice versa, or directed 
(or asymmetric), meaning that species i can affect species 
j differently from how species j affects species i (Fig. 1). 
Moreover, interactions can be described by their sign (+ or 
−). For example, trophic networks (food webs) are charac-
terized by the fact that one species is feeding on the other, 
thus the coefficients aij (describing the effect of species j on 
species i) and aji (describing the effect of species i on species 
j) will obviously have opposite signs (thus their product will 
be negative, aijaji < 0), i.e., one species is benefiting while 
the other is suffering from the interaction. In mutualistic 
networks both species are benefiting from the interaction, 
thus both coefficients aij and aji will be positive (and so their 
product, aijaji > 0), while in competitive networks both spe-
cies are suffering from the interaction, thus both coefficients 
aij and aji will be negative (thus their product will be again 
positive, aijaji > 0) (Fig. 2). Notice therefore that trophic 
networks cannot be undirected (symmetric), since the two 
coefficients describing the interaction always have opposite 
sign (and typically also different absolute values).

The structure of the ecological network can be described 
by the S × S matrix A = [aij], where each element aij describes 
the link between species i and species j, i.e., the effect that 
species j has on species i. In the most particular case of 
unweighted and undirected network, matrix A is symmetric 
(i.e., aij = aji) and its elements are either 0 or ± 1 (Newman 
2010; Estrada 2012). In the most general case of weighted 
and directed network, matrix A can have any composition of 
real values. For bipartite networks (i.e., those formed by two 
disjoint groups of respectively m and n species, S = m + n, 
with interactions only between two species of different 
groups), such as mutualistic networks of plants and their 
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pollinators or antagonistic networks of host-parasite interac-
tions, the matrix A = [aij] is a m × n matrix (Fig. 2).

Unfortunately, there is no unique quantification of the 
elements aij. Depending on the scope (theoretical vs. empiri-
cal), several measures and indexes have been used to quan-
tify the matrix A. For example, theoretical studies mostly 
refer to aij as the effect of a perturbation from equilibrium 
of the abundance of species j on the population growth rate 
of species i (elements of the Jacobian matrix describing the 
linearized dynamics of the model ecosystem around equi-
librium, see also ‘Network stability’). In such cases, the 
matrix A has been called community matrix (Novak et al. 
2016). Another option is to define the elements of matrix 
A as the effect of a single individual of species j on the per-
capita growth rate of species i: in such case, matrix A has 
been called interaction matrix, and its elements are called 
interaction strengths (Kokkoris et al. 2002). Unfortunately, 
such coefficients are well defined in theory, but very hard 
to measure in the field or in lab experiments. On the other 
hand, empirical observations mainly quantify magnitude of 
energy and biomass flows between compartments in model 
ecosystems, or consumption rate for resource-consumer and 
prey-predator interactions, or visiting probabilities in pol-
lination networks. Such quantities are relatively easy to be 
estimated empirically, but they are not directly related to 
elements of the theoretical Jacobian (community) matrix 
as they are independent of species equilibrium abundances. 
For example, in empirical studies of mutualistic interac-
tions, the degree of species dependence on another species 

(see ‘Network complexity’ for a definition) has been used 
to quantify the link among involved species (Jordano 1987). 
See also Berlow et al. 2004, Wootton and Emmerson 2005, 
and Novak et al. 2016 for reviews on the different definitions 
of strength of interaction and of the matrix A.

Network complexity

Species richness S, or the total number of interacting spe-
cies in the network, also known as the network size, has 
been used as the simplest descriptor of network complexity 
(MacArthur 1955; May 1972, 1973; Pimm 1980a; Table 1). 
In the particular case of bipartite networks, species richness 
S is expressed as S = m + n. In food-web studies, the use of 
trophic species (a functional group of species sharing the 
same set of predators and preys) as a replacement of taxo-
nomic species (i.e., when species are distinguished based 
on morphological and phylogenetic criteria) is a widely 
accepted convention (Schoener 1989; Pimm et al. 1991; 
Goldwasser and Roughgarden 1993; Williams and Mar-
tinez 2000; Dunne et al. 2002a). The use of ‘trophic species’ 
has indeed been shown to reduce methodological biases in 
food web datasets because it reduces scatter in the data and 
avoids redundancy of interactions (Pimm et al. 1991; Mar-
tinez 1994). Sometimes, the use of morphospecies (species 
distinguished from others by only their morphologies) as a 
replacement of taxonomic species is also considered because 
of a lack of taxonomic distinction between species (Olito and 

a b

c d

Fig. 1   Categorisation of ecological networks, according to link 
directionality and weight. Black (white) entries in matrices a, c rep-
resent presence (absence) of interaction. a Unweighted undirected; 
b weighted undirected; c unweighted directed; d weighted directed. 

Note that links point to the affected species. For example, species A 
in d is positively affected by species B and D while negatively affect-
ing species B and D
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Fox 2014). Hence, network size often refers to the number of 
functional or morphological diversity in the system.

Another commonly-used indicator of complexity is the 
connectance C (May 1972, 1973; Newman 2010; Estrada 
2012), measuring the proportion of realised interactions 

among all the possible ones in a network (i.e., the total num-
ber of interactions L divided by the square of the number of 
species S2 or L divided by the product m × n in the case of a 
bipartite network). It accounts intuitively for the probability 
that any pair of species interact in the network. It is probably 
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Fig. 2   Examples of real-world ecological networks. First row: food 
web from the estuary river of St. Marks, Florida, USA (Baird et  al. 
1998). Second row: mutualistic network of pollination from the Flo-
res Island, one of the Azores oceanic islands (Olesen et  al. 2002). 
Left column: network representation. Second column: matrix repre-

sentation. The food web is unweighted directed: in b the black entries 
in the matrix represent presence of interaction. The mutualistic net-
work is weighted undirected: the link width in c and the shade of grey 
in d are proportional to the weight of the interaction which represents 
the number of pollinator visits
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Table 1   Measures of network complexity

Network complexity Definition References

Species richness (S) Total number of species in the network May (1972, 1973)
Food webs: MacArthur (1955), Pimm (1979, 1980a), 

Cohen and Briand (1984), Cohen and Newmann 
(1985), Havens (1992), Martinez (1992), Haydon 
(1994), Borrvall et al. (2000), Dunne et al. (2002a, 
b), Dunne and Williams (2009), Banašek-Richter 
et al. (2009), Gross et al. (2009), Thébault and 
Fontaine (2010) and Allesina and Tang (2012)

Mutualism: Okuyama and Holland (2008), Thébault 
and Fontaine (2010), Allesina and Tang (2012) and 
Suweis et al. (2015)

Competition: Lawlor (1980), Lehman and Tilman 
(2000), Christianou and Kokkoris (2008), Fowler 
(2009) and Allesina and Tang (2012)

Connectance (C) Proportion of realized interactions among all pos-
sible ones, L/S2

May (1972, 1973)
Food webs: De Angelis (1975), Pimm (1979, 1980a, 

1984), Martinez (1992), Haydon (1994, 2000), 
Chen and Cohen (2001), Olesen and Jordano 
(2002), Dunne et al. (2002a, b), Dunne et al. 
(2004), Banašek-Richter et al. (2009), Dunne and 
Williams (2009), Gross et al. (2009), Thébault and 
Fontaine (2010), Tylianakis et al. (2010), Allesina 
and Tang (2012), Heleno et al. (2012) and Poisot 
and Gravel (2014)

Mutualism: Jordano (1987), Rezende et al. (2007), 
Okuyama and Holland (2008), Thébault and 
Fontaine (2010), Allesina and Tang (2012), Suweis 
et al. (2015) and Vieira and Almeida-Neto (2015)

Competition: Fowler (2009) and Allesina and Tang 
(2012)

Connectivity (L) Total number of interactions Mutualism: Okuyama and Holland (2008)
Competition: Fowler (2009)

Linkage density Average number of links per species, L/S Food webs: Pimm et al. (1991) and Havens (1992)
Mutualism: Jordano (1987)

Interaction strength Weight of an interaction in the interaction matrix Food webs: Paine (1992), McCann et al. (1998), 
Berlow (1999), Borrvall et al. (2000), Berlow et al. 
(2004), Wootton and Emmerson (2005), Rooney 
et al. (2006) and Otto et al. (2007)

Mutualism: Okuyama and Holland (2008), Allesina 
and Tang (2012), Rohr et al. (2014) and Suweis 
et al. (2015)

Competition: Lawlor (1980), Hughes and Rough-
garden (1998), Kokkoris et al. (1999, 2002), 
Christianou and Kokkoris (2008) and Allesina and 
Tang (2012)

Jacobian element Weight of an interaction in the community (Jaco-
bian) matrix

Food webs: De Angelis (1975), Yodzis (1981), 
Haydon (1994), de Ruiter et al. (1995), Haydon 
(2000), Neutel et al. (2002, 2007), Emmerson and 
Raffaelli (2004), Emmerson and Yearsley (2004), 
Allesina and Pascual (2008), Gross et al. (2009), 
Allesina and Tang (2012), Jacquet et al. (2016) and 
van Altena et al. (2016)

Mutualism: Allesina and Tang (2012)
Competition: Lawlor (1980), Hughes and Rough-

garden (1998), Kokkoris et al. (1999, 2002), 
Christianou and Kokkoris (2008) and Allesina and 
Tang (2012)

Weighted linkage density Average number of links per species weighted by 
interaction strength

Food webs: Bersier et al. (2002), Tylianakis et al. 
(2007) and Dormann et al. (2009)
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one of the earliest and the most popular descriptors of eco-
logical networks structure. Sometimes, a simpler measure-
ment of interactions, known as connectivity, has been used 
instead of connectance. The connectivity of a network is 
simply its total number of interactions L (Newman 2010; 
Estrada 2012).

To understand the average level of specialization of the 
network, i.e., whether the network is dominated by special-
ists (species holding few interactions) or generalists (species 
holding many interactions), food web ecologists have intro-
duced linkage density. It is calculated as the average number 
of links per species, or the connectivity divided by species 
richness, L/S (Montoya et al. 2006).

To increase the information value of these network met-
rics, some theoretical studies have incorporated the strength 
of interactions. Thus, quantitative counterparts of linkage 
density and connectance, called respectively weighted con-
nectance and weighted linkage density, have been developed 
(Bersier et al. 2002; Tylianakis et al. 2007; Dormann et al. 
2009). Weighted linkage density considers the proportion of 
biomass flow to weight the contribution of each link to and 
from all equivalent species. Equivalent species are defined 
using the Shannon metric (Shannon 1948) of entropy (or 
uncertainty). Weighted connectance is then computed as 
the weighted linkage density divided by species richness. 
There are several reasons for believing that networks metrics 
incorporating the strength of interaction are better suited to 
reflect salient ecosystem properties, among which the ability 
to give increased weight to strong interactions and the fact 
that weighted metrics change continuously with the change 
of link strength and even with the eventual removal of the 
link. The latter can be particularly important in empirical 
food-web studies in which the sampling effort typically 
dictates the number of links discovered, with greater effort 
often leading to many more additional weak links.

As connectance and linkage density are only community-
average descriptors of network structure, they do not inform 
on the relative importance of each species to the overall con-
nectivity. Node degree distribution, i.e., the distribution of the 
number of interactions per species, is another widely used 
descriptor of network complexity (Newman 2010). The degree 
of a node (or a species) refers to the number of links to other 
interacting partners in the network. The distribution of node 
degree in ecological networks have been shown to differ from 
a Poisson distribution that characterises large random networks 
(Camacho et al. 2002; Dunne et al. 2002b; Montoya and Solé 
2002; Jordano et al. 2003).

A generalization of the node-degree distribution is the inter-
action-strength distribution, taking into account the weights 
associated with each link (Newman 2010). The strength (or 
weighted degree) of each species is computed as the sum of 
all the weighted interaction strengths of that species (Feng and 
Takemoto 2014; Suweis et al. 2015). However, particularly 
for pollination and frugivory networks, interaction strengths 
are often approximated by the number of visits of an animal 
species to a plant species (Jordano 1987). A normalized index 
for this kind of networks is species dependence on another 
species. The dependence of a species i on a species j is defined 
as the fraction of interactions (e.g., visits or diet item) between 
i and j relative to the total number of interactions of species 
i (Bascompte et al. 2006; Vieira and Almeida-Neto 2015). In 
this context, species strength refers to the sum of dependences 
of the mutualistic partners relying on the species.

Network architecture

Beyond ecological patterns in interaction and strength 
distribution, interactions in ecological networks exhibit 
even more complex topological features, related to the 

Table 1   (continued)

Network complexity Definition References

Weighted connectance Weighted linkage density divided by species rich-
ness

Food webs: Haydon (2000), Bersier et al. (2002), 
Tylianakis et al. (2007), Dormann et al. (2009) and 
van Altena et al. (2016)

Mutualism: Minoarivelo and Hui (2016)
Species degree Number of interactions (links) with other species Food webs: Waser et al. (1996), Memmott (1999), 

Solé and Montoya (2001), Camacho et al. 
(2002), Dunne et al. (2002b), Montoya and Solé 
(2002);Vázquez and Aizen (2003) and Dunne and 
Williams (2009)

Mutualism: Jordano et al. (2003) and Rohr et al. 
(2014)

Species strength Sum of weighted interactions shared by the species 
with others

Mutualism: Bascompte et al. (2006), Feng and Take-
moto (2014) and Suweis et al. (2015)

Dependence of species i on species j Number of visits between i and j divided by the 
total number of visits between species i and all 
other partners

Mutualism: Jordano (1987), Bascompte et al. 
(2006), Feng and Takemoto (2014) and Vieira and 
Almeida-Neto (2015)
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architecture of the network (Table 2). Among the most 
important of these features is the level of modularity or 
compartmentalization. Modularity depicts the extent to 
which a network is compartmentalized into delimited 
modules where species are strongly interacting with spe-
cies within the same module but not with those from 
other modules (Olesen et al. 2007). Although a number 
of metrics have been developed to quantify the level of 
compartmentalization in a network, modularity (devel-
oped by Newman and Girvan 2004) has been the most 
widely accepted. This measure assumes that nodes in 
the same module have more links between them than 
one would expect for a random network and Modules are 
thus obtained by partitioning all nodes in the network 
in order to maximize modularity. However, see, e.g., 
Rosvall and Bergstrom (2007) and Landi and Piccardi 
(2014) for limitations of modularity and other metrics of 
compartmentalization.

Another important descriptor of ecological network 
architecture, especially for mutualistic networks, is 
nestedness. It is a pattern of interactions in which spe-
cialists can only interact with a subset of species with 
which more generalists interact. It means that in a nested 
network, both generalists and specialists tend to interact 
with generalists whereas specialist-to-specialist interac-
tions are rare (Bascompte et al. 2003). To quantify the 
nestedness of a network, several metrics have been devel-
oped. Among the most commonly used are for example 
the ‘temperature’ metric by Atmar and Patterson (1993) 
and the NODF (Nestedness metric based on Overlap and 
Decreasing fill) metric by Almeida-Neto et al. (2008). 
Despite the existence of several metrics and algorithms, 
they are all mainly based on measuring the extent to 
which specialists interact only with a subset of the spe-
cies generalists interact with.

Network stability

In theoretical studies, each entry aij of matrix A usually 
quantifies the change in population growth rate of species i 
caused by a small perturbation in the abundance of species 
j around equilibrium abundances (i.e., stationary regime, 
species abundances are constant in time). Thus matrix A is 
equivalent to the Jacobian matrix of the dynamical system 
that describes species abundance dynamics over continuous 
time, evaluated at equilibrium, and it is also called a com-
munity matrix. Such a matrix is very useful for studying 
the (local) asymptotic stability of the equilibrium. In fact, 
stability is defined by the real part of the leading eigenvalue 
of the Jacobian matrix (i.e., the eigenvalue with the largest 
real part). If the real part of the leading eigenvalue is posi-
tive, the equilibrium is unstable, i.e., any small perturbation 
from the equilibrium will be amplified until convergence to 
another ecological regime, at which some of the species in 
the community might be extinct. Otherwise, if the real part 
of the leading eigenvalue is negative, then small perturba-
tions around the equilibrium will be dampened, and the sys-
tem will converge back to its stationary regime. Therefore, 
the sign of the real part of the leading eigenvalue can be a 
binary indicator of stability. Moreover, if stable, the inverse 
of the absolute value of the real part of the leading eigen-
value gives an indication of the time needed by the system to 
return to its equilibrium. Systems that quickly return to equi-
librium after perturbations are called resilient. Resilience is 
therefore often measured by the absolute value of the leading 
eigenvalue (if negative) of the community matrix. Notice 
that resilience is only defined for stable equilibria and it 
only gives information about the asymptotic behaviour of the 
system (see Neubert and Caswell 1997 for transient indica-
tors). Global (vs. local) stability implies that any (vs. small) 
perturbation from the equilibrium will be dampened. Global 

Table 2   Measures of network architecture

Network architecture Definition References

Modularity Extent to which a network is compartmentalized into delimited modules Food webs: Moore and Hunt (1988), Ives et al. 
(2000), Krause et al. (2003), Thébault and 
Fontaine (2010) and Stouffer and Bascompte 
(2011)

Mutualism: Olesen et al. (2007), Mello et al. 
(2011) and Dupont and Olesen (2012)

Nestedness When specialists can only interact with subset of the species generalists 
interact with

Food webs: Atmar and Patterson (1993), Neutel 
et al. (2002), Cattin et al. (2004), Thébault 
and Fontaine (2010) and Allesina and Tang 
(2012)

Mutualism: Bascompte et al. (2003), Memmott 
et al. (2004), Almeida-Neto et al. (2008), 
Bastolla et al. (2009), Zhang et al. (2011), 
Campbell et al. (2012), James et al. (2012) 
and Rohr et al. (2014)
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stability usually refers to the case of a single equilibrium 
(typical of linear systems).

The notion of structural stability of a system is used when 
the system’s dynamical behaviour (such as the existence of 
equilibrium points, limit cycles or deterministic chaos) is 
not affected by small perturbations such as small changes 
in the values of its parameters (Solé and Valls 1992). How-
ever, Rohr et al. (2014) extended this definition to the notion 
of structural stability of an equilibrium which refers to the 
domain (or probability) of coexistence of all the species in 
the ecosystem. An equilibrium at which all the species S in 
the system coexist with positive abundances is called fea-
sible. Structural stability usually refers to perturbations in 
the system itself (i.e., slightly changing one of its param-
eters) rather than perturbations in the state of the system 
(i.e., abundances, see previous paragraph). Assuming that a 
system is at a feasible equilibrium, a small perturbation in a 
parameter (e.g., species carrying capacity, intrinsic growth 
rate, predator conversion efficiency, handling time, …) will 
generically move the system to a slightly different (in terms 
of species abundances) feasible equilibrium, unless the 
system is close to a bifurcation point for that parameter. A 
bifurcation is indeed a qualitative change in the asymptotic 
behaviour of a system driven by a perturbation in one of its 
parameters. Such qualitative change could, for example, be 
a switch to a non-feasible equilibrium (where one or more 
species go extinct), to a non-stationary (e.g., periodic) orbit, 
etcetera. The region in parameter space for which the system 
has a feasible equilibrium is its domain of stable coexistence, 
and gives an indication (or probability) of its structural sta-
bility. The bigger the domain, the more structurally stable 
the system (Rohr et al. 2014).

In addition to this, the number of coexisting species at 
an equilibrium could trivially be an indicator of stability. 
This number will be S at a feasible equilibrium, and will 
be smaller than S at an equilibrium at which some species 
have gone extinct. If this number is standardized to the total 
number of species S we obtain the proportion of persistent 
species once equilibrium is reached, that is, persistence 
(Thébault and Fontaine 2010).

The notions of asymptotic stability and structural stability 
can of course be generalized in the case of non-stationary 
asymptotic regimes (such as cycles, tori, and chaotic attrac-
tors), using, e.g., Lyapunov exponents. In such cases, or in 
the study of empirical time series, other stability indicators 
can however be more useful. For example, temporal stabil-
ity (the reciprocal of variability) quantifies the stability of 
fluctuating variables. It is usually defined as the ratio of the 
mean over its standard deviation (the inverse of the Coef-
ficient of Variation). A high mean contributes to temporal 
stability, as it contributes to values far from 0 (extinction), as 
well as a low standard deviation that describes fluctuations 
around the mean.

Another approach to stability considers the effect of 
removing target species from a system. The extinction 
cascade measures the loss of additional species after the 
removal of one target species. Robustness (Dunne et al. 
2002a)—or deletion stability or resistance (Borrvall et al. 
2000)—is indeed the ability of a system to resist extinc-
tion cascades. Species removal can be random or targeted 
(e.g., the most connected species or species with low or high 
trophic level).

Instead of removing target species, invasibility describes 
the propensity of a system (or a resident community) to be 
invaded by new species (Hui and Richardson 2017). Non-
invadable systems are thought to be more stable than sys-
tems that are easily invaded by introduced alien species. 
Thus, resistance to invasion can be a measure of system sta-
bility. Invasion can simply bring the system in a new stable 
and feasible configuration, or in the worst case it could lead 
one or more species to extinction (see Hui et al. 2016 for a 
recently proposed measure of invasibility).

A summary of the different introduced measures for net-
work stability is given in Table 3. See Pimm (1984), Logofet 
(2005), Ives and Carpenter (2007), Donohue et al. (2013), 
and Borrelli et al. (2015) for additional reviews on different 
stability concepts.

Complexity–stability debate

Before the 1970s, ecologists believed that more diverse com-
munities enhanced ecosystem stability (Odum 1953; Mac-
Arthur 1955; Elton 1958). In particular, they believed that 
natural communities develop into stable systems through 
successional dynamics. Aspects of this belief developed 
into the notion that complex communities are more sta-
ble than simple ones. A strong proponent of this view was 
Elton (1958), who argued that “simple communities were 
more easily upset than richer ones; that is, more subject to 
destructive oscillations in populations, and more vulner-
able to invasions”. In fact, both Odum (1953) and Elton 
(1958) arrived at similar conclusions based on repeated 
observations of simplified terrestrial communities that are 
characterized by more violent fluctuations in population 
density than diverse terrestrial communities. For example, 
invasions most frequently occur on cultivated land where 
human influence had produced greatly simplified ecologi-
cal communities; outbreaks of phytophagous insects occur 
readily in boreal forests but are unheard of in diverse tropi-
cal forests; and the frequency of invasions is higher in sim-
ple island communities compared to more complex main-
land communities. These observations led Elton (1958) to 
believe that complex communities, constructed from many 
predators and parasites (consumers), prevented populations 
from undergoing explosive growth (e.g., pest outbreaks) 
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and would have fewer invasions (see Hui and Richardson 
2017 for background in invasion science). His ideas were 
closely related to MacArthur’s (1955), who hypothesized 
that “a large number of paths through each species is neces-
sary to reduce the effects of overpopulation of one species.” 
MacArthur (1955) concluded that “stability increases as 
the number of links increases” and that stability is easier to 
achieve in more diverse assemblages of species, thus linking 
community stability with both increased trophic links (e.g., 
connectance C) and increased numbers of species (S). In 
other words, multiplicity in the number of prey and predator 
species associated with a population freed that population 
from dramatic changes in abundance when one of the prey 
or predator species declined in density. Additionally, Paine 
(1966) also showed that species diversity in foodwebs is 
related to the number of top predators, and that increased 
stability of annual production may lead to an increased 
capacity for systems to support such high-level consumer 
species, thus resulting in increased species diversity.

These early intuitive ideas were challenged by the work 
of May (1972, 1973). He used mathematics to rigorously 
explore the complexity–stability relationship (see a first 
review by Goodman 1975). By using linear stability analy-
sis (asymptotic stability of the Jacobian matrix) on models 
constructed from a statistical universe (that is, randomly 
constructed Jacobians with randomly assigned elements), 
May (1972, 1973) found that complexity tends to destabilize 
community dynamics. He mathematically demonstrated that 
network stability decreases with diversity (measured as the 
number of species S), complexity (measured as connectance 
C), and the standard deviation of the Jacobian elements σ. 
In particular, he found that more diverse systems, com-
pared to less diverse systems, will tend to sharply transition 
from stable to unstable behaviour as the number of species 
S, the connectance C, or the average Jacobian element σ 
increase beyond a critical value, i.e., the system is stable if 
𝜎

√

SC < 1 , unstable otherwise.
In his seminal study on community stability, May (1972, 

1973) measured asymptotic local stability. In this analysis, 
it is assumed that the community rests at an equilibrium 
point where all populations have constant abundances. The 
stability of this equilibrium is tested with small perturba-
tions. If all species return to the equilibrium—monotonically 
or by damped oscillations—it is stable. In contrast, if the 
population densities evolve away from the equilibrium densi-
ties—monotonically or oscillatory—they are unstable. In a 
community of S species, this approach is based on the S × S 
Jacobian matrix, whose elements describe the perturbation 
impact of each species j on the growth of each species i at 
equilibrium population densities. The S eigenvalues of the 
Jacobian matrix characterize its temporal behavior. Specifi-
cally, positive real parts of the eigenvalues indicate perturba-
tion growth, while negative real parts indicate perturbation 

decay. Accordingly, if any of the eigenvalues has a positive 
real part the system will be unstable, i.e., at least one of the 
species does not return to the equilibrium. The mathematical 
proposition, thus, contradicts the ecological intuition.

Food webs

The use of random community matrices in May’s (1972, 
1973) work has attracted much criticism (Table 4). It was 
shown to be extremely unlikely that any of these random 
communities could even remotely resemble ecosystems with 
a minimum form of ecological realism, such as containing 
at least one primary producer, a limited number of trophic 
levels and no consumers eating resources that are two or 
more trophic levels lower (Lawlor 1978, but see; Allesina 
and Tang 2015 for a review on the random matrix approach). 
The non-randomness of ecosystem structure has been dem-
onstrated in detail by more recent food-web topology studies 
(e.g., Williams and Martinez 2000; Dunne et al. 2002a, b, 
2004, 2005; Dunne 2006). Accordingly, subsequent work 
added more structural realism to those random community 
matrices by including empirical patterns of food web struc-
ture and Jacobian elements distributions (see Allesina and 
Tang 2012; Allesina et al. 2015; Jacquet et al. 2016 for the 
most recent advances and; Namba 2015 for a review). Sev-
eral simple models have played an important role in char-
acterizing the non-random structure of food webs, includ-
ing the cascade model (Cohen et al. 1990), the niche model 
(Williams and Martinez 2000), and the nested-hierarchy 
model (Cattin et al. 2004). The niche and nested-hierarchy 
models have been able to capture several structural proper-
ties of empirical food webs.

Species richness

In general, food web features vary with species richness. 
Although empirical datasets of ecological networks do not 
display any consistency regarding their size, it has been 
observed that ecological networks have much smaller size 
than other published real-world network datasets, such as 
co-authorships between scientists or the World Wide Web 
(Dunne et al. 2002b).

Haydon (1994) discussed some of May’s hypothesis (such 
as the measure of stability, the consideration of unfeasible 
models, and the self-regulatory terms on the diagonal of 
the community matrix describing intraspecific interactions) 
but still found that (asymptotic) stability and feasibility of 
(generalized Lotka–Volterra) model ecosystems is reduced 
by the number of species. Gross et al. (2009) found that 
smaller model ecosystems follow other rules than larger eco-
systems. Indeed, they studied artificial food webs generated 
by the niche model and considering nonlinear functional 
responses of different kinds. Thus, adding more details to 
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May’s (1972, 1973) stability criteria, they showed that the 
strength of predator–prey links increase the stability of 
small webs, but destabilize larger webs. They also revealed 
a new power law describing how food-web stability scales 
with the number of species. Pimm (1979, 1980b) showed 
that extinction cascades are more likely in model (general-
ized Lotka–Volterra) communities with larger total number 
of species, contrasted by Borrvall et al. (2000) that found 
the robustness (resistance) of the same model food web to 
increase with network redundancy (number of species per 
functional group). Considering the topology of realistic 
(Dunne et al. 2002a) and generated model (Dunne and Wil-
liams 2009) food webs, other authors found the same result, 
i.e., positive relationship between number of species and 
robustness, however ignoring strength of interactions and 
community dynamics. Therefore, such contrasts may result 
from dynamical properties of food webs.

Connectance

Exploring how the number of interactions varies with the 
number of species has been one of the most basic questions 
for ecologists trying to find universal patterns in the struc-
ture of ecological networks. Contradicting previous works 
which found that the number of interactions increases lin-
early with the number of species (Cohen and Briand 1984; 
Cohen and Newmann 1985), Martinez (1992) claimed the 
constant connectance hypothesis in food webs: trophic links 
increase approximately as the square of the number of spe-
cies. However, with the improvement of methodological 
analysis and datasets, the constant connectance hypothesis 
has been called into question by later studies (Havens 1992; 
Dunne et al. 2002b; Banašek-Richter et al. 2009). One of the 
most generally accepted rule on food web connectance is 
that food webs display an average low connectance of about 
0.11 (Havens 1992; Martinez 1992; Dunne et al. 2002b), 
which is however still relatively high compared to that of 
other real-world networks (Dunne et al. 2002b).

Since connectance has been used by May (1972, 1973) as 
a descriptor of network complexity, it has become central to 
early works on the complexity–stability debate (De Ange-
lis 1975; Pimm 1980b, 1984) and continues to be widely 
used as a descriptor for network structure (Havens 1992; 
Dunne et al. 2002a; Olesen and Jordano 2002; Tylianakis 
et al. 2010; Heleno et al. 2012; Poisot and Gravel 2014). 
Depending on the way stability is defined, the quality of 
empirical datasets, or the methods used to generate theoreti-
cal networks, contradiction has been observed in the rela-
tionship between network stability and connectance. While 
some studies reinforced May’s hypothesis of a negative 
relationship between connectance and stability (Pimm 1979, 
1980b; Chen and Cohen 2001; Gross et al. 2009; Allesina 
and Tang 2012), others found that connectance enhances Ta
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network stability (De Angelis 1975; Dunne et al. 2002a; 
Dunne and Williams 2009). For example, using extinction 
cascade as stability measure, Pimm (1979, 1980b) found that 
complex model food webs are more likely to lose additional 
species following the extinction of one species than simple 
food webs: complexity is negatively correlated with stability. 
By using different measurements of network stability (resil-
ience and persistence), Thébault and Fontaine (2010) also 
confirmed the negative relationship between connectance 
and stability in food webs (however, the opposite holds for 
mutualistic networks, see next Section). Gross et al. (2009) 
also revealed a negative power law to describe how food-
web stability scales with connectance.

The opposite view is sustained, among others, by De 
Angelis (1975): using plausible food web community 
matrix models, he showed that the probability of stability 
can increase with increasing connectance if the food web 
is characterized by a bias toward strong self-regulation 
(intraspecific competition) of higher trophic level species, 
low assimilation efficiencies, or a bias toward donor con-
trol. Also Haydon (1994), improving May’s assumptions 
but still relying on community matrices, found stability to 
increase with connectance. However, in contrast with De 
Angelis (1975), stability is found to be reduced by the preva-
lence of donor control interactions. Furthermore, robustness 
increases with connectance considering only the topology 
of real food webs (Dunne et al. 2002a; Dunne and Williams 
2009).

Weighted connectance

Only a recent study by van Altena et al. (2016) started its 
use into the complexity–stability context, although they 
found that there is no relationship between food web sta-
bility and unweighted connectance and that a high level of 
weighted connectance stabilizes food webs. Following a 
different perspective, Haydon (2000) focused on communi-
ties constructed to be as stable as they could be, and show 
that communities built in this way require high levels of 
weighted connectance, in agreement with van Altena et al. 
(2016). According to these studies, high stability requires 
high connectance, especially between weakly and strongly 
self-regulated (intraspecific competition) elements of the 
community.

Degree distribution

Degree distribution in food webs differ from a Poisson dis-
tribution (typical of random networks). However, there is 
no universal shape that fits food webs degree distribution. 
Most of the webs display exponential degree distribution 
(Camacho et al. 2002; Dunne et al. 2002b) and those with 
high connectance show a uniform distribution. Power-law 

and truncated power-law with an exponential drop-off in the 
tail also fit few of food webs degree distribution (mostly 
those having very low connectance) (Dunne et al. 2002b; 
Montoya and Solé 2002).

The skewness of degree distribution, especially exponen-
tial-type degree distribution (Dunne and Williams 2009) 
makes food webs more robust to targeted removals (from 
the most generalists) (Solé and Montoya 2001; Dunne et al. 
2002a). However, the hierarchical feeding feature due to size 
scaling laws imposes a cost to food web robustness (Dunne 
and Williams 2009). Allesina et al. (2015) showed that broad 
degree distributions tend to stabilize (in term of asymptotic 
stability of the community matrix) large size-structured food 
webs, obtained either empirically or with the cascade and 
niche models.

Strength of interactions

In contrast with May’s (1972, 1973) findings, Haydon (1994) 
found stability to increase with elements of the Jacobian. 
Yodzis (1981) also found that the networks were far more 
likely to be stable when such elements are chosen in accord 
with real food web patterns rather than strictly at random. 
Neutel et al. (2007) showed how non-random Jacobian ele-
ments patterns in naturally assembled communities explain 
stability. They used below-ground food webs, whose com-
plexity increased along a succession gradient. The weight 
of the feedback loops of omnivorous species characterized 
stability (omnivory: feeding on more than one trophic level). 
Low predator–prey biomass ratios (biomass pyramid, a fea-
ture common to most ecosystems) in these omnivorous loops 
were shown to have a crucial role in preserving stability as 
complexity increased during succession. However, Allesina 
et al. (2015) showed that it is intervality, i.e., the propensity 
for each predator to feed upon all the species in a certain size 
interval, to be the driver of stability in large size-structured 
foodwebs.

Variability in link strengths have also been found to be 
related with stability, but only for relatively small webs, 
whereas larger webs are instead to be destabilized by link-
strength variability (Gross et al. 2009). Stability is enhanced 
when species at a high trophic level feed on multiple prey 
species and when species at an intermediate trophic level are 
consumed by multiple predator species. Using an energetic 
approach, de Ruiter et al. (1995) and Rooney et al. (2006) 
found that different types of structural asymmetry in energy 
fluxes is key to stability of real food webs. In particular, de 
Ruiter et al. (1995) used empirically estimated community 
matrices of the generalized Lotka–Volterra model to show 
that simultaneous occurrence of strong top-down effects 
(consumer control) at lower trophic levels and strong bot-
tom-up effects (donor control) at higher trophic levels in the 
patterns of Jacobian elements in real food webs is important 
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to ecosystem stability. The pattern is a direct result of the 
energetic organization of the food web. Rooney et al. (2006) 
used empirical food web data into a nonlinear model with 
functional responses and predator adaptive switching behav-
iour to show that slow and fast energy fluxes coupled by 
top-predators in real food webs convey both local and non-
local stability to food webs. In conclusion, even with very 
different approaches, complexity does not lead to instability.

A skewed distribution of interaction strength has been 
widely observed in food webs, i.e., there are many weak 
interactions and few strong ones (Paine 1992; Berlow 1999; 
Berlow et al. 2004; Wootton and Emmerson 2005). This 
skewness towards weak interactions has been related to sta-
bility. For example, McCann et al. (1998) found that weak 
links and intermediate strength of interaction (measured as 
the likelihood of one species to be consumed by another), 
taking into account nonlinear saturating consumption, non-
equilibrium dynamics, and empirical strengths and patterns 
of interaction, reinforce the stability and the persistence of 
the community as they dampen the oscillation in preda-
tor–prey dynamics. Neutel et al. (2002) showed that weak 
interactions are more likely observed in long loops in real 
food webs. Specifically, Jacobian elements are organized in 
trophic loops in such a way that long loops contain relatively 
many weak links. They showed and explain mathematically 
that this patterning enhances stability, because it reduces the 
amount of intraspecific interaction needed for matrix stabil-
ity. On the same line, Thébault and Fontaine (2010) showed 
that stability of trophic networks is enhanced in weakly 
connected architectures. van Altena et al. (2016) confirmed 
the role of weak interactions for stability of real food webs. 
However, given skewed distributions of Jacobian elements 
towards weak interactions, they found that stability was pro-
moted by even distribution of fluxes over links, in contrast 
with de Ruiter et al. (1995) and Rooney et al. (2006) who 
emphasized the role of strong asymmetry. In a recent paper, 
Jacquet et al. (2016) disproved the association between Jaco-
bian elements and (asymptotic) stability in empirical food 
webs, but showed that the correlation between the effects 
of predators on prey and those of prey on predators, com-
bined with a high frequency of weak interactions, can sta-
bilize food web dynamics. In agreement with Neutel et al. 
(2002) and Neutel et al. (2007), Emmerson and Yearsley 
(2004) showed that a skew towards weak interactions in 
feasible community matrices promotes local and global sta-
bility only when omnivory is present. A feedback is found 
between skewness toward weak interactions and omnivory, 
i.e., skewed Jacobian elements are an emergent property of 
stable omnivorous communities, and in turn this skew cre-
ates a dynamic constraint maintaining omnivory. Borrvall 
et al. (2000) however found that omnivory stabilizes food 
webs, but the skew towards weak interaction is destabiliz-
ing (they however use interaction strengths, not Jacobian 

elements). Omnivory appears to be common in food webs 
(Polis 1991; Sprules and Bowerman 1988). A previous 
theoretical work (Pimm and Lawton 1978) predicted that it 
should be extremely rare to find species that feed simulta-
neously both high and low in real-world food web, and also 
webs with a large number of omnivores should be rare in real 
world. However, the authors ignored feasibility of the com-
munity matrices they used to estimate resilience (asymptotic 
stability), possibly underestimating omnivorous interactions.

By contrast, Allesina and Pascual (2008) found that 
stability is highly robust to perturbations of Jacobian ele-
ments, but it is mainly a structural property driven by short 
and strong predator–prey loops, with the stability of these 
small modules cascading into that of the whole network. 
These considerations challenge the current view of weak 
interactions and long cycles as main drivers of stability 
in natural communities. In addition to that, Allesina et al. 
(2015) showed that average Jacobian element in large size-
structured foodwebs have smaller influence on stability 
compared with variance and correlation. Also, Allesina and 
Tang (2012) showed that preponderance of weak interactions 
(measured by Jacobian elements) decreases the probability 
of food webs to be stable. In particular, trophic interactions 
are shown to be stabilizing (as opposed to mutualistic and 
competitive) but, counterintuitively, the probability of sta-
bility for predator–prey networks decreases when a realistic 
food web structure is imposed or if there is a large prepon-
derance of weak interactions. However, stable predator–prey 
networks can be arbitrarily large and complex (positive com-
plexity–stability relationship), provided that predator–prey 
pairs are tightly coupled (i.e., short loops and high Jacobian 
elements). Same negative relationship between stability and 
skewness of strength of interaction distribution has been 
found by Borrvall et al. (2000), although using different 
measures of strength (interaction strengths) and stability 
(extinction cascade).

Predator–prey body mass ratio, affecting the interac-
tion strength distribution, contributes largely to food-web 
stability. Emmerson and Raffaelli (2004) empirically esti-
mated Lotka–Volterra interaction strengths and equilibrium 
population densities and used such a community matrix to 
evaluate (asymptotic) stability, showing that using empiri-
cal scaling laws the resulting food webs are always stable in 
contrast with statistical expectations from random matrices 
(May 1972, 1973). Otto et al. (2007) used a bioenergetic 
model combining nonlinear functional responses and body 
mass ratios, showing that such scaling may promote the sta-
bility of complex food webs.

Network architecture

The effect of network architecture, in particular modular 
structures, has been observed in food webs and related to 
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their stability. Moore and Hunt (1988) showed that food 
webs may contain tightly coupled subunits whose numbers 
may increase with diversity. Communities may be arranged 
in resource compartments and within them species strength 
of interaction would decline as diversity increased. Same 
result has been found by Krause et al. (2003) and Thébault 
and Fontaine (2010), who showed that stability of trophic 
networks is enhanced in compartmented and weakly con-
nected architectures. Also, Ives et al. (2000) showed that 
increasing the number of modular subcommunities in a sto-
chastic discrete time generalized Lotka–Volterra foodweb 
model increases stability through different species reactions 
to environmental fluctuations (insurance hypothesis; Yachi 
and Loreau 1999). Similarly, Stouffer and Bascompte (2011) 
demonstrate that compartmentalization increases the persis-
tence of food webs. Compartments buffer the propagation of 
extinctions through the community and increase long-term 
persistence. The latter contribution increases with the com-
plexity of the food web, emphasizing a positive complex-
ity–stability relationship. However, the recent study of Grilli 
et al. (2016) shows that the stabilizing effect of modularity 
is not as general as expected.

Nested diets have been observed in food webs: top pred-
ators are very generalists and prey upon all over species, 
while the next predator exploiting all but the top predators 
(in the niche model by Williams and Martinez 2000, and the 
nested-hierarchy model by; Cattin et al. 2004). Generalist 
top predators prey upon intermediate specialist predators 
also in the results of Neutel et al. (2002).

Mutualistic communities

As the interaction between a plant and its insect pollinator 
has often been used as a straightforward illustrative exam-
ple of a reciprocal coevolution (Darwin 1862), early studies 
on mutualistic interactions were mainly dedicated to under-
standing coevolutionary processes (e.g., Ehrlich and Raven 
1964; Brown et al. 1978; Wheelwright and Orians 1982; 
Herrera 1985). However, coevolution is often considered as 
a diffuse mechanism involving several species. Thus, ecolo-
gists started to study mutualism as a whole network of inter-
actions for which tools provided by complex network theory 
can be used (Table 5).

Species richness

Network size or the total number of species in the network 
has been considered as an important determinant of mutu-
alistic networks stability. By using a theoretical model with 
empirically informed parameters, Okuyama and Holland 
(2008) found a positive relationship between community 
size and community resilience. They mainly attributed this 
positive relationship to the use of a nonlinear functional 

response and its saturating positive feedback effect on 
population growth. Their finding was later supported by 
Thébault and Fontaine (2010) while they used a population 
dynamics model with a nonlinear Holling Type II functional 
response in which benefits gained from mutualism saturate 
with the effective densities of the interaction partners. They 
confirmed that a high number of species diversity promotes 
not only the resilience of mutualistic communities but also 
their persistence.

Connectance and connectivity

Contributing to their complexity, mutualistic networks have 
been observed to display non-random structural patterns. 
Motivated by the finding of scale invariance in food webs 
(Cohen and Briand 1984; Cohen and Newmann 1985), 
Jordano (1987) studied patterns of connectance and spe-
cies dependences observed in a large dataset of pollination 
and seed-dispersal networks. He found that connectance 
decreases with species richness but the average number 
of links per species (or linkage density) stays invariant to 
changing network size. Using empirical mutualistic net-
works spanning different biogeographic regions (including 
those used in Jordano 1987), Olesen and Jordano (2002) 
observed that connectance indeed decreases exponentially 
with species richness. After controlling for species richness 
(network size), they also observed that connectance differed 
significantly between biogeographic regions. On average, 
mutualistic networks exhibit higher connectance than food 
webs and other real-world networks do. However, mutualis-
tic networks still have low to moderate level of connectance 
(average of 0.11 in Olesen and Jordano 2002 and 0.18 in; 
Rezende et al. 2007).

The implication of connectance patterns to the stability 
of mutualistic networks has gained attention only recently. 
When extending the theoretical work of May (1972, 1973) 
so as to incorporate realistic network structures and to dif-
ferentiate between different types of interactions (preda-
tor–prey, mutualistic or competitive), Allesina and Tang 
(2012) found that connectance negatively affects the local 
stability of mutualistic community networks. The analyti-
cal study by Suweis et al. (2015) is in agreement with this 
statement when they correlated connectance with the degree 
of localization (a system is defined to have a high degree 
of localization when perturbations cannot easily propagate 
through the network). They found that mutualistic networks 
are indeed localized and the degree of localization decreases 
with connectance. Moreover, Vieira and Almeida-Neto 
(2015) extended a previously existing model that explores 
patterns of species co-extinction (Solé and Montoya 2001; 
Dunne et al. 2002a; Memmott et al. 2004) to study the rela-
tionship between connectance and extinction cascades in 
mutualistic networks, emphasizing the role of the variation 
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of species dependences after each extinction event. They 
used a stochastic co-extinction model in which a species 
does not necessarily need the extinction of all its interac-
tion partners to go itself extinct. The chance of a species to 
survive indeed depends on its level of dependence upon its 
interaction partners. Contradicting previous pattern observed 
in food webs (Dunne et al. 2002a), they found that extinction 
cascades were more likely to happen in highly connected 
communities. However, highly connected communities were 
also shown to be persistent (James et al. 2012) and resilient 
(Okuyama and Holland 2008), which was also confirmed by 
Thébault and Fontaine (2010).

Degree distribution

Although network size and connectance partially deter-
mine the complexity of the network, they discard impor-
tant information regarding individual species connectivity 
as well as distribution of the overall connectivity among 
species (node degree distribution). Early studies on species 
connectivity in mutualistic networks mainly concentrated on 
how interactions are distributed among species. Attentions 
were mainly focused on the prevalence of either generalists 
or specialists in mutualistic networks (Waser et al. 1996; 
Memmott 1999; Vázquez and Aizen 2003). Stimulated by 
these early studies, Jordano et al. (2003) found generalized 
patterns in the node degree distribution of a large number 
of plant-pollinator and plant-frugivore networks. Most of 
the networks showed a distribution of node degree that fits 
a truncated power-law regime, suggesting the prevalence of 
specialists and the rarity of super generalists. Few of the 
networks showed a power-law or an exponential distribution 
in their node degree. Moreover, gamma distribution was also 
found to best fit the distribution of node degree in mutual-
istic networks (Okuyama 2008). The heterogeneity of node 
degree distribution was found years later to be a primary 
factor affecting negatively the local stability of mutualistic 
networks (Feng and Takemoto 2014). However, when node 
degrees are considered individually for each species, they 
were shown to be a good predictor of species own survival 
and thus of the community persistence (James et al. 2012).

Strength of interactions

Instead of only considering qualitative interactions (pres-
ence or absence), quantitative measurement of strength of 
interaction also prevails in mutualistic network studies. In 
plant-pollinator as well as in plant-frugivory interactions, 
strength of interaction often refers to the relative number of 
visits of the animal to the plant. Jordano (1987) observed 
an extremely skewed distribution of species dependences in 
mutualistic communities: weak dependences greatly exceed 
in number strong ones. By including more datasets in their Ta
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study, Bascompte et al. (2006) confirmed Jordano’s (1987) 
finding of a skewed distribution of interaction dependences. 
Additionally, mutualistic networks were also found to be 
highly asymmetric in terms of species roles: while animals 
depend strongly on the plants, plants rely poorly on their ani-
mal pollinators or seed dispersers (Bascompte et al. 2006).

The maintenance of biodiversity was suggested to be 
facilitated by both the heterogeneity of species strength 
distribution and the asymmetry of species dependences 
(Bascompte et al. 2006). Localization, or the ability of the 
system to reduce the propagation of perturbations through 
the network, has also been shown to be enhanced by the 
heterogeneity of species strength distribution (Suweis et al. 
2015). Notice that Suweis et al. (2015) defined the strength 
of a species as its weighted degree or the sum of interac-
tion strengths in which the species is involved. Opposed to 
the finding of Bascompte et al. (2006) who used a linear 
functional response in their model, Okuyama and Holland 
(2008) argued that the asymmetry of species dependences, 
implying an asymmetry of strength of interaction between 
animals and plants (measured as similarity of the pairwise 
half-saturation constants), has a negative effect (although 
small) on the resilience of mutualistic communities when a 
nonlinear functional response is used. Feng and Takemoto 
(2014) also showed that the heterogeneity of the distribution 
of strength of interaction (estimated from visiting frequen-
cies adjusted for uneven species abundances) indeed impacts 
negatively on the local stability of mutualistic communities. 
Moreover, by also using a saturating functional response, 
Rohr et al. (2014) demonstrated that regardless of the dis-
tribution of interaction strength, mutualistic communities 
that have on average a high level of interaction strength are 
more likely to be structurally stable (have a wider domain 
of feasible and stable coexistence).

Network architecture

Although modularity or compartmentalization is a feature 
commonly observed in food webs, mutualistic networks also 
exhibit a certain level of modularity. A test for modularity 
in a wide datasets allowed Olesen et al. (2007) to affirm 
that pollination networks with a relatively high number of 
species are indeed modular. Moreover, the observed level 
of modularity increases with network size. The number of 
modules and the level of modularity observed in pollination 
networks are found to be invariant to sampling efforts at dif-
ferent time (Dupont and Olesen 2012). Mello et al. (2011) 
also noticed a high level of modularity in seed-dispersal 
networks. Little is known about the implication of modular 
structure to mutualistic network stability. Thébault and Fon-
taine (2010) emphasized that structural patterns favouring 
stability fundamentally differ in food webs and mutualistic 

networks: while the modularity pattern enhances food web 
stability, it has a negative effect on the persistence and resil-
ience of mutualistic networks.

A widely accepted topological feature proper to mutual-
istic networks is nestedness. Bascompte et al. (2003) started 
to explore this feature in a meta-analysis of empirical mutu-
alistic communities and found that mutualistic networks 
are indeed highly nested. They also found that nestedness 
increases with network complexity expressed in terms of 
species richness and connectivity. Nestedness has always 
been believed to be the most important determinant of 
mutualistic network stability. For example, extinction cas-
cades following the removal of the most generalist pollina-
tor in a pollination community have been shown to happen 
only linearly because of the stabilizing effect of nestedness 
(Memmott et al. 2004). The nested structure of mutualistic 
networks also enhances the number of coexisting species by 
reducing effective interspecific competition (Bastolla et al. 
2009). Nestedness also has a positive effect on the persis-
tence and resilience of mutualistic communities (Okuyama 
and Holland 2008; Thébault and Fontaine 2010). Rohr et al. 
(2014) showed that the parameter domain leading to both 
dynamically stable and feasible equilibrium, i.e., the domain 
of stable coexistence of species (an extended measurement 
of the system’s structural stability) is maximized when artifi-
cial networks are assumed to have a high level of nestedness. 
However, some recent studies started to discard the impor-
tance of nestedness to network stability. James et al. (2012) 
indeed found that nestedness is, at best, a secondary covari-
ate rather than a causative factor for species coexistence in 
mutualistic communities and has no significant effect on 
community persistence. By means of analytical analyses of 
artificial networks with realistic structure, Allesina and Tang 
(2012) affirmed that local stability is negatively affected by 
the nestedness of mutualistic community matrices. Campbell 
et al. (2012) also showed that extreme nestedness facilitates 
sequential species extinctions (extinction cascades).

Competitive communities

Competitive interactions have sometimes been considered 
together with trophic interactions in food webs models, and 
their contribution to stability assessed. There is common 
agreement that self-regulating interactions due to intraspe-
cific competition (i.e., negative terms on the diagonal of 
the interaction or community matrix) increase stability. For 
example, De Angelis (1975), using plausible food web mod-
els, showed that the probability of stability increases if the 
food web is characterized by a bias toward strong self-regu-
lation (intraspecific competition) of higher trophic level spe-
cies. Haydon (1994) found a similar result, i.e., that consid-
ering intraspecific competition increases food web stability. 
Again, Haydon (2000) focused on communities constructed 
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to be as stable as they could be, and show that communities 
built in this way require high connectance between weakly 
and strongly self-regulated (intra-specific competition) ele-
ments of the community. Neutel et al. (2002) showed and 
explain mathematically that the patterning of real food web 
Jacobian elements enhances stability because it reduces the 
amount of intraspecific interaction needed for matrix sta-
bility. Yodzis (1981) also found that the presence of self-
regulatory terms (intraspecific competition) in some con-
sumer species stabilizes the network. However, the role of 
interspecific competition is less clear. For example, Yodzis 
(1981) showed that interspecific competition tends to be 
destabilizing: assuming that interspecific competition only 
happens among consumers sharing resources, he found that 
the fraction of stable community matrices decreases with the 
number of competitive pairs. By contrast, Allesina and Tang 
(2012) showed that competitive interactions are destabiliz-
ing, in the sense that the number of species S and the con-
nectance C that result in an unstable equilibrium are lower 
for competitive rather than trophic communities.

In the 1970s, it was believed that ecological communities 
were structured by competitive interactions (e.g., MacArthur 
1972). Theoretically speaking, purely competitive commu-
nities are simpler compared to food webs and mutualistic 
networks because they are composed of only one trophic 
level. Thus, the simplicity of competitive communities 
makes them an ideal theoretical framework for studying the 
relationship between community complexity and stability, 
and studies relating biodiversity and ecosystem function 
tended to focus on the diversity of primary producers (e.g., 
Hooper et al. 2005). For these reasons, extensive experi-
mental (Lawlor 1980; Tilman and Downing 1994; Tilman 
1996; Lehman and Tilman 2000) and theoretical (Lawlor 
1980; Tilman et al. 1997, 1998; Doak et al. 1998; Tilman 
1999; Cottingham et al. 2001) studies have been done on the 
relation between species richness of plants and community 
stability (Table 6).

Species richness

Species richness has been reported to affect the stability 
of competitive communities. Tilman and Downing (1994) 
empirically showed that primary productivity in more 
diverse plant communities is more resistant and recovers 
fully after a major drought. Tilman et al. (1997) confirmed 
such findings using theoretical competition models. Doak 
et al. (1998) however showed that such result could be sta-
tistically inevitable using the temporal variation in aggregate 
community properties as indicators of stability (see also Til-
man et al. 1998 for a reply). Lehman and Tilman (2000) 
analysed different models of multispecies competition and 
empirical data (Tilman 1996), finding that greater diversity 
increases the temporal stability of the entire community but 

decreases the temporal stability of individual populations. 
Specifically, temporal stability of the entire community 
increases fairly linearly without saturation with increased 
diversity. Species composition of each community was also 
predicted to be as important as diversity in affecting com-
munity stability. The work by Tilman (1999) summarizes 
the empirical and theoretical positive relationship between 
species diversity and community stability, primary pro-
ductivity, and invasibility in grassland competitive com-
munities (see, however, the critical review in Cottingham 
et al. 2001). Lawlor (1980) compared observed communi-
ties (defined by symmetric interaction matrices where each 
competition coefficient is given by a measure of overlap of 
resource utilization) with analogous randomized versions 
of them (note that he randomizes the resources utilization 
spectra rather than the competition coefficients themselves): 
he found that stability of observed communities decreases 
with the number of species, however, observed communities 
are generally more stable than randomly constructed com-
munities with the same number of species. The higher stabil-
ity of observed (compared to random) communities is due 
to lower similarities among consumer species, suggesting 
that interspecific competitive processes are very important 
in shaping communities. Christianou and Kokkoris (2008) 
reported that increasing the number of species in the com-
munity also decreases the probability of feasibility of the 
system, however, species richness does not significantly 
affect the probability (proportion of random communities) 
of local stability and the resilience of feasible competitive 
communities. By contrast, Fowler (2009) demonstrated that 
increasing the number of species in a discrete-time competi-
tion model (both symmetric and asymmetric, with a skew 
towards weak interactions) results in an increased probabil-
ity (species growth rate parameters region) of local stability 
in competitive feasible communities: increasing the competi-
tive negative feedbacks adding more species or links in the 
network dampens oscillatory dynamics and contributes to 
equilibrium stability.

Connectance

Fowler (2009) also showed that an increase in network con-
nectance and in the number of competitive links (connectiv-
ity) reduces per-capita growth rates through an increase in 
competitive feedback, thus stabilises oscillating dynamics. 
Furthermore, he affirmed that these results stay robust to 
changes in species interaction strengths.

Strength of interactions

Most studies on competitive communities focused on the 
implication of competition coefficients, i.e., interactions 
strengths, on community stability. However, different 
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measurements of stability have been used. For example, 
Hughes and Roughgarden (1998) studied temporal stability 
measured as the aggregate community biomass in a discrete 
time two-species competition model. They found that tem-
poral stability is relatively independent of the magnitude of 
interaction strengths but the degree of asymmetry of inter-
actions is the key to community stability. Quantifying the 
stability of the community by its invulnerability to invasion, 
Kokkoris et al. (1999) studied the distribution of interac-
tion strengths (competition coefficients)—not Jacobian 
elements—during the assembly process of theoretical com-
petitive communities. They found that the mean interaction 
strength drops as assembly progresses and most interactions 
that are formed are weak. It suggests that communities that 
are invulnerable to further invasion are those where inter-
specific interactions are weaker than the average interac-
tion strength between competing species of a regional pool. 
In a later study (Kokkoris et al. 2002), the same authors 
explored how the number of coexisting species vary with 
the average interaction strength. Confirming their previous 
finding on the importance of weak interactions to commu-
nity stability, they found that the preponderance of weak 
interactions indeed allow many species to coexist. Moreo-
ver, correlation in the interaction matrix, mainly a result of 
trade-offs between species characteristics, can increase the 
probability of species coexistence. Christianou and Kokkoris 
(2008) even deepened the study on the importance of weak 
interactions to stability by considering system feasibility of 
a competitive community. Consistent with previous findings, 
they showed that the probability of feasibility decreases with 
increasing interaction strength.

Recent developments

In this section we briefly introduce the most recent develop-
ments in the theory of the complexity–stability relationship. 
Including more details and making models more realistic 
seem to give more space for a positive complexity–stability 
relationship. These extensions include, but are not limited 
to, considering multilayer networks (accounting for differ-
ent interaction types varying in space and interconnected 
communities, see Pilosof et al. 2017 for a recent review), 
or describing trait mediated-interactions and adaptive net-
works. After a brief description of multilayer networks, spe-
cific focus will be given to the latter two extensions.

Considering multiple interaction types, i.e., trophic, 
mutualistic, and competitive in the same community, can 
alter ecological networks dynamics, complexity, and stabil-
ity (see review by Fontaine et al. 2011). Melian et al. 2009 
combined mutualistic and antagonistic (herbivorous) inter-
actions in an empirically derived model of such ecological 
network, showing that species persistence is increased by the 

correlation between strong species dependences and the ratio 
of the total number of mutualistic to antagonistic interac-
tion per species. Mougi and Kondoh (2012), using random, 
cascade, and bipartite (Thébault and Fontaine 2010) models, 
showed that a moderate mixture of antagonistic and mutu-
alistic interactions can stabilize community dynamics, and 
increasing complexity (species richness and connectance) 
leads to increased (asymptotic) community-matrix stability. 
Mougi and Kondoh (2014) confirmed their previous results 
in an extended version of their model also considering com-
petition, adding that the hierarchically structured antagonis-
tic interaction network is important for the stabilizing effect 
of mixed interactions to emerge in complex communities. 
Mougi (2016a), using interaction strengths and (asymptotic) 
stability of community matrices, showed that overlooked 
unilateral interactions (where only one species affects the 
partner species, e.g., amensalism or commensalism) greatly 
enhance community stability. Such unilateral interactions are 
however more stabilizing than symmetric interactions (com-
petition and mutualism) but less stabilizing than asymmetric 
interactions (antagonistic), confirming previous results in 
Mougi and Kondoh (2014).

The effect of spatial dynamics have been shown to be 
stabilizing in classical theoretical ecology. However, only 
few recent contributions considered space into the com-
plexity–stability debate, describing meta-communities, i.e., 
networks of networks. Considering local food webs con-
nected through dispersal, both Mougi and Kondoh (2016) 
and Gravel et al. (2016) showed that indeed intermediate 
dispersal and the number of local patches can increase the 
asymptotic stability of the meta-community matrix.

Trait‑mediated interactions and adaptive networks: 
food webs

The discussion thus far has implicitly assumed that links 
among species remain unchanged over time. This is often a 
simplifying assumption, as adaptive foraging (see review in 
Valdovinos et al. 2010) or other forms of adaptive behaviour 
in response, e.g., to environmental changes (Strona and Laf-
ferty 2016) can often cause links to form, change in strength, 
or disappear as time progresses. Adaptive networks has been 
shown to reproduce realistic food-web structures (Nuwagaba 
et al. 2015), to promote stability (Nuwagaba et al. 2017), and 
to allow for positive complexity–stability relationships. For 
example, Kondoh (2003) and Kondoh (2006) showed that 
foraging adaptation enhances stability of trophic communi-
ties. Without adaptation, complexity is destabilizing, while 
adaptive foragers help buffering environmental fluctuations 
resulting in a positive relationship between complexity and 
persistence. Visser et al. (2012) examined the effect of adap-
tive foraging behaviour within a tri-trophic food web and 
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demonstrated that adaptive behaviour will always promote 
stability of community dynamics.

Predator–prey body mass ratio, affecting the interaction 
strength distribution, contributes largely to food-web stabil-
ity (Emmerson and Raffaelli 2004; Brose et al. 2006; Otto 
et al. 2007). Heckmann et al. (2012) combined this allomet-
ric body-size structure and adaptive foraging behaviour in 
random and niche food web models with nonlinear func-
tional responses, showing that both body-size structure and 
adaptation increase the number of persisting species through 
stabilising interaction strength distributions Moreover, adap-
tive foraging explains emergence of size-structured food 
webs (in which predators tend to focus on prey on lower 
trophic levels and with smaller body sizes) from random 
ones, linking these two stabilising mechanisms.

Trait adaptation can also be modelled and give rise to 
complex trophic interaction networks (Brännström et al. 
2011, 2012; Landi et al. 2013, 2015; Hui et al. 2018), and 
their complexity–stability relationship assessed (Kondoh 
2007; Ingram et al. 2009). In particular, Kondoh (2007) 
studied adaptation in predator-specific defence traits, 
reporting its unimodal effect on the complexity–stabil-
ity (connectance-persistence and robustness) relationship, 
while species richness always has a negative impact on sta-
bility. Ingram et al. (2009) studied body size and niche width 
adaptation in different environmental conditions, emphasiz-
ing a positive correlation between omnivory with temporal 
variability and species turnover through extinctions and 
invasions–speciations.

Trait‑mediated interactions and adaptive networks: 
mutualistic communities

Pioneering studies addressing the effect of mutualistic 
community structure to community stability often utilized 
dynamic models of changing population abundance such as 
those based on extensions of the Lotka–Volterra model for 
mutualism, with various types of functional response (e.g., 
Okuyama and Holland 2008; Bastolla et al. 2009; Thébault 
and Fontaine 2010 all used a nonlinear functional response). 
Although these models have expanded our knowledge about 
the structure and dynamics of complex mutualistic systems, 
they disregarded important biological processes associated 
with plant-animal interactions. One important biological 
process is adaptation. Recent studies incorporated adapta-
tion into the foraging behaviour of animal pollinators and 
seed dispersers. One way to reflect adaptive foraging is 
through rewiring of interactions. In a study by Zhang et al. 
(2011), the emergence of nestedness pattern in pollination 
and frugivory networks has been well reproduced when 
species are allowed to switch their mutualistic partner for 
another one providing higher benefit, as a consequence of 
adaptive foraging strategy. Going beyond the importance 

of adaptive rewiring to the emergence of network structure, 
other studies even explored its implication to network sta-
bility. Ramos-Jiliberto et al. (2012) used a spatially explicit 
model in which species occupy an infinite number of patches 
as habitats, and showed that when animal pollinators have 
the ability to rewire their connections after depletion of 
host plant abundances, the resistance of the network against 
additional extinction induced by primary species removal 
(i.e., network robustness) is enhanced. Moreover, preferen-
tial attachment to host plants having higher abundance and 
few exploiters enhances network robustness more than other 
rewiring alternatives. Foraging effort of pollinators can also 
be incorporated directly as an evolving trait affecting pol-
linator’s growth rate. Indeed, Valdovinos et al. (2013) devel-
oped a population dynamics model based on pollinator’s 
adaptive foraging and projected the temporal dynamics of 
three empirical pollination networks. In their model, asym-
metries between plants and animals were considered based 
on the fraction of visits that end in pollination events, the 
expected number of seeds produced by a pollination event, 
and the amount of floral resources that the animal extracts 
in each visit to a plant. They found that incorporation of 
adaptive foraging into the dynamics of a pollination network 
increases network persistence and diversity of its constituent 
species. Moreover, Song and Fledman (2014) constructed a 
mathematical model that integrates individual adaptive for-
aging behaviour and population dynamics of a community 
consisting of two plant species and a pollinator species. They 
found that adaptive foraging at the individual level, comple-
menting adaptive foraging at the species level, can enhance 
the coexistence of plant species through niche partitioning 
between conspecific pollinators.

Adaptation in mutualistic networks has also been mod-
elled through the evolution of functional traits determi-
nant of the interactions. Such traits are often those that can 
impose important constraints on the interactions, such as the 
proboscis lengths of a pollinator and the flower tube length 
of a plant (Eklöf et al. 2013; Zhang et al. 2013; Hui et al. 
2018). For instance, Olivier et al. (2009) showed that toler-
ance traits (those responsible for minimising fitness cost but 
not reducing encounter rate), as opposed to resistance traits 
(those acting to reduce encounter rate between the inter-
acting partners) are an important factor promoting stability 
of mutualisms. Moreover, they argued that a tolerance trait 
such as the phenotypic plasticity in honeydew production 
can prevent escalation into an antagonistic arms race and 
led to mutualistic coevolution. Using a theoretical model 
based on the interplay between ecological and evolutionary 
processes, Minoarivelo and Hui (2016) studied the evolution 
of phenotypic traits in mutualistic networks. By assuming 
that interactions are mediated by the similarity of phenotypic 
traits between mutualistic partners, they generated certain 
realistic architectures of mutualistic networks. In particular, 
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they showed that a moderate accessibility to intra-trophic 
resources and cross-trophic mutualistic support can result in 
a highly nested web, while low tolerance to trait difference 
between interacting pairs leads to a high level of modular-
ity. Moreover, the similarities between functional traits can 
be approximated by phylogenetic similarities, allowing the 
architecture of bipartite mutualistic networks to be shaped by 
the phylogenies (coevolutionary history) of resident species 
(Rezende et al. 2007; Minoarivelo et al. 2014).

More abstract traits have also been used in modelling 
mutualistic coevolution. For instance, Ferriére et al. (2002) 
defined a trait measured as the per capita rate of commodi-
ties trading which represents the probability per unit time 
that a partner individual receives benefit from a mutualistic 
interaction. They found that the existence of ‘cheaters’, or 
individuals that reap mutualistic benefits while providing 
fewer commodities to the partner species, can lead to the 
coexistence of mutualistic partners and thus is a key to the 
persistence of mutualism. In contrast to their study, West 
et al. (2002) showed that one of the factors that may stabi-
lize mutualistic interactions is when individuals preferen-
tially reward more mutualistic behaviour and punish less 
mutualistic (i.e., more parasitic) behaviour. The stability 
of the plant-legume mutualism was also explained by this 
cost/reward process. Plants that are selected to supply pref-
erentially more resources to nodules that are fixing more 
N2 can be crucial to the establishment of effective legume-
rhizobium mutualisms during biological invasions (Le Roux 
et al. 2017).

Finally, Mougi (2016b) also considers adaptive behav-
ioural network dynamics in a two-interaction (antagonistic 
and mutualistic) community. While adaptive partner switch 
is destabilizing single-interaction communities and does not 
reverse the negative complexity–stability relationship (con-
trary to Kondoh 2003), it stabilizes hybrid communities with 
multiple interaction types and reverts the complexity–stabil-
ity relationship to positive (with complexity measured by 
number of species and connectance, while stability meas-
ured by species persistence).

Conclusions

More than 40 years after May’s (1972, 1973) pioneering 
work, there is still no complete agreement on the complex-
ity–stability relationship in ecosystems. The main issues 
(or rather progress) could be related to the use of different 
definitions and measures for both complexity and stability, 
and the use of model vs. real ecosystem data. Moreover, 
the adaptation and evolution of resident species has only 
recently started being explored, and their contribution to 
the debate is no doubt important, as foreseeable in the rapid 
changes that are affecting our planetary ecosystems in which 

all ecological networks are embedded. Generic evolution-
ary models and models that implement adaptive processes 
thus serve as a promising tool for resolving the debate and, 
importantly, furthering our understanding and better man-
agement of biodiversity in the era of the Anthropocene.
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