1 Title:

2	Ecological, angler and spatial heterogeneity drive social and ecological outcomes in an
3	integrated landscape model of freshwater recreational fisheries
4	
5	Authors:
6	Matsumura, S. ^{1,2,§} , Beardmore, B. ^{2,3} , Haider, W. ^{4*} , Dieckmann, U. ⁵ , Arlinghaus, R. ^{2,6}
7	
8	¹ Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, 501-1193 Japan
9	² Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and
10	Inland Fisheries, Müggelseedamm 310, 12587 Berlin,
11	³ Wisconsin Department of Natural Resources, 101 S. Webster St. Madison, Wisconsin 53707,
12	USA
13	⁴ School of Resource & Environmental Management, Simon Fraser University, 8888
14	University Dr., Burnaby, British Columbia, Canada, V5A 1S6
15	⁵ Evolution and Ecology Program, International Institute for Applied Systems Analysis
16	(IIASA), Schlossplatz 1, 2361 Laxenburg, Austria

17	⁶ Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative
18	Research Institute for the Transformation of Human-Environment Systems (IRI THESys),
19	Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin.
20	
21	* ceased after a tragic bike accident before this manuscript was completed.
22	
23	§ Author for correspondence:
24	Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, 501-1193 Japan,
25	+81-58-2932874, matsumur@gifu-u.ac.jp

26 Abstract

27	Freshwater recreational fisheries constitute complex adaptive social-ecological systems (SES)
28	where mobile anglers link spatially structured ecosystems. We present a general
29	social-ecological model of a spatial recreational fishery for northern pike (Esox lucius) that
30	included an empirically measured mechanistic utility model driving angler behaviors. We
31	studied emergent properties at the macro-scale (e.g., region) as a result of local-scale
32	fish-angler interactions, while systematically examining key heterogeneities (at the angler and
33	ecosystem level) and sources of uncertainty. We offer three key insights. First, the angler
34	population size and the resulting latent reginal angling effort exerts a much greater impact on
35	the overall regional-level overfishing outcome than any residential pattern (urban or rural),
36	while the residential patterns strongly affects the location of local overfishing pockets. Second,
37	simplifying a heterogeneous angler population to a homogenous one representing the
38	preference and behaviours of an average angler risks severely underestimating
39	landscape-level effort and regional overfishing. Third, we did not find that ecologically more
40	productive lakes were more systematically overexploited than lower-productive lakes. We
41	conclude that understanding regional-level outcomes depends on considering four key
42	ingredients: regional angler population size, the angler population composition, the specific
43	residential pattern in place and spatial ecological variation. Simplification of any of these may
44	obscure important dynamics and render the system prone to collapse.

- 45 **Keywords**: anglers, bio-economics, choice model, cross-scale interactions, harvest
- 46 regulations, non-linear feedbacks, multi-attribute utility

47 Introduction

48	Recreational fishers are the dominant users of wild living fish stocks in most inland fisheries
49	and many coastal ones in the industrialized world (Arlinghaus et al., 2015). Recreational
50	fisheries constitute complex adaptive social-ecological systems (SESs) (Hunt et al., 2013;
51	Ziegler et al., 2017), which are characterized by three key features (Arlinghaus et al., 2017):
52	individual and spatial heterogeneity, hierarchical organization across scales (from micro to
53	macro levels) and the presence of non-linearities leading to the potential for regime shifts.
54	Outcomes in complex adaptive SESs at macro-scales (e.g., regionally, nationally or globally)
55	are an emergent, self-organized property of local-level interactions among humans and
56	ecosystems (Levin et al., 2013). For example, in open-access freshwater recreational fisheries
57	local, micro-level interactions of anglers and selected lakes or river sections give rise to a
58	spatial spread of angling effort on the macro-level as anglers select sites that promise high
59	utility. Alternatively framed, the dynamic site choice behaviour of anglers at equilibrium
60	produces regional-level outcomes at the macro-scale, such as degree of overfishing, spread of
61	non-natives fishes and social well-being or conflict (Arlinghaus et al., 2017). If we are to
62	advance our understanding of recreational fisheries as complex adaptive SESs, a focus on the
63	macro-scale outcomes and how they mechanistically result (i.e., emerge) from a range of
64	micro-scale feedbacks among anglers and fish stocks/ecosystems is needed (Arlinghaus et al.,
65	2017). This is particularly the case in freshwater recreational fisheries where there is an

66	exceedingly large individual (i.e., angler-level) and spatial heterogeneity (i.e., among lake
67	variation in ecological quality) and where cross-scale feedbacks among social and
68	environmental subsystems are commonly observed (Arlinghaus et al., 2017; Mee et al., 2016;
69	Wilson et al., 2016; Ziegler et al., 2017).
70	One characteristic, yet managerially largely overlooked feature of most freshwater
71	recreational fisheries is their spatial structure, both in terms of spatial variation in productivity
72	of different ecosystems (Kaufmann et al., 2009; Lester et al., 2003; Post et al., 2008; Shuter et
73	al., 1998) as well as spatial variation in residential patterns of the human forager in terms of
74	where anglers live relative to the available resource patches (lakes, river section) they seek.
75	Broadly speaking, a water-rich freshwater fisheries landscape can be exploited by human
76	foragers living a small number of large metropolitan areas (e.g., Post et al., 2008) or human
77	foragers may reside in rural contexts in a multitude of individual villages and towns spread in
78	the landscape. The residential structure affects travel costs, which is a key component of
79	angler utility and hence site choice (Hunt 2005; Post et al., 2008). Therefore, the fishing
80	pressure on any given locality will be a function of where the forager population is
81	geographically located relative to the locality, but no systematic research is available on this
82	topic.
83	Overall, few studies on the landscape dynamics of freshwater recreational fisheries
84	exist, most of which are from North America (Askey et al., 2013; Carpenter & Brock, 2004;

85	Hunt et al., 2011; de Kerkhove et al., 2015; Mee et al., 2016; Post & Parkinson, 2012; Post et
86	al., 2008; Shuter et al., 1998; Wilson et al., 2016; Ziegler et al., 2017). Most of these studies
87	were focused on how overfishing and other regional outcomes related to an urban residential
88	pattern of the human forager population (e.g., Carpenter & Brock, 2004; Hunt et al., 2011;
89	Post et al., 2008), modelled one specific landscape characterized by a unique management
90	approach (e.g., stocking-based rainbow trout, Oncorhynchus mykiss, fishery in British
91	Columbia near Vancouver, Post et al., 2008) and omitted addressing systematic effects of
92	heterogeneity within the forager (angler) population by focusing on angling effort as an
93	aggregate outcome (Camp et al., 2015; Post et al., 2008). This is a relevant shortcoming
94	because angler diversity in preferences and behaviour is likely to strongly affect feedbacks
95	among social and ecological subsystems (Johnston et al., 2010) and thereby dictate
96	regional-level outcomes (e.g., where overfished stocks are expected to happen, Hunt et al.,
97	2011).
98	To further our understanding about which outcomes to expect from the localized
99	interaction of fish and anglers at the landscape scale, the construction of process-based
100	simulation models carrying sufficient mechanistic detail about the main driving mechanisms
101	(e.g., compensatory reserve of fishes varying in productivity across lakes or site choice
102	process exhibited by heterogeneous anglers) is needed (Fenichel et al., 2013a; Schlüter et al.,
103	2012). Process-based modelling approaches seem warranted because the complex adaptive

104	system of recreational fisheries is characterized by many non-linear feedbacks whose joint
105	effects are difficult to be predicted beyond the sphere of observed parameters in
106	correlation-based models (Arlinghaus et al., 2017; Fenichel et al., 2013a; Hunt et al., 2011;
107	Schlüter et al., 2012;). One key ingredient to include in models of the SES of recreational
108	fisheries is a mechanistic model of angler behaviour (Abbott & Fenichel, 2013; Allen et al.,
109	2013; Fenichel et al., 2013a; Johnston et al., 2015). Explicitly representing the mechanisms of
110	site choice by anglers and how site-choice behaviour is affected by both catch and non-catch
111	related experience preferences can lead to strongly differing predictions about the distribution
112	of foragers and ultimately regional-level outcomes compared to models where the behaviour
113	of anglers is simplified to those determinants that would drive natural foragers, e.g., expected
114	catch rates (Hunt et al., 2011; Johnston et al., 2010; Matsumura et al., 2010).
115	We aimed at studying regional-level overfishing patterns and social outcomes in a
116	rich class of recreational fisheries landscapes that varied in the geographical distribution of
117	the human forager population, using a general social-ecological model that involved an
118	empirically estimated mechanistic model of site choice of anglers, while accounting for
119	ecological variation among lakes and angler heterogeneity in preferences and behaviour. We
120	wanted to go beyond existing landscape investigations that were usually tailored towards one
121	specific residential pattern and geography and thereby provide general insights into which
122	spatial patterns of effort, yield, angler well-being and overfishing to expect in varying

123	residential scenarios, for varying angler population sizes and for anglers and lakes varying in
124	key features (preferences or productivities, respectively). We sought answers to three key
125	questions:
126	1. Which systematic impact on regional-level outcomes in an open-access freshwater
127	recreational fishery can be expected from variation in residential patterns of the human
128	forager population ranging from urban to rural?
129	2. Which systematic effects on regional-level outcomes can be expected to arise from
130	heterogeneity in angler preferences and behaviour?
131	3. Which systematic effects on regional-level outcomes can be expected to arise from
132	among-lake ecological heterogeneity in productivity and carrying capacity?
133	Related to these three objectives, we hypothesized (H1) that a rural residential pattern will
134	even out landscape-level overfishing and render the placement of overfished stocks less
135	concentrated around urbanities (the latter was usually reported from urban fisheries
136	landscapes, Hunt et al., 2011; Post et al., 2008), (H2) that angler heterogeneity will aggravate
137	regional overfishing by spreading effort in space to also remote fisheries (Ward et al., 2013b),
138	and (H3) that we will continue to find little evidence for more productive fisheries being
139	systematically overexploited by anglers that follow a multi-dimensional utility function when
140	searching for fishing sites in space (Hunt et al., 2011).
141	The rationale for the third and last hypothesis is that anglers are known to choose

142	lakes following a multi-dimensional utility function where various non-catch dimensions of
143	the angling experience (e.g., social aspects, distance, costs, harvest regulations) affect the
144	expected utility of a site or ecosystem to anglers in addition to those dimensions that are
145	strongly about catch expectations (e.g., catch rate, size of the fish that are captured)
146	(Arlinghaus et al., 2014; Cole & Ward, 1994; Hunt 2005; Johnson & Carpenter, 1994;
147	McFadden, 1973). Moreover, anglers are known to be highly heterogeneous in their
148	preferences and behaviours (Anderson, 1993; Beardmore et al., 2011; Cole & Ward, 1994;
149	Dorow et al., 2010; Fenichel & Abott, 2014; Johnston et al., 2010; Wilde & Ditton, 1994),
150	which will strongly affect where in space a particular angler type will be attracted to (Hunt et
151	al., 2011; Ward et al., 2013a, b). If anglers, however, would be mainly attracted to a given
152	fishery by the expected catch rates with only minor importance attached to other attributes of
153	the lake and the fishing experience in general (e.g., distance, crowding), the classic ideal free
154	distribution framework (Fretwell & Lucas 1970) from behavioural ecology would allow the
155	clear-cut prediction that lakes offering higher catch rates (i.e., more productive fisheries)
156	should be systematically overexploited (Parkinson et al., 2004). Our own pervious work,
157	however, has revealed that such expectations are not warranted (Hunt et al., 2011). Instead,
158	deviations from a catch-based ideal free distribution (where at equilibrium all lakes
159	supposedly offer a regional average catch quality, Mee et al., 2016) should be the norm 1)
160	when angler's site choice is sub-optimal (by choosing the lake with the highest expected

161	utility probabilistically rather than deterministically), and 2) when multiple attributes in
162	addition to catch affect site choice. Both dimensions – suboptimal lake choice and multiple
163	non-catch attributes providing utility – should foster a dynamic equilibrium that maintains
164	between-lake variation in catch rates and other measures of catch qualities (Hunt et al., 2011;
165	Matsumura et al., 2010), but this predictions remains to be fully explored in the present paper.
166	We designed our work to provide a comprehensive examination of the systematic
167	impacts of spatial and angler heterogeneity assuming a mechanistic model of angler behaviour
168	following utility theory. Our research is meant to constitute a strategic modelling experiment
169	(as opposed to a tactical modelling approach that looks for insights in relation to a very
170	specific fisheries landscape) about social and ecological regional-level outcomes to be
171	expected when anglers interact in a localized fashion with spatially structured lakes. The
172	behavioural model of angler site choice we use was informed by empirical data from stated
173	behaviour of anglers in Germany (Beardmore et al., 2013), and the fish biological component
174	was calibrated to empirical data of the northern pike (Esox lucius). We assume anglers are
175	human foragers, who seek fitness in utility units. We choose pike as the target species due to
176	its circumpolar distribution in most lakes of North America and Eurasia and because pike is a
177	heavy sought species by many anglers across its native range (Arlinghaus & Mehner, 2005;
178	Crane et al., 2015). Despite this calibration, our model provides generic insights into
179	outcomes to be expected from individual and spatial heterogeneity in a coupled SES of

180	recreational fisheries. Results of our work are to be seen as hypotheses to be explored in
181	specific fisheries and as explanation for empirical findings reported elsewhere (e.g., Mee et al.,
182	2016). We hope to provide an innovation over existing SES models of recreational fisheries
183	by presenting several outcomes jointly, related to regional-level ecological objectives (e.g.,
184	regional overfishing), regional-level economic objectives (e.g., regional angler welfare) and
185	more traditional fisheries objectives (e.g., average catch rates and effort distribution). Thereby,
186	our work contributes to the importance of being explicit about management objectives in
187	assessing regional-level outcomes of fish-angler interactions (Fenichel et al., 2013b). Finally,
188	our work also offers some strategic management implications into expected ways how
189	traditional management tools designed to affect either people (through harvest regulations) or
190	fish stocks (through activities such as habitat enhancement or stocking) may play out when
191	anglers and fish stocks thriving in spatially and ecologically varying ecosystems are linked
192	through site choice behaviour of a heterogeneous angler population in freshwater landscapes.
193	
194	The model
195	Spatial structure
196	We designed a freshwater fisheries landscape in silico, constructing a two-dimensional square
197	lattice of 11×11 (=121) lakes, each of a small size of 10 ha. The size was chosen so that
198	angler crowding would be present at high-use fisheries, which reduces attractiveness of a lake
199	(Arlinghaus et al., 2014; Hunt 2005). The distance to a closest neighbouring lake was

200 assumed to be 15 km. We present two extreme residential patterns - uniform ("Rural") and 201 concentrated ("Urban"). In the rural case, anglers were assumed to live in towns (of identical 202 population sizes) adjacent to lakes across the landscape. In the concentrated urban case, all the 203 anglers were assumed to live in a large city located nearby the central lake of the lattice. We 204 also examined intermediate cases as larger cities (harbouring anglers) scattered through the 205 landscape. As these intermediate cases were found to be always intermediate to the rural and 206 the urban cases, we decided to not present the data in this paper to simplify the presentation. 207 Following the pioneering landscape studies of Carpenter and Brock (2004) and Hunt et al. 208 (2011) and arguments expressed elsewhere (Fenichel et al., 2013a; Johnston et al., 2010), 209 anglers were assumed to move between spatially segregated and ecologically independent 210 lakes according to the (multidimensional) utility each lake provides (for details, see further 211 below). In behavioural ecological terms, the human forager was assumed to select a lake 212 according to the "fitness" offered by a patch (lake) (as assumed in the ideal free distribution 213 theory, Fretwell & Lucas, 1970), with fitness being defined as utility units to anglers rather 214 than prey intake rate as would be the case in natural forager. 215 216 Fish population dynamics 217 To represent fish populations striving in each of the ecologically unconnected 121 lakes, we 218 used an age-structured model with multiple density-dependent population regulation

219 processes affecting survival and growth and size-dependent survival and fecundity,

220	parameterized with empirical data for pike (Tables 1, 2, Fig. 1). The model is fully presented
221	elsewhere (Arlinghaus et al., 2009, 2010; Matsumura et al., 2011). Briefly, pike growth was
222	modelled with a bi-phasic growth model (Lester et al., 2004; equation 1 in Table 1), where
223	juvenile growth rate is a function of biomass density following empirical data from
224	Windermere (UK). Changes in juvenile growth affect post-maturation growth and the final
225	length that can be attained (Lester et al., 2004). Changes in the biomass density not only affect
226	body length but also fecundity in a density-dependent fashion as reported for pike (Craig &
227	Kipling, 1983).
228	The first year survival was modelled using a stock-recruitment relationship assuming
229	Ricker stock-recruitment typical for cannibalistic species such as pike (Edline et al., 2007) of
230	the form
231	$N_1/N_L = \alpha \exp(-\beta N_L),$
232	where N_1 and N_L represent the density of age-1 fish and hatched larvae, respectively; α
233	defines the maximum survival rate from spawning to recruitment (i.e., age-1) at low spawner
234	density, and β describes the strength of density-dependent interactions influencing the cohort's
235	survival (Walters & Martell, 2004). Alternatively termed, β is the rate of decrease of
236	recruits/spawner as spawner density increases. Both α and β determine the intrinsic quality of
237	the pike stock, but only α strongly affects the slope of the stock-recruitment curve near the
238	origin and thus the per capita number of recruits at low population density (Walters & Martell,

239	2004). By contrast, β determines the maximum recruitment and has little effects on the slope
240	near the origin. As most pike stocks were exploited in our model and hence had lower
241	(exploited) spawning stock biomasses than the virgin population sizes, α determines the
242	resiliency of the stock to harvest at low stock sizes and thus the population's productivity in
243	the exploited state. By contrast, β mainly shapes the carrying capacity of a lake for recruits
244	and not the per capita production of recruits at low population sizes. Consequently, we used
245	among-lake variation in α to represent variation in productivity of pike stocks, and variation
246	in β to represent variation in carrying capacity among lakes. Parameter values of the
247	stock-recruitment function (i.e., the mean values of α and β) were determined to approximate
248	an empirical relationship reported by Minns et al. (1996) for pike (Table 2).
249	The pike populations in the 121 lakes differed either in productivity, represented by
250	the parameter α (which as above mainly governs the slope of the stock-recruitment
251	relationship at low stock sizes), or in the stock's carrying capacity, represented by the
252	parameter β (which as above governs the maximum number of recruits). The variation of
253	the two parameters represented lake heterogeneity in pike population biology and was
254	assumed to follow a lognormal distribution around a mean. The spatial distribution of lakes
255	was assumed independent of the lake's biological properties (productivity or carrying
256	capacity), i.e. there was no correlation in the pike stock's biological properties in
257	neighbouring lakes.

258	Natural survival after year one was modelled using a size- and density-dependent
259	empirical relationship published for Windermere pike by Haugen et al. (2007) (equation 9 in
260	Table 1). Fishing mortality was modelled with a standard catch equation (equation 10 in Table
261	1) where catch is determined by effort, abundance and the (constant) catchability coefficient
262	typical for pike (Arlinghaus et al., 2009). Captured fishes were taken home unless protected
263	by regulations, in which case some level of mortality happened due to catch-and-release
264	mortality and non-compliance mortality with regulations following empirical findings for
265	freshwater predatory fish captured by anglers (Muoneke & Childress, 1994; Sullivan, 2002)
266	(equations 13 and 14 in Table 1). Further details on the model can be found in the publications
267	mentioned above as well as Table 1.
268	
268 269	Mechanistic model of site choice by anglers
268 269 270	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a
268269270271	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011;
 268 269 270 271 272 	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011; Johnston et al., 2010). We choose the most general (i.e., species independent) multi-attribute
 268 269 270 271 272 273 	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011; Johnston et al., 2010). We choose the most general (i.e., species independent) multi-attribute utility model published so far on recreational anglers when they are confronted with the
 268 269 270 271 272 273 274 	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011; Johnston et al., 2010). We choose the most general (i.e., species independent) multi-attribute utility model published so far on recreational anglers when they are confronted with the choice of choosing lakes in space as a function of travel distance and other utility-determining
 268 269 270 271 272 273 274 275 	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011; Johnston et al., 2010). We choose the most general (i.e., species independent) multi-attribute utility model published so far on recreational anglers when they are confronted with the choice of choosing lakes in space as a function of travel distance and other utility-determining attributes of the fishing experiences, such as expected catch rate, expected size, regulations,
 268 269 270 271 272 273 274 275 276 	Mechanistic model of site choice by anglers We followed economic utility theory when designing a model to represent a probabilistic-based site choice behaviour by anglers (Fenichel et al., 2013a; Hunt et al., 2011; Johnston et al., 2010). We choose the most general (i.e., species independent) multi-attribute utility model published so far on recreational anglers when they are confronted with the choice of choosing lakes in space as a function of travel distance and other utility-determining attributes of the fishing experiences, such as expected catch rate, expected size, regulations, crowding and biological status of the fish stock (Beardmore et al., 2013; Johnston et al., 2015).

278 Beardmore et al. (2013) were analysed with a latent class choice model as well as in an 279 aggregate fashion to come up with the average angler in the population (see supporting 280 information). Latent class models statistically determine groups that are maximally different 281 in their preferences (Swait, 1994). We found that a 4-class model explained the data 282 statistically well, which divided anglers into four types in terms of maximal variation in site 283 choice preferences; these anglers were classified in three angler types varying by degree of 284 recreational specialization (from casual to committed, see Johnston et al., 2010 for a 285 summary) in the study region and one highly specialized angler that had a preferences for 286 fishing intensively beyond the study region (see supporting information for details). To study 287 how this heterogeneity of anglers affected our model outcomes, we also studied the 288 exploitation patterns of homogeneous anglers (1-class model) where all the anglers are 289 assumed to be equal in their preferences. Including heterogeneity directly followed the 290 framework of Johnston et al. (2010, 2013, 2015) assuming that anglers vary in importance 291 (the so-called part-worth utility, PWU, estimated from the random utility model, see 292 supporting information for details) attached to specific attributes of the fishing experience and 293 hence behave differently as the fishing environment changes. Estimated parameter values of 294 the 4-class (heterogeneous anglers) and 1-class (homogeneous anglers) models are shown in 295 Table 3.

296

In our simulations, anglers were assumed to choose a fishing site (i.e., a lake)

297	offering maximum utility compared to all other utilities offered by all other lakes and to move
298	to the lake with the highest utility probabilistically (equations 16 and 17 in Table 1). Note that
299	although this model assumed utility maximization and perfect knowledge of the utility offered
300	by all lakes, the actual choice was not deterministic but probabilistic (i.e., suboptimal)
301	(equation 17 in Table 1), similar to Matsumura et al. (2010) and Hunt et al. (2011). This
302	agrees with the assumption of bounded rationality common to humans. The weighing factor
303	4/121 in the equation reflected the fact that survey respondents in the stated choice
304	experiment by Beardmore et al. (2013) had four alternative lakes in the region in addition to
305	the options for fishing outside the region and no fishing (see supporting information), while
306	our virtual anglers had a choice of 121 lakes in their landscape.
307	In the simulations, anglers were assumed to have perfect information about the
308	average fish number to be expected from each lake, the maximum size of fish to be expected
309	at each lake, and the number of anglers seen at each lakes using information from the
310	preceding year. This might be considered unrealistic, but novel communication means permit
311	spread of information about expected catch rates and other lake attributes quickly. However,
312	we did not consider knowledge about stock status to affect angler choice because it is
313	unrealistic that managers can derive this information every year; we thus kept the attribute
314	value at "no knowledge" in all simulations (Table 3). The maximum size of fish captured at
315	each lake was defined as the 95th percentile of the size distribution of fish caught at the lake

316	during the preceding year. All anglers at a particular lake were assumed to see each other
317	because of the small size of lakes (10 ha). The annual licence cost for angling in the region
318	was fixed at 100 \in , which represents a typical value for licence money in Germany
319	(Arlinghaus et al., 2015).
320	
321	Regional outcome metrics
322	We kept track of a range of social, economic and ecological outcome metrics at the regional
323	level used to assess the emergent properties of fish-angler interactions at the landscape levels.
324	In terms of social and economic metrics, the choice experiment included two
325	dimensions of monetary costs that can be used to quantify the (realized) utility of fishing
326	offered at equilibrium. One was related to travel distance and one related to the direct
327	inclusion of a monetary cost variable (i.e., annual license cost in Euro). The coefficient
328	estimated for the latter variable directly represented the marginal utility of income (i.e., the
329	disutility of losing money), which was used to calculate changes in economic welfare
330	perceived by anglers at equilibrium for each lake and in an aggregated fashion for the
331	landscape following standard economic theory (Hahnemann 1984; for an application to
332	angling, see Dorow et al., 2010). Economic welfare relates to the notion of well-being by
333	anglers as demand; it is a more suitable concept to economically rank policy options in
334	recreational fisheries studies than the notion of supply that is focused on provision of fishing
335	opportunities, such as catch rates. This is because such a supply perspectives neglects all other

336	components of angler utility and well-being other than catch, including spatial aspects related
337	to the location of lakes in a landscape (Cole & Ward, 1994). Put simply: a high catch rate
338	fishery maintained close to home produces more benefits to anglers than the same catch rate
339	offered in remote locations (Cole & Ward, 1994), and this difference in utility can only be
340	measured by the welfare concept, not by catch rates. Note how previous landscape models
341	have measured the catch-based fishing quality in separate "travel zones" or "regions" in the
342	landscape (Mee et al., 2016; Parkinson et al., 2004; Post et al., 2008; Wilson et al., 2016),
343	which conceptually controls for the disutility of travel. Still such research strictly speaking
344	only integrates costs, catch rate and size of fish (as components of fishing quality) as
345	generating utility to anglers. Our approach differs as the utility of a given lake is a function of
346	multiple catch- and non-catch related utility components (harvest regulations, size of fish,
347	catch rate, distance, cost, crowding). Most importantly the regional-level utility at equilibrium
348	across all lakes therefore becomes an emergent property of fish-angler interactions and not
349	one that is assumed a priori as done in related work (Parkinson et al., 2004).
350	Economic welfare captures the integrated nature of utilities (benefits) offered by
351	fishing opportunities and hence represents a measure of social yield (Johnston et al., 2010,
352	2013, 2015). Note that economic welfare is always a relative measure of well-being emerging
353	from a policy option A compared to some status quo or a policy option B (Cole & Ward,
354	1994; Fenichel et al., 2013b), i.e., welfare is assessed at the "margins". We applied such a

355	welfare perspective, rather than potentially incomplete surrogate such as experienced catch
356	rates or catch-based "fishing quality", to model runs with and without one-size-fits all harvest
357	regulations to examine the change in regional level angler welfare stemming from regulations
358	and the resulting changes in all lake-specific and utility-determining attributes of the
359	experience directly or indirectly caused by regulation changes (Fig. 1, Welfare measure). The
360	change in welfare was approximated by the change in the sum of anglers' lake-specific
361	willingness to pay (WTP) for a particular scenario compared to the baseline scenario and was
362	represented in monetary units (\in) (Hahnemann, 1984, equations 17 and 18 in Table 1).
363	We choose the no regulation scenario as the baseline and used alternative scenarios
364	for harvest regulations to evaluate change in WTP when the common set of harvest
365	regulations was introduced in the model. Because the marginal change in income was
366	represented by the utility loss of annual license cost, the change in WTP (Z_i of equation 18 in
367	Table 1) represented the average change in the angling quality of angler per year for the
368	angling quality in the entire region, i.e., welfare was a regional-level outcome metric. To
369	relate our work also to previous catch-rate utilities, we also kept track of regional effort shifts
370	and catch rates where needed to address our objectives.
371	From an ecological perspective, we estimated additional commonly used
372	regional-level biological/ecological outcomes (Fig. 1, Conservation measures). Two outcome
373	criteria were used to represent the status of exploited stocks at equilibrium. We chose these

374	criteria because they were common single-species stock assessment reference points used for
375	indicating overfished status (Worm et al., 2009). Accordingly, we defined a pike population in
376	a given lake to be overexploited (i.e., recruitment overfished) when its spawning stock
377	biomass (SSB) was less than 35% of its pristine, unexploited SSB (Allen et al., 2009; Mace,
378	1994). We considered the pike stock in a given lake collapsed if its SSB was less than 10% of
379	its pristine SSB following Worm et al. (2009) and Hunt et al. (2011). We aggregated the
380	number of exploited or collapsed stocks over the region, to represent regional-level
381	conservation outcomes.
382	
383	Outline of analysis
384	Numerical simulations were carried out for a parameter set chosen (Tables 1, 2) to describe
385	size-selective recreational fishing on spatially structured pike stocks by regionally mobile
386	anglers with and without the presence of one-size-fits all harvest regulations. Similar to Hunt
387	et al. (2011), we conducted discrete annual time-step simulations for each management
388	scenario at a particular size of the angler population for a given residential pattern until the
389	fish and angler populations reached a dynamic equilibrium after about 150 years. We used 10
390	different randomized patterns of the lake distribution and calculated an average of the 10
391	patterns as a value representing each simulation run.
392	In the simulations, we tested several scenarios or varied several variables

393 systematically (elements shown in grey in Fig. 1). When we introduced our welfare measure, 394 we considered two sets of harvest regulations: a no regulation case and a traditional 395 one-size-fits all harvest regulation scenario to correspond with typical situations in many 396 freshwater fisheries landscapes and to represent extremes. In the traditional one-size-fits all 397 regulation scenario, we used a combination of a minimum-length limit of 50 cm and a daily 398 bag limit of 3 pike per angler day, which is common in Germany (Arlinghaus et al., 2010) and 399 some areas in North America (Paukert et al., 2001). In all simulations, we systematically 400 varied the size of the angler population, which we call potential regional angling effort (to 401 distinguish it from the realized angling effort, which is an emergent property of fish-angler 402 interactions locally and in the region; usually only 40-60 % of the potential is realized effort). 403 We ran simulations with and without the presence of ecological heterogeneity, with and 404 without the presence of angler heterogeneity (by either assuming the 1-class or the 4-class angler models, Table 3) and for varying attributes of lake heterogeneity (varying the slope of 405 406 the stock-recruitment function or the carrying capacity) while systematically varying the 407 angler population size because the latter has been found before to strongly affect regional patterns of overfishing (Hunt et al., 2011). 408 409 We evaluated regional level outcomes at the dynamic equilibrium by examining both 410 conservation objectives (SSB) as well as social and economic objectives (biomass yield,

411 angler welfare and occasionally catch rates). Although angler welfare integrated catch rates

412	endogenously, we singled out catch rates at equilibrium across lakes to systematically assess
413	catch-based IFD assumptions commonly expressed in landscape studies of freshwater
414	recreational fisheries (Mee et al., 2016; Parkinson et al., 2004).
415	
416	Results
417 418	Objective 1 – the residential pattern shapes the geographical location of effort and overfishing, but not overall frequency of overfished stocks
419	When lakes were homogenous in their ecology and the (heterogeneous) angler population
420	lived in one central urbanity in the landscape, the spatial distribution of angling effort (Fig. 2
421	second row) and lake-specific overfishing (Fig. 3 second row) systematically spread from the
422	urban centre towards the periphery of the landscape as the potential regional angling effort
423	density (AED) increased. Note that the overall level of the potential AED the landscape could
424	support was strongly affected by the presence (Figs. 2 and 3) or absence (Figs. S2 and S3) of
425	harvest regulations in place: harvest-regulated landscapes required much larger potential AED
426	before the stocks collapsed entirely. In the urban landscape, the domino-like spread of
427	overfishing from the central urbanity to the periphery was largely similar in ecologically
428	homogenous and ecologically heterogeneous lake landscapes when lake heterogeneity was
429	represented either by variation in productivity or variation in carrying capacity in relation to
430	the underlying pike stock-recruitment relationship (presence of regulations, Figs. 2 and 3,
431	absence of harvest regulations, Figs. S2 and S3). In both cases, lakes near the metropolis

432	attracted more angling effort than more remote lakes unless regional fishing effort became
433	excessively large for fish populations to withstand the angling pressure (Figs. S9–11).
434	The spatial pattern of lake-specific angling effort densities and overfishing at
435	equilibrium was different in the rural landscape (Figs. 2 and 3 first row) compared to the
436	urban landscape (Figs. 2 and 3 second row), particularly in relation to the distribution of
437	angling effort (Fig. 2). Compared to the urban case, in the rural landscape scenario there was a
438	much more uniform geographic placement of angling effort (Fig. 2, Fig. S2) and overfishing
439	(Fig. 3, Fig. S3). In the rural landscape the lake heterogeneity in productivity and in carrying
440	capacity also exerted more influence on effort density patterns and regional-level overfishing
441	than in the urban case when comparing outcomes to the homogenous lake ecology. These
442	effects of the rural spatial structure were particularly pronounced in the one-size-fits all policy
443	scenario (Figs. 2 and 3) compared to the no-regulation case (Figs. S2 and S3). In general,
444	lakes with greater potential for generating high catch-rate fisheries systematically attracted
445	more effort, but the effect was much stronger in relation to variation in the slope of the
446	stock-recruitment curve (productivity) than in variation of the carrying capacity (see
447	Objective 3 below for details).
448	The analysis so far suggests that the location of attracted effort and overfishing is
449	strongly driven by the potential AED (representing the size of the regional angler population
450	in relation to available fisheries) and the residential pattern. By contrast, the aggregated

451	regional-level outcomes of fish stock-angler interactions in terms of number or the fraction of
452	overfished stocks, the average regional biomass yield (kg of pike per ha per year), and in the
453	case of comparing a regulated landscape to an unregulated case also angler welfare gains,
454	were found to be largely independent of the residential pattern or the presence or absence of
455	lake heterogeneity both in the one-size-fits all harvest regulation (Fig. 4) as well as in the
456	no-regulation scenario (Fig. S4). It was also largely irrelevant for overall landscape patterns of
457	overfishing, which particular feature of lake heterogeneity varied in space (productivity vs.
458	carrying capacity, Fig. 4). What overwhelmingly drove overall landscape outcomes was
459	merely the size of the regional angler population in relation to available fishing area, i.e.,
460	potential AED, which often led to a realized effort to be less than 50% of the potential AED
461	(Fig. 4, Fig. S4). For the parameter set we choose, in the no regulation case, a potential AED
462	of about 80-90 angling-h ha ⁻¹ led to regional-level maximum sustainable yield (MSY), but
463	also to a sizable fraction of about 20-40% of recruitment-overfished stocks under
464	regional-level MSY (Fig. S4). Note that the fraction of overfished stocked rapidly increased
465	when the potential AED moved from 80 to about 110 angling-h ha ⁻¹ , and correspondingly the
466	regional-level yield dropped, suggesting that a management strategy focused on regional-level
467	MSY may render the system vulnerable to overfishing. There were corresponding trends in
468	the regulated landscape, albeit at higher potential AED levels because the populations were
469	better protected from overharvest (Fig. 4). Relative to the no-regulation case and at identical

470	potential AED, one-size fits all harvest regulations led to more realized effort attracted to the
471	landscape, a reduction in the number of overexploited lakes and maintenance of higher
472	regional yield, which also held at large potential AED values (Fig. 5). In contrast to the
473	biomass yield, average angler welfare constantly rose with increasing potential AED in the
474	regulated landscape (Figs. 4 and 5). This finding was caused by the poor state of fishing in the
475	unregulated case in the absence of regulations (Fig. S4) used as a baseline to estimate welfare
476	gains (Fig. 4). Therefore, as a regional-level metric, angler welfare does not show a maximum
477	that may be used as a management target (Figs. 4 and 5) as long as the unregulated case is
478	used as a baseline. By contrast, regional MSY followed dome-shaped patterns typical for
479	exploited fish populations in single lakes and thus maybe used as a regional management
480	objective among others.
481	
482 483	Objectives 2 – heterogeneous anglers exert greater cumulative fishing pressure in the region than homogenous populations of anglers
484	When we assumed an average empirically grounded angler type estimated from the same
485	choice data for German anglers, we found quite different ecological and social outcomes
486	compared to when we assumed heterogeneous anglers in the model. Figure 6 presents the
487	results for a one-size-fits-all harvest regulation policy, and the corresponding unregulated
488	outcomes of angler heterogeneity are shown in Figure S5. The number of overexploited lakes
489	predicted in the 1-class model (homogeneous angler model) was always smaller than the

490	number of overexploited lakes predicted in the 4-class model (heterogeneous model). One
491	important contributor was the difference in the realized AED, which was always higher when
492	multiple angler types exploited the regional fishery (Fig. 6). The maximum average regional
493	yield did not differ between the 1-class and 4-class models (Fig. 6) because MSY was caused
494	by purely biological properties of the fish stock. However, as the angler population size
495	increased the total regional yield was predictably smaller in the 4-class model because the
496	diverse anglers exerted greater harvesting pressure (i.e., realised angling effort) at the same
497	potential AED compared to homogenous anglers.
498	The aggregated regional welfare of anglers as measured by WTP change from the
499	unregulated to the regulated landscape was substantially greater in the 4-class model
500	compared to the 1-class model. One large contributor to this effect was the more depressed
501	baseline overfishing state at high potential AED in the unregulated landscape (Fig. S5)
502	because the degree of overfishing caused by heterogeneous anglers was much more severe
503	compared to the state of overfishing caused by homogenous anglers. Correspondingly, the
504	welfare gains of regulations were appreciably higher for heterogeneous anglers compared to
505	homogenous anglers. The difference in ecological and social regional outcomes among
506	homogenous and heterogeneous anglers increased as the angler population size increased, but
507	there was very little impact of residential patterns on regional-level outcomes stemming from
508	the presence or absence of angler heterogeneity (Fig. 6).

509	The above mentioned effects of angler heterogeneity were caused by a complex
510	pattern of spatial lake substitution patterns as a function angler preferences interacting with
511	ecological processes of fish stock renewal. Because residential patterns did not matter much
512	for determining the overall regional-level effects of angler heterogeneity (Fig. 6), we confine
513	our example of where specific angler types were fishing in the landscape in the regulated
514	urban case where we separate different travel zones of interest from the metropolis (Fig. 7, see
515	Fig. S6 for the unregulated case). In line with our empirical data from northern Germany, the
516	angler class 1 (committed anglers, supplemental material) made up 51.4% of the entire angler
517	population, but this class accounted for a disproportionally larger proportion of the total
518	angling trips taken by the angler population as a whole. The proportion of class 1 anglers in
519	the total angling effort increased as the distance from the metropolis increased (Fig. 7)
520	because class 1 anglers enjoyed less disutility from travel distance. By contrast, the angler
521	classes 2 and 3 (active and casual anglers) preferred angling in lakes nearby their residence
522	and thus rarely visited remote lakes (in zones 3 and 4 in Fig. 7). When an average type of
523	angler was assumed instead (right panels in Fig. 7), the realised angling effort was overall
524	lower than in the heterogeneous angler model (left panels in Fig. 7). This is because the
525	average angler did not visit the remote lakes in travel zones 3 and 4 as often compared to the
526	numerically dominant class 1 anglers in the heterogeneous model. The difference became
527	more pronounced when the angler population size (potential AED) increased and the

528	corresponding angling quality decreased because this elevated the visits to remote lakes by
529	highly committed class-1 anglers in the heterogeneous population (Fig. 7). We can conclude
530	that regional variation in the residency of different type of anglers will exert complex effects
531	on landscape-scale social and ecological outcomes.
532	
533 534	Objectives 3 – ecological variation in production maintains catch variation unless the angler population size is excessive and lakes vary in carrying capacity not productivity
535	When lakes differed in their carrying capacity in the absence of regulations and were
536	exploited by a large heterogeneous angler population, lakes of higher intrinsic quality
537	(meaning lakes that could maximally host more fishes) tended to be exploited more heavily
538	than lower-quality lakes, as can be inferred from a larger drop in SSB/pristine SSB as pristine
539	SSB levels increased in both rural (Fig. S7b) and urban landscapes (Fig. S8b). In other words,
540	positive correlations between the lake quality and degree of exploitation were found, in
541	particular, when the angler population size was large in all landscape types (Figs. S7b and
542	S8b). As the regional angler population size increased, the difference in the catch rates offered
543	by the lakes in the landscape at equilibrium decreased leading to regional-level
544	homogenization of catch rates among lakes across all lakes varying in carrying capacity in
545	both rural (Fig. S7b) and urban landscapes (Fig. S8b).
546	The landscape pattern of exploitation at equilibrium differed when lakes varied in
547	their productivity at low pike population size (slope of the stock-recruitment curve) instead of

548	the carrying capacity. Compared to lakes varying in carrying-capacity (Figs. S7b and S8b),
549	more productive lakes were exploited less heavily than low-productive lakes, and a
550	homogenization of the exploited SSBs relative to pristine SBB across the productivity
551	gradient, rather than a homogenization of catch rates, emerged as the potential AED increased
552	in both rural (Fig. S7a) and urban landscapes (Fig. S8a). This is in contrast to the inverse
553	relationship among pristine SSB and the exploited SSB/pristine SSB seen before for the
554	variation in carrying-capacity among lakes (Figs. S7b and S8b). Lake heterogeneity in
555	productivity at low population sizes also led to the maintenance of larger catch rates in
556	highly-productive lakes at equilibrium compared to low productive lakes in rural (Fig. S7a)
557	and urban landscapes (Fig. S8a), which contrasted with the more consistent homogenization
558	in catch rate across lakes in all landscape types for lakes varying in carrying capacity (Figs.
559	S7b and S8b). Substantially more variability among lakes varying in productivity persisted in
560	the urban case also at high potential angler densities (Fig. S8a). One reason was the
561	systematic impact of distance on lake attractiveness (utility) to anglers, which maintained fish
562	populations at higher levels as the distance from the metropolis increased (see urban case with
563	no regulations in Fig. S10 compared to rural case with no regulations in Fig. S9). Overall,
564	substantial among-lake variation at the same distance in terms of annual trips that were
565	attracted and the catch rates offered to anglers were maintained at equilibrium when lakes
566	differed in productivity, until the angler population became excessive leading to complete

567 collapse (Figs. S10 and S11).

568	The implementation of a one-size-fits-all harvest regulations (minimum-length limit
569	of 50 cm and daily bag limit of three pike) in all lakes in the landscape modified the
570	association of overfishing and lake quality and the ecological and social outcomes just
571	described (Figs. 8 and 9). However, no complete reversal of the systematic patterns of the
572	relationships of lake heterogeneity and landscape level outcomes mentioned above was found.
573	Instead, some of the features became more pronounced. Overall, the effect of the harvest
574	regulations was most strongly observed in higher-quality lakes than in lower-quality lakes
575	(Figs. 8 and 9). In particular, the difference in the expected catch rates at equilibrium among
576	high-quality and low-quality lakes became more pronounced under harvest regulations, with
577	more productive lakes and lakes with higher carrying capacity generally offering higher catch
578	rates than less productive lakes or lakes with lower carrying capacity in both rural (Fig. 8) and
579	urban landscapes (Fig. 9). The positive correlation between variation in productivity and catch
580	rate was more pronounced than that between variation in carrying capacity and catch rate (Fig
581	8 and 9). In the case where variation in lake quality was arising from variation in carrying
582	capacity, the negative correlation of pristine SSB and the exploited SSB/pristine SSB seen in
583	the absence of regulations (Figs. S7b and S8b) was observed only when the angler population
584	size was very large in both the rural and urban cases (Figs. 8b and 9b). Also, lakes with lower
585	carrying capacity were only exploited more heavily than lakes with large carrying capacity

586	when the angler population size was small and only in a rural scenario (Fig. 8b). In the case of
587	variation among lakes in productivity this effect was even more pronounced, turning the
588	correlation of pristine SSB and the exploited SSB/pristine SSB systematically positive across
589	all levels of the potential AED, with no homogenization of catch rates observed among lakes
590	(Figs. 8a and 9a, see also Figs. S11 and S12 for changes of catch rates with distance). The
591	catch-rate homogenization was much less pronounced or not pronounced at all in the case of
592	variation among lakes in carrying capacity when regulations were present (Figs. 8b and 9b,
593	see also Figs. S11 and S12) compared to the no regulation case (Figs. S7b and S8b).
594	Similar patterns were observed in the urban (Fig. 9) and rural regulated landscapes
595	(Fig. 8) in regulated landscapes compared to the no-regulation case (Figs. S8 and S7). Again,
596	in the harvest-regulated landscape along the gradient of lake quality substantially greater
597	among lake variability pike population size and catch rates and effort attracted was
598	maintained in equilibrium in the rural case (Fig. 8) compared to the urban case (Fig. 9).
599	Substantial variation in effort attracted and catch rates were present at equilibrium for lakes
600	varying in distance in both the rural (Fig. S11) and urban regulated landscapes (Fig. S12).
601	Variation in lakes in productivity led to somewhat greater distance-related variation in effort
602	attracted and catch rates in both landscapes compared to variation in carrying capacity (Figs.
603	S11 and S12).

605 **Discussion**

606	We provide a general framework to examine spatial problems related to fish-stock-angler
607	interactions and thereby contribute to an emerging literature of modelling complex adaptive
608	social-ecological systems (Arlinghaus et al., 2017; Schlüter et al., 2012) where macro scale
609	outcomes (e.g., regional effort distribution and overfishing) emerge from a high number of
610	micro-level interactions (e.g., angler-fish stock interactions) (Levin et al., 2013). Our work
611	presents the most general model for recreational fisheries published so far. It is distinguished
612	from previous landscape models in recreational fisheries (in particular Hunt et al., 2011; Post
613	& Parkinson, 2012; Post et al., 2008) by three key features.
614	First, the fish population model is age-structured, rather than being a biomass model,
615	thereby allowing size-dependent catch expectations and the effects of size-based harvest
616	limits to be represented; both strongly affect utility and thus effort dynamics of anglers
617	(Arlinghaus et al., 2014; Dorow et al., 2010; Hunt 2005) and hence should be included in any
618	realistic model of recreational fisheries (Askey et al., 2013).
619	Second, we used a mechanistic model of angler behaviour, predicted from an
620	empirically estimated multi-dimensional utility function (Beardmore et al., 2013). This
621	allowed regional outcomes to be emergent properties of model runs and avoided to investigate
622	equilibrium conditions "forced" on the model by strong assumptions, such as the one that at
623	an IFD equilibrium all fish stocks should be fished down to an average catch rate (Parkinson

624	et al., 2004). Although intuitively appealing, we think there are limitations in the analogy of
625	anglers and fish forming natural predator-prey systems because the fitness of the human
626	predator (forager) far extends beyond resource intake rates (i.e., catch rates or other measures
627	of catch quality) and thus its behaviour is more complex than the one of natural foragers.
628	Previous modelling work has already shown that assuming anglers to be mainly or
629	exclusively driven in their behaviour by catch expectations can lead to unrealistic predictions
630	about how best to serve their expectations from a management perspective (Johnston et al.,
631	2010). We therefore suggest our model is mechanistically superior to models that assume that
632	human foragers are simply guided by catch expectations, unless one can show that a particular
633	angler population is indeed mainly driven by catch (Hunt et al., 2011). Even in the recent
634	work by Wilson et al. (2016) and Mee et al. (2016) where the trade-offs of expected numbers
635	and size of fish were elegantly expressed using region-dependent catch quality "isopleths",
636	substantial among lake variation in catch qualities remained at equilibrium, suggesting more
637	factors than catch aspects affected lake utility and in turn angler participation and effort
638	allocation. Therefore, we suggest the null model for representing angler behaviour is one that
639	assumes a multi-dimensional utility function composed of both catch- and non-catch
640	attributes, rather than a fitness function exclusively driven by catch expectations.
641	Third, rather than focusing on just selected regional outcomes (e.g., number of
642	overexploited stocks, Hunt et al., 2011; or fishing quality, Mee et al., 2016; Post et al., 2008),

643	we calculated and presented several emerging outcomes jointly, which encompassed
644	regional-level ecological (e.g., regional overfishing) and socio-economic objectives (e.g.,
645	regional angler welfare) as well as more traditional objectives of recreational fisheries (e.g.,
646	catch rates and effort). Thereby, our model accommodated important trade-offs in
647	management objectives and associated criteria explicitly.
648	Our key result is that landscape patterns of overexploitation are an integrated
649	function of angler and lake heterogeneity as moderated by residential pattern, angler
650	population size, the type of lake quality variation (productivity or carrying capacity) and the
651	presence or absence of harvest regulations. In terms of largely robust predictions we 1)
652	confirmed earlier studies that in urban landscapes lakes around the aggregation of effort will
653	receive greater effort and overfishing risk than more remote lakes (sensu Post et al., 2002;
654	Carpenter & Brock, 2004; Post et al., 2008), 2) found that angler population size and angler
655	heterogeneity aggravates the degree of overfishing by spreading effort more across lakes
656	(similar to Johnston et al., 2010 in a single lake case and Hunt et al., 2011 in a regional case),
657	and 3) reported that the previously proposed hypothesis that higher (ecological) quality lakes
658	will be systematically overfished by regionally mobile anglers (Parkinson et al., 2004) and
659	that at equilibrium all lakes (within zones of similar travel distance) will be offering similar
660	catch rates (Parkinson et al., 2004) or catch qualities (Mee et al., 2016; Wilson et al., 2016)
661	are confined to particular cases or empirical systems and cannot be easily generalized. In fact
662	the positive association of lake quality and degree of overexploitation (as judged by SSB
-----	---
663	relative to pristine SSB) was only found for unregulated (be it rural or urban) landscapes at
664	high potential angling effort when lakes varied in carrying capacity, but not in productivity. A
665	further clear-cut result we found was that an increasing angler population size will have
666	systematic overfishing effects and reduce both equilibrium stock sizes and average catch rates
667	irrespective of residential pattern, lake heterogeneity and the presence of angler diversity, but
668	unless we have extreme situations (e.g., exceedingly high potential angling effort), substantial
669	among lake variation in expected catch rates still remained. We discuss our detailed results
670	first with reference to the three objectives stated in the introduction before moving to model
671	limitations and implications for management and policy making.
672	
673	Discussion of the three principal objectives
674	The first key finding of our modelling experiment was that the spatial patterns of angling
675	effort attracted and regional overfishing were dependent on the residential patterns in a given
676	landscape as moderated by the angler population size and was less affected by ecological
677	heterogeneity among lakes. Our work agreed with previous landscape models reporting that
678	overfishing of spatially structured fish stocks proceeds in a systematic fashion from
679	aggregation of high latent angler effort in urban landscapes towards the periphery (Carpenter
680	& Brock, 2004; Hunt et al., 2011; Post et al., 2008), and we found this pattern was not
681	strongly affected by lake heterogeneity in urban environments. At equilibrium urban

682	environments also maintained greater among-lake variation in expected catch rates compared
683	to rural case because urban environments always offered some effort "refuges" in lakes in
684	remote localities. Such effects were not present in rural landscapes, and even in an urban
685	landscape domino-like overharvesting at high angler population sizes did not occur when the
686	landscape was regulated by harvest regulations, supporting earlier work by Hunt et al. (2011)
687	and Post and Parkinson, (2012).
688	Results from urban landscapes have so far dominated the literature on freshwater
689	fisheries landscapes (e.g., Hunt et al., 2011; Post et al., 2008). We show that findings from
690	urban cases do not hold for rural landscapes in relation to the spatial arrangement of
691	overfished stocks when the regional angler population is moderate or low. That said,
692	aggregative metrics of regional-level outcomes, e.g., the total number of overfished stocks,
693	were found to not strongly deviate in urban and rural landscapes and be less affected by lake
694	heterogeneity, suggesting that when the aim is to outline broad-scale outcomes simulation of
695	urban landscapes may prove suitable approximations independent of exact knowledge of
696	local-level productivity of ecosystems.
697	In relation to our second objective we can conclude that simplifying a heterogeneous
698	angler population to a homogenous one, or to aggregates such as "angling effort", in
699	modelling experiments risks severely underestimating landscape-level realized effort and
700	regional overfishing and also strongly affects the location to which effort (and overfishing

701	risk) is attracted. This finding agrees with recent literature reviews who noted that being
702	explicit about which behavioural responses to expect is crucially important for understanding
703	and managing recreational fisheries (Arlinghaus et al., 2017; Ward et al., 2016). Moreover,
704	not accounting for angler heterogeneity in preferences in behaviour underestimates the social
705	welfare gains from harvest regulations and thus also bears strong relations to economic and
706	managerial dimensions (Cole & Ward, 1994). Our work confirms single-lake bio-economic
707	models in recreational fisheries showing that accounting for variation in angler types through
708	the integrated nature of multi-attribute angler utility is important for inferring fish population
709	developments and identification of optimal input and output regulations that maximize
710	benefits to anglers and minimize ecological impacts (Johnston et al., 2010, 2013, 2015).
711	Hence, it is not only of narrative importance of being explicit about which angler typologies,
712	and relatedly variation in preferences and behaviour, exist in a given SES of recreational
713	fisheries if the aim of the modelling experiment is to provide robust insights for management
714	(sensu Cole & Ward, 1994; Fenichel and Abbott 2014; Johnston et al., 2010; Post et al., 2008).
715	Our finding about the large importance of angler diversity for outcomes constitutes a relevant
716	innovation because all previous landscape models of recreational fisheries have either
717	assumed various scenarios of homogenous anglers (that vary by importance attached to catch
718	vs- non-catch utility components, Hunt et al., 2011) or have aggregated effort of all angler
719	types jointly (Camp et al., 2015; Post et al., 2008), sometimes further separate by "travel

720	zones" that control for the systematic effort sorting effect caused by angler variation in
721	accepting travel costs for the benefits of accessing lakes offering high utility (Mee et al.,
722	2016). We think that future studies are well advised to be more explicit about which angler
723	type the model is designed to represent, and we suggest that the angler specialization
724	framework is particularly suited to address angler heterogeneity (Bryan 1977; Johnston et al.,
725	2010). Different angler types not only differ in their travel propensity, but may also strongly
726	differ in their skill and catchability (Johnston et al., 2010; Ward et al., 2013a,b), which we did
727	not explicitly model. Further work on the relationship of angler preferences and
728	skill/catchability is needed to improve the modelling of angler heterogeneity on landscapes.
729	In relation to our third and last objective, we confirmed previous studies (in
730	particular Hunt et al., 2011) that the assumed positive correlation among exploitation impact
731	and the ecological quality (productivity and carrying capacity) of a given lake (Parkinson et
732	al., 2004) is to be expected only under very particular conditions and is by no means a general
733	result. By the same token, according to our work and others (Hunt et al., 2011; Matsumura et
734	al., 2010), a catch-based IFD where the lake-level catch rates, or more generally catch-based
735	fishing qualities (Mee et al., 2016; Wilson et al., 2016), are homogenized across a region is
736	not to be generally expected in recreational fisheries. In fact, based on our model we claim
737	that the systematic overexploitation of high quality fisheries should not be expected as a
738	default, and we also found limited evidence in our model for systematic homogenization of

739	catch rates across lakes. These results agreed with previous modelling studies that also used a
740	multi-dimensional utility function driving angler behaviour (Hunt et al., 2011) or assumed
741	suboptimal patch choices of foragers (Matsumura et al., 2010) similar to the way we
742	represented site choice behaviour of human foragers in our model. We are thus confident that
743	our findings about departures of catch-based IFD relate to the mechanistic assumption that the
744	fitness of the human forager relates to multiple dimensions, both catch- and non-catch related,
745	and that human foragers suboptimally and probabilistically choose lakes offering the highest
746	utility. Landmark work by Wilson et al. (2016) and Mee et al. (2016) that report that anglers
747	homogenize catch qualities to size-number quality isopleths in regions differing by travel
748	costs from the urban environment of Vancouver in fact "control" for three key dimensions of
749	utility to anglers (size, catch rate and distance). Although some form of IFD was found in
750	their stocking-based rainbow trout fisheries, substantial among lake variation in equal travel
751	zones remained, most likely because other aspects than those measured affected angler utility
752	and hence site choice.
753	In our study, the strongest evidence for a systematic overexploitation of high quality
754	lakes and for catch-rate homogenization effects across both the lake quality and distance
755	gradients in urban cases was revealed when the variation in ecological lake quality was

caused by lake heterogeneity in carrying capacities in the absence of harvest regulations and

757 for very large (and heterogeneous) angler population sizes (Figs. S7 and S8). When harvest

758	regulations were present, however, these effects were only present at exceedingly high angler
759	population sizes (Figs. 8 and 9). By contrast, when lakes varied in their productivity, more
760	productive lakes were less heavily exploited and they also maintained larger catch rates
761	compared to low quality lakes (Figs 8, 9, S7 and S8). Our results thus appeared to contradict
762	the idea that homogenization of catch-based fishing quality or catch rates across fisheries
763	landscapes in zones of equal access costs (Mee et al., 2016; Parkinson et al., 2004). However,
764	this is not the case. Based on our study, for a catch-based IFD to happen, angler utility must
765	be mainly or exclusively about expected catches, lakes need to be open to a large pool of
766	anglers, with easy access, variation in lake quality must be based on carrying capacity, but not
767	in the slope of the stock-recruitment curve (productivity), and no harvest regulations offering
768	protection to the fishes should be present. Most of these ingredients apply to the
769	stocking-reliant rainbow trout fisheries in British Columbia, for which a catch-based IFD in
770	recreational fisheries was reported (Mee et al., 2016; Post & Parkinson, 2012; Post et al., 2002,
771	2008; Wilson et al., 2016). Importantly, as mentioned before in these studies a fishing-quality
772	based IFD has been reported in travel regions varying in travel distance from the metropolis
773	(Mee et al., 2016), which essentially controls for the systematic impact of travel on utility and
774	site choice behaviour. Thereby, a key non-catch dimension of angler utility, distance, is
775	removed and the angler behaviour within a given zone is in turn affected mainly by catch
776	expectations related to catch rates and sizes of fish that are captured. The British Columbian

777	lake systems are open-access to a large pool of anglers residing in Vancouver, they are mainly
778	directed at harvest-oriented anglers, the lakes have few harvest regulations and variation in
779	catches and sizes of fish to be expected among lakes is essentially a function of the stocking
780	density as most lake rainbow trout stocks are not self-recruiting. In such situations, stocking
781	essentially determines the carrying capacity because there is no internal renewal process at
782	low stock sizes similar to the effects stemming from variation in the slope of a
783	stock-recruitment curve in a naturally reproducing stock. According to our study, all these
784	conditions indeed foster the emergence of a catch-based IFD, in line with the results from
785	British Columbia. However, these conditions are not generally present in other fisheries
786	landscapes, where a large fraction of fisheries are based on naturally recruiting fishes that
787	naturally vary in productivity (i.e., slope of the stock-recruitment relationship) among systems
788	and where at least some form of harvest regulation is present. Under such conditions, our
789	model does not predict a catch-based IFD to easily emerge. Instead, in most landscapes the
790	maintenance of substantial variation among fisheries in fishing utility ("quality"), rather than
791	its erosion, is to be expected at equilibrium.
792	Following our model, in unregulated landscapes variation in productivity (i.e.,
793	population renewal speed) among lakes will either lead to homogenization of overfishing,
794	while maintaining high catch rates in more productive stocks, or help maintaining both high
795	spawning stock biomasses and high catch rates under regulated conditions in the most

796	productive stocks. The reasons for the strongly different patterns of the SSB and catch rates in
797	the exploited equilibrium in relation to varying carrying capacity and population renewal (i.e.,
798	productivity) in our model are purely ecological, confirming the importance of studying both
799	ecological and social processes in coupled SES. Variation in carrying capacity will mainly
800	lead to variation in catch rates in the unexploited state, which cannot be sustained as angling
801	effort responds. Consequently, due to rapid effort responses of anglers at equilibrium yield,
802	and relatedly catch rates, produced by exploited fish stocks are rather insensitive to increases
803	in carrying capacity, and similarly variation in catch-dependent angling quality at MSY is
804	largely independent of underlying carrying capacities of a given lake (Parkinson et al., 2004).
805	By contrast, yield and catch-related angling quality increase strongly with increasing
806	productivity (slope of the stock-recruitment relationship) at MSY (Parkinson et al., 2004)
807	leading to more resilient stocks, unless they are exploited by a large pool of anglers leading to
808	their collapse (Post et al., 2002, 2008). Hence, variation in population renewal processes at
809	low stock sizes (i.e., productivity) can better maintain fish stocks and catch rates under
810	exploiting conditions by compensating for losses due to fishing, which variation in carrying
811	capacity alone cannot achieve (Walters & Martell, 2004).
812	By contrast, as implied by our model management interventions that modify the
813	population renewal capacity (e.g., due to enhancement of juvenile habitat) rather than carrying
814	capacity per se can have sustained, systematic effects on maintaining variation in catch rates

815	and spawning biomasses in fisheries landscapes. In fact, when lakes vary in productivity
816	rather than carrying capacity and when a base set of harvest regulations is introduced, in our
817	model high-quality lakes become less overexploited compared to low-quality lakes. In other
818	words, high productivity coupled with a protection of young, immature fish through a basal
819	set of size-limits is key for lakes to avoid being systematically overfished (Post & Parkinson,
820	2012).
821	
822	Limitations and extensions
823	As any model, our work has several limitations stemming from simplification of processes
824	and structural uncertainty. On the biological side, our work constitutes a single-species
825	age-structured model that omits multi-species interactions in complex food webs and
826	represents density-dependence phenomenologically rather than being an emergent property of
827	size-structured interactions. However, pike populations exhibit a high degree of intraspecific
828	population regulation through cannibalism and overall show stable dynamics (Persson et al.,
829	2004). Moreover, most of the size- and density dependence was estimated from one stock
830	(Windermere) that shows exceptionally high quality data. Obviously our model cannot be
831	used to derive predictions for specific empirical systems, but we think that we have captured
832	the most essential population dynamical processes in a rigorous fashion, with substantial
833	empirical data support.
834	A further limitation of our work that might limit the direct comparison to other

835	landscape models may be inherent in the different spatial scales. For example, our landscape
836	scale encompassed 150 km, while Post et al. (2008) modelled > 1000 km, and Hunt et al.
837	(2011) about 300 km. The reason for the different scales in the three studies relates to the
838	calibration of the angler model, which was always empirically grounded to local conditions.
839	Obviously, a larger scale in our model would have substantially affected the location of effort
840	because anglers in northern Germany for which the base angler model was calibrated are not
841	used to travel much farther than about 200 km for a single angling trip. Hence, the distance
842	effects might have been stronger if the choice model used to construct the travel cost
843	coefficient would have exposed anglers in the model to much larger travel distances.
844	Modelling a landscape that is much larger than what the empirical anglers were normally
845	exposed to would have been to extrapolate beyond the parameter space used to train the
846	model, and hence was not done in the present study.
847	What might more fundamentally affect model outcomes are connections among the
848	ecological systems, e.g., through rivers or creeks linking lakes. Newbold and Massey (2010)
849	showed that such spatial connectivity of the fish resources affects the estimation of utility
850	models and may demand alternative structural models of angler site choices that captures
851	species sorting behaviour and spatially connected population dynamics. Further work in this
852	area is certainly warranted.

853 We assumed that anglers were omniscient about the utilities offered by each of the

854	lakes in the landscape and that the past year's experiences were instantaneously exchanged
855	among all anglers. In reality, anglers will of course not be omniscient about all lake utilities
856	and they might also follow different strategies in terms of lake choices than we assumed. For
857	example, rather than being utility maximizes anglers might follow different approach to lake
858	choice (e.g., satisficing, Wierzbicki 1982). Relatedly, place attachment, habitat, tradition and
859	the attainment of angling experience and skill with a given lake over time may all lead to
860	"local adaptation" and a tendency for anglers to always visit familiar sites. Such effects were
861	not included in the present model and are certainly relevant sources of uncertainty. Anglers
862	may also strongly vary in skill (and catchability, Ward et al., 2013a), and hence the "update
863	speed" of which catch to expect in a given lake may systematically vary among anglers, in
864	turn affecting outcomes. All of these aspects could have strong effects on regional distribution
865	patterns and thus need to be accounted for in future work.
866	We simplified our models by assuming equal skill among anglers, no social
867	interactions between anglers other than crowding effects emerging from the utility offered by
868	lakes, no opportunity for learning and adaptation of preferences and no social networks. All of
869	these assumptions are unlikely to hold in any empirical system because anglers are known to
870	differ in skill (Dorow et al., 2010; Ward et al., 2013), are unlikely to be omniscient (Hunt et
871	al., 2011), are characterized by shifting expectations and preferences (Gale, 1987), and quite
872	certainly form social groups and networks of like-minded friends and peers (Hahn, 1991;

873	Ditton et al., 1992) through which information flow happens (Little & McDonald, 2007).
874	Such information flow changes in quality and quantity through rapid changes in novel
875	communication technology (e.g., social media, Martin et al., 2012). Missing links among
876	nodes in angler networks can then block information about fishing opportunities if there is
877	strong modularization in the network (Little & McDonald, 2007), or it may foster the
878	exploitation of lakes through slow, but steady, information spread in small world networks.
879	The latter effect is more likely at time scales that we measured, which is why we feel
880	confident that the lack of consideration of among-angler networks did not fundamentally bias
881	our long-term predictions. However, anglers in networks may derive utility from the utility
882	experienced by fellow peers (e.g., catch of a trophy by a close friend), which can affect the
883	policy options and create sites the networks prefers as a whole (Neilson and Wichmann 2014).
884	Also, isolated events like as the popularization of exceptional fishing opportunities may lead
885	to a systematic and pervasive shift in effort (Carpenter et al., 1994) – a dynamic not
886	represented in our model. All these issues are likely related to angler heterogeneity (some
887	anglers are more networked than others, some anglers are more receptive to media than others,
888	Ditton et al., 1992), which we found will strongly affect the location of effort and hence
889	landscape patterns in particular empirical systems. But despite this empirically relevant
890	complexity that should be certainly tackled in future work, we think that the long-term
891	strategic predictions that our simple model allows may nevertheless serve as qualitative

892	approximations of	which family of	outcomes to expect	under particular situations.
-----	-------------------	-----------------	--------------------	------------------------------

893	Finally, limitations relates to omission of specific details of the governance system.
894	We explored open-access fisheries where anglers can choose lakes in an open landscape and a
895	social planner installs one-size-fits all policies for the entire landscape, as it typical in North
896	America (Lester et al., 2003). However, in West Germany and many other areas of Europe
897	small angling clubs manage restricted water areas and anglers cannot easily switch among
898	small angling clubs (Daedlow et al., 2011), which will lead to different dynamics in the region
899	than modelled in our paper. Again, it will be worthwhile to analyse more constrained choices
900	and what landscape level outcomes to expect.
901	
902	Policy implications and future directions
903	Based on our work we can derive some management implications of potential relevance to
904	policy makers and managers charged with managing freshwater fisheries landscapes. We
905	outline four due to limitations in space.
906	First, introduction of harvest regulations following a simple one-size-fits-all policy
907	can decrease regional overfishing and maintain high yields, while at the same time strongly
908	increasing angler welfare compared to the unregulated case. Our work confirms earlier
909	landscape studies that reported that to manage open-access freshwater fisheries and avoid
910	sequential collapses some base level of regulations or other type of management intervention
911	is necessary (Cole & Ward, 1994; Lester et al., 2003; Post & Parkinson, 2012). However, it is

912	very likely that a diversity of management tools rather than one-size-fits all policies as
913	examined in our model will produce better outcomes (Carpenter & Brock, 2004; Post &
914	Parkinson, 2012). Future work is reserved for using our model to test the design (type and
915	regional placement) of various policy and management options to optimize specific
916	management objectives.
917	Second, in line with previous work (Post & Parkinson, 2012) our work implies that
918	to achieve high regional level fish yield and avoid localized collapses of stocks, constraints on
919	total effort (and by the same token total fishing mortality) are necessary if the latent regional
920	angling effort is exceedingly high relative to available fishing area under open-access
921	situations. We found that the transition from a situation that produces regional MSY to rapid
922	collapse is narrow in terms of what average angling effort per hectare the system can maintain,
923	which suggests that a precautionary approach may be needed to limit the total number of
924	anglers for a given landscape if the aim is to manage for MSY. Similarly, our work and related
925	studies suggests that if the objective is to minimize the number of overexploited stocks at high
926	potential angling effort constraints on fishing mortality (e.g., through implementation of
927	restrictive harvest regulations), strategic use of stocking near high aggregations of anglers (to
928	"absorb" mobile angling effort) or even effort controls will be necessary in at least a fraction
929	of the otherwise fully accessible ecosystems (Cox & Walters, 2002; Post & Parkinson, 2012).
930	Third, our model results exposed some fundamental trade-offs that mangers may

931	need to navigate when managing mobile anglers in freshwater landscapes interacting with
932	local ecological processes of density and size-dependent population regulation under
933	open-access situations. In particular, in urban environments it may not be possible to
934	maximize regional-level objectives (e.g., regional MSY) with one-size-fits-all regulations
935	without collapsing some of the stocks in the landscape. This finding is equivalent to insights
936	from multi-species models in the marine environment where achieving multi-species MSY
937	comes at the cost of collapsing some stocks (Worm et al., 2009). Fully avoiding collapse
938	when targeting regional-level MSY may only be possible in an open-access situations where
939	anglers will always dynamically respond to changes in local fish availability by radical
940	landscape-level effort controls, continuous stocking or implementation of total
941	catch-and-release policies with low hooking mortality in the absence of illegal harvest
942	(Johnston et al., 2015; Post & Parkinson, 2012). Further simulation work is needed to address
943	this important issue.
944	Finally, although we did not directly model stocking-based recreational fisheries,
945	some of our findings can be interpreted in light of previous landscape work under stocked
946	situations, calling into question the efficiency of one-time stock enhancement activities in
947	non-recruiting stocks when mobile anglers interact with spatially structured resource patches.
948	As mentioned before, Mee et al. (2016) reported that mobile anglers targeting stocked
949	rainbow trout in British Columbia quickly fish down stock-enhanced population to some

950 regional level "fishing quality" dictated by distance-clustered number (catch)-size trade-offs 951 for fishing quality. Similarly, in our model where the disutility of distance and the catch 952 preferences of anglers were endogenous for the angler movement dynamic, we found that 953 variation in lake qualities by varying the carrying capacity among lakes did not maintain 954 variation in catch rates when the angler population size was large. In naturally recruited 955 species elevation of the carrying capacity can only be achieved by either improvements to habitats (which is rarely implemented in practice) or through the successful stocking of 956 957 usually recruited (i.e., large) fishes leading to put-and-take type of fisheries (Arlinghaus et al., 958 2015; Camp et al., 2017; Rogers et al., 2010; Ziegler et al., 2017). Such type of manipulation of the general availability of fishes to capture (conceptually represented by an elevated 959 960 carrying capacity) is, however, not expected to have long-term effects as dynamic angling 961 effort quickly uses any locally available utility and moves lake-specific utilities to a regional 962 average utility offered by all lakes in the landscape. By contrast, elevating the slope of the 963 stock-recruitment curve, for example by habitat enhancement, has been shown in our work to 964 maintain variation in angling qualities in the region and thus could be a superior long-term 965 strategy, knowing that variation elevates the resiliency of exploited systems (Carpenter et al., 966 2015). Further models on the systematic effects of stocking vs. other management options are 967 needed because we did not explicitly model stocking in our model.

968

969 Conclusions

970	We found that social and economic outcomes to be expected as emergent properties from a
971	pool of anglers interacting with a spatially structured lake system were strongly driven by the
972	particular spatial configuration, angler population size in relation to available lake areas and
973	angler and lake heterogeneity. Simplification of any of these ingredients will impair the ability
974	to predict the geographic configuration of key outcomes of interest, such as the degree of
975	local and regional overexploitation, the angler effort attracted to specific fisheries and the
976	well-being of fishers generated by a freshwater landscape as a whole. At the same time we
977	also found that if one is only interested in understanding overall regional outcomes,
978	simplification of spatial configurations and lake heterogeneity may not be overly
979	consequential. By contrast, simplification of angler heterogeneity will lead to large biases at
980	best, and mismanagement and stock collapses at worst. Social-ecological landscape models
981	are one tool to systematically examine how spatial and angler heterogeneity interact with
982	regulations to produce regional-level outcomes. Models such as ours can be an important
983	research tool to conduct "virtual ecologist" experiments to design optimal sampling strategies
984	and test management strategies in the framework of uncertainties using a management
985	strategy evaluation framework (e.g., Deroba & Bence, 2008; Thébaud et al., 2014; Wilberg et
986	al., 2008). Future work is needed engaging in multi-criteria optimization (by accounting for
987	multiple objectives both conservation and angler well-being oriented) and how to put a
988	landscape perspective into operation in light of severe limitations in monitoring abilities in

989	data-poor situation	ns (Favram et	al., 2009	: Lester et al.	2014).
/0/	adda poor breading	IS (I a JIani ot	an, 2007	, Debter et an	

990

991	Acknowledgments
// -	

- 992 Work on this project received funding with the Adaptfish program funded by the Pact of
- 993 Innovation and Research by the Leibniz-Community. We thank many colleagues and team
- 994 members for constructive feedback over the years. We have no conflict of interest to declare.

995

- 997 Abbott, J. K., & Fenichel, E. P. (2013). Anticipating adaptation: a mechanistic approach for
- 998 linking policy and stock status to recreational angler behavior. Canadian Journal of

999 Fisheries and Aquatic Sciences, 70, 1190–1208. doi:10.1139/cjfas-2012-0517

- 1000 Allen, M. S., Brown, P., Douglas, J., Fulton, W., & Catalano, M. (2009). An assessment of
- 1001 recreational fishery harvest policies for Murray cod in southeast Australia. Fisheries
- 1002 Research, 95, 260–267. doi:10.1016/j.fishres.2008.09.028
- 1003 Allen, M. S., Ahrens, R. N. M., Hansen, M. J., & Arlinghaus, R. (2013). Dynamic angling
- 1004 effort influences the value of minimum-length limits to prevent recruitment overfishing.
- 1005 Fisheries Management and Ecology, 20, 247–257. doi:10.1111/j.1365-2400.2012.00871.x
- 1006 Anderson, L. G. (1993). Toward a complete economic theory of the utilization and
- 1007 management of recreational fisheries. Journal of Environmental Economics and

- 1008 Management, 24, 272–295. doi:10.1006/jeem.1993.1018
- 1009 Arlinghaus, R., & Mehner, T. (2005). Determinants of management preferences of
- 1010 recreational anglers in Germany: habitat management versus fish stocking. Limnologica,
- 1011 35, 2–17. doi:10.1016/j.limno.2004.10.001
- 1012 Arlinghaus, R., Matsumura, S., & Dieckmann, U. (2009). Quantifying selection differentials
- 1013 caused by recreational fishing: development of modeling framework and application to
- 1014 reproductive investment in pike (*Esox lucius*). Evolutionary Applications, 2, 335–355.
- 1015 doi:10.1111/j.1752-4571.2009.00081.x
- 1016 Arlinghaus, R., Matsumura, S., & Dieckmann, U. (2010). The conservation and fishery
- 1017 benefits of protecting large pike (*Esox lucius* L.) by harvest regulations in recreational
- 1018 fishing. Biological Conservation, 143, 1444–1459. doi:10.1016/j.biocon.2010.03.020
- 1019 Arlinghaus, R., Cooke, S. J., & Potts, W. (2013). Towards resilient recreational fisheries on a
- 1020 global scale through improved understanding of fish and fisher behaviour. Fisheries
- 1021 Management and Ecology, 20, 91–98. doi:10.1111/fme.12027
- 1022 Arlinghaus, R., Beardmore B., Riepe, C., Meyerhoff, J., & Pagel, T. (2014). Species-specific
- 1023 preferences of German recreational anglers for freshwater fishing experiences, with
- 1024 emphasis on the intrinsic utilities of fish stocking and wild fishes. Journal of Fish Biology,
- 1025 85, 1843–1867. doi:10.1111/jfb.12546
- 1026 Arlinghaus, R., Cyrus, E.-M., Eschbach, E., Fujitani, M., Hühn, D., Johnston, F., Pagel, T., &

- 1027 Riepe, C. (2015). Hand in Hand für eine nachhaltige Angelfischerei: Ergebnisse und
- 1028 Empfehlungen aus fünf Jahren praxisorientierter Forschung zu Fischbesatz und seinen
- 1029 Alternativen. Berichte des IGB, Heft 28.
- 1030 Arlinghaus, R., Lorenzen, K., Johnson, B. M., Cooke, S. J., & Cowx, I. J. (2016).
- 1031 Management of freshwater fisheries. In J. F. Craig (Ed.), Freshwater fisheries ecology (pp.
- 1032 557–579). Chichester, UK: John Wiley & Sons, Ltd.
- 1033 Arlinghaus, R., Alós, J., Beardmore, B., Daedlow, K., Dorow, M., Fujitani, M., Hühn, D.,
- Haider, W., Hunt, L. M., Johnson, B. M., Johnston, F., Klefoth, T., Matsumura, S., Monk,
- 1035 C., Pagel, T., Post, J. R., Rapp, T., Riepe, C., Ward, H., & Wolter, C. (2017).
- 1036 Understanding and managing freshwater recreational fisheries as complex adaptive
- 1037 social-ecological systems. Reviews in Fisheries Science and Aquaculture, 25, 1–41.
- 1038 doi:10.1080/23308249.2016.1209160
- 1039 Askey, P. J., Richards, S. A., Post, J. R., & Parkinson, E. A. (2006). Linking angling catch
- 1040 rates and fish learning under catch-and-release regulations. North American Journal of
- 1041 Fisheries Management, 26, 1020–1029. doi:10.1577/M06-035.1
- 1042 Askey, P. J., Parkinson, E. A., & Post, J. R. (2013). Linking fish and angler dynamics to assess
- 1043 stocking strategies for hatchery-dependent, open-access recreational fisheries. North
- 1044 American Journal of Fisheries Management, 33, 557–568.
- 1045 doi:10.1080/02755947.2013.785996

- 1046 Beardmore, B., Haider, W., Hunt, L. M., & Arlinghaus, R. (2011). The importance of trip
- 1047 context for determining primary angler motivations: Are more specialized anglers more
- 1048 catch-oriented than previously believed? North American Journal of Fisheries
- 1049 Management, 31, 861–879. doi:10.1080/02755947.2011.629855
- 1050 Beardmore, B., Haider, W., Hunt, L. M., & Arlinghaus, R. (2013). Evaluating the ability of
- specialization indicators to explain fishing preferences. Leisure Science, 35, 273–292.
- 1052 doi:10.1080/01490400.2013.780539
- 1053 Bryan, H. (1977). Leisure value systems and recreational specialization: the case of trout
- 1054 fishermen. Journal of Leisure Research, 9, 174–187. doi:10.1177/004728757801600352
- 1055 Camp, E. V., van Poorten, B. T., & Walters, C. J. (2015). Evaluating short openings as a
- 1056 management tool to maximize catch related utility in catch-and-release fisheries. North
- 1057 American Journal of Fisheries Management, 35, 1106–1120.
- 1058 doi:10.1080/02755947.2015.1083495
- 1059 Camp, E. V., Larkin, S. L., Ahrensa, R. N. M., & Lorenzen, K. (2017). Trade-offs between
- 1060 socioeconomic and conservation management objectives in stock enhancement of marine
- 1061 recreational fisheries. Fisheries Research, 186, 446–459.
- 1062 doi:10.1016/j.fishres.2016.05.031
- 1063 Carpenter, S. R., & Brock, W. A. (2004). Spatial complexity, resilience and policy diversity:
- 1064 fishing on lake-rich landscapes. Ecology and Society, 9, 8.

- 1065 Carpenter, S. R., Munoz-Del-Rio, A., Newman, S., Rasmussen, P. W., & Johnson, B. M.
- 1066 (1994). Interactions of anglers and walleyes in Escanaba Lake, Wisconsin. Ecological
- 1067 Applications, 4, 822–832. doi:10.2307/1942011
- 1068 Carpenter, S. R., Brock, W. A., Folke, C., van Nese, E. H., & Scheffer, M. (2015). Allowing
- 1069 variance may enlarge the safe operating space for exploited ecosystems. Proceedings of
- 1070 the National Academy of Sciences of the United States of America, 112, 14384–14389.
- 1071 doi:10.1073/pnas.1511804112
- 1072 Cole, R. A., & Ward, F. A. (1994). Optimum fisheries management policy: angler opportunity
- 1073 versus angler benefit. North American Journal of Fisheries Management, 14, 22–33.
- 1074 doi:10.1577/1548-8675(1994)014<0022:OFMPAO>2.3.CO;2
- 1075 Cox S. P., & Walters, C. (2002). Maintaining quality in recreational fisheries: how success
- 1076 breeds failure in management of open-access sport fisheries. In T. J. Pitcher & C. E.
- 1077 Hollingworth (Eds.), Recreational fisheries: Ecological, economic and social evaluation
- 1078 (pp. 107–119). Oxford, UK: Blackwell Publishing.
- 1079 Craig, J. F., & Kipling, C. (1983). Reproduction effort versus the environment; case histories
- 1080 of Windermere perch, Perca fluviatilis L., and pike, Esox lucius L. Journal of Fish
- 1081 Biology, 22, 713–727. doi:10.1111/j.1095-8649.1983.tb04231.x
- 1082 Crane, D. P., Miller, L. M., Diana, J. S., Casselman, J. M., Farrell, J. M., Kapuscinski, K. L.,
- 1083 & Nohner, J. K. (2015). Muskellunge and northern pike ecology and management:

- 1084 important issues and research needs. Fisheries, 40, 258–267.
- 1085 doi:10.1080/03632415.2015.1038382
- 1086 Daedlow, K., Beard, T. D. Jr., & Arlinghaus. R. (2011). A property rights-based view on
- 1087 management of inland recreational fisheries: contrasting common and public fishing
- 1088 rights regimes in Germany and the U.S.A. In T. D. Beard Jr., R. Arlinghaus, & S. Sutton
- 1089 (Eds.), Proceedings of the 5th World Recreational Fishing Conference (pp. 13–18),
- 1090 American Fisheries Society Symposium 75. Bethesda, MD: American Fisheries Society.
- 1091 Deroba, J. J., & Bence, J. R. (2008). A review of harvest policies: Understanding relative
- 1092 performance of control rules. Fisheries Research, 94, 210–223.
- 1093 doi:10.1016/j.fishres.2008.01.003
- 1094 Diana, J. S. (1983). Growth, maturation, and production of northern pike in three Michigan
- 1095 lakes. Transactions of the American Fisheries Society, 112, 38–46.
- 1096 doi:10.1577/1548-8659(1983)112<38:GMAPON>2.0.CO;2
- 1097 Ditton, R. B, Loomis, D. K., & Choi, S. (1992). Recreation specialization:
- 1098 Reconceptualization from a social worlds perspective. Journal of Leisure Research, 24,
- 1099 33–51.
- 1100 Dorow, M., Beardmore, B., Haider, W., & Arlinghaus, R. (2010). Winners and losers of
- 1101 conservation policies for European eel, *Anguilla anguilla*: an economic welfare analysis
- 1102 for differently specialised eel anglers. Fisheries Management and Ecology, 17, 106–125.

1103 doi:10.1111/j.1365-2400.2009.00674.x

1104	Edline, E., Carlson, S. M., Stige, L. C., Winfield, I. J., Fletcher, J. M., James, J. B., & Haugen,
1105	T. O. (2007). Trait changes in a harvested population are driven by a dynamic tug-of-war
1106	between natural and harvest selection. Proceedings of the National Academy of Sciences
1107	of the United States of America, 104, 15799–15804. doi:10.1073/pnas.0705908104
1108	Fayram, A. H., Schenborn, D. A., Hennessy, J. M., Nate, N. A., & Schmalz, P. J. (2009).
1109	Exploring the conflict between broad scale and local inland fisheries management: the
1110	risks to agency credibility. Fisheries, 34, 232–236. doi:10.1577/1548-8446-34.5.232
1111	Fenichel, E. P., & Abbott, J. K. (2014). Heterogeneity and the fragility of the first best: putting
1112	the "micro" in bioeconomic models of recreational resources. Resources and Energy
1113	Economics, 36, 351–369. doi:10.1016/j.reseneeco.2014.01.002
1114	Fenichel E. P., Abbott, J. K., & Huang, B. (2013a). Modelling angler behaviour as a part of
1115	the management system: synthesizing a multi-disciplinary literature. Fish and Fisheries,
1116	14, 137–157. doi:10.1111/j.1467-2979.2012.00456.x
1117	Fenichel, E. P., Gentner, B., & Arlinghaus, R. (2013b). Normative considerations for
1118	recreational fishery management: a bioeconomic framework for linking positive science
1119	and normative fisheries policy decisions. Fisheries Management and Ecology, 20,
1120	223–233. doi:10.1111/j.1365-2400.2012.00869.x
1121	Franklin, D. R., & Smith, L. L. Jr. (1963). Early life history of the northern pike (Esox lucius

- 1122 L.) with special reference to the factors influencing the numerical strength of year classes.
- 1123 Transactions of the American Fisheries Society, 92, 91–110.
- doi:10.1577/1548-8659(1963)92[91:ELHOTN]2.0.CO;2
- 1125 Fretwell, S. D., & Lucas, H. L. Jr. (1970). On territorial behaviour and other factors
- 1126 influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica,
- 1127 19, 16–36. doi:10.1007/BF01601954
- 1128 Gale, R. P. (1987). Resource miracles and rising expectations: a challenge to fishery managers.
- 1129 Fisheries, 12, 8–13. doi:10.1577/1548-8446(1987)012<0008:RMAREA>2.0.CO;2
- 1130 Hahn, J. (1991). Angler specialization: measurement of a key sociological concept and
- 1131 implications for fisheries management decisions. In D. Guthrie, J. M. Hoenig, M.
- 1132 Holliday, C. M. Jones, M. J. Mills, S. A. Moberly, K. H. Pollack, & D. R. Talhelm (Eds.),
- 1133 Creel and angler surveys in fisheries management: Proceedings of the International
- 1134 Symposium and Workshop on Creel and Angler Surveys in Fisheries Management, held
- at Houston, Texas, USA, 26–31 March 1990 (pp. 380–389). Bethesda, MD: American
- 1136 Fisheries Society.
- 1137 Hahnemann, W. M. (1984). Welfare evaluation in contingent valuation experiments with
- discrete responses. American Journal of Agricultural Economics, 66, 332–341.
- 1139 doi:10.2307/1240800
- Haugen, T. O., Winfield, I. J., Vøllestad, L. A., Fletcher, J. M., James, J. B., & Stenseth, N. C.

1141	(2006). The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere.
1142	Proceedings of the Royal Society B, 273, 2917–2924. doi:10.1098/rspb.2006.3659
1143	Haugen, T. O., Winfield, I. J., Vøllestad, L. A., Fletcher, J. M., James, J. B., & Stenseth, N. C.
1144	(2007). Density dependence and density independence in the demography and dispersal
1145	of pike over four decades. Ecological Monographs, 77, 483–502. doi:10.1890/06-0163.1
1146	Hunt, L. M. (2005). Recreational fishing site choice models: insights and future opportunities.
1147	Human Dimensions of Wildlife, 10, 153–172. doi:10.1080/10871200591003409
1148	Hunt, L. M., Boxall, P., Englin, J., & Haider, W. (2005). Remote tourism and forest
1149	management: a spatial hedonic analysis. Ecological Economics, 53, 101–113.
1150	doi:10.1016/j.ecolecon.2004.06.025
1151	Hunt, L. M., Arlinghaus, R., Lester, N., & Kishneriuk, R. (2011). The effects of regional
1152	angling effort, angler behavior, and harvesting efficiency on landscape patterns of
1153	overfishing. Ecological Applications, 21, 2555–2575. doi:10.1890/10-1237.1
1154	Hunt, L. M., Sutton, S. G., & Arlinghaus, R. (2013). Illustrating the critical role of human
1155	dimensions research for understanding and managing recreational fisheries within a
1156	social-ecological system framework. Fisheries Management and Ecology, 20, 111–124.
1157	doi:10.1111/j.1365-2400.2012.00870.x
1158	Hyman, A. A., McMullin, S. L., & DiCenzo, V. (2016). Dispelling assumptions about
1159	stocked-trout fisheries and angler satisfaction. North American Journal of Fisheries

1160 Management, 36, 1395–1404. doi:10.1080/02755947.2016.1221003

1101 Johnson, D. M., & Carpenter, D. K. (1777). I unetional and numerical responses, a fram	i manne wog	noco, a manie wy	i coponoco, a mane	a numericar res	ii uiiu	. I unctione	エノノエ	. 11.	Junior, L		'. IVI., O	, D.	Johnson,	1101
---	-------------	------------------	--------------------	-----------------	---------	--------------	------	-------	-----------	--	------------	------	----------	------

- 1162 for fish-angler interactions? Ecological Applications, 4, 808–821. doi:10.2307/1942010
- 1163 Johnston, F. D., Arlinghaus, R., & Dieckmann, U. (2010). Diversity and complexity of angler
- behaviour drive socially optimal input and output regulations in a bioeconomic
- recreational-fisheries model. Canadian Journal of Fisheries and Aquatic Sciences, 67,
- 1166 1507–1531. doi:10.1139/F10-046
- 1167 Johnston, F. D., Arlinghaus, R., Stelfox, J., & Post, J. R. (2011). Decline in angler use despite
- 1168 increased catch rates: Anglers' response to the implementation of a total catch-and-release
- regulation. Fisheries Research, 110, 189–197. doi:10.1016/j.fishres.2011.04.006
- 1170 Johnston, F. D., Arlinghaus, R., & Dieckmann, U. (2013). Fish life history, angler behaviour
- and optimal management of recreational fisheries. Fish and Fisheries, 14, 554–579.
- 1172 doi:10.1111/j.1467-2979.2012.00487.x
- 1173 Johnston, F. D., Beardmore, B., & Arlinghaus, R. (2015). Optimal management of
- 1174 recreational fisheries in the presence of hooking mortality and noncompliance –
- 1175 predictions from a bioeconomic model incorporating a mechanistic model of angler
- behavior. Canadian Journal of Fisheries and Aquatic Sciences, 71, 37–53.
- 1177 doi:10.1139/cjfas-2013-0650
- 1178 Kaufmann, S. D., Snucins, E., Gunn, J. M., & Selinger, W. (2009). Impacts of road access on

- and the introduction of smallmouth bass (*Micropterus dolomieu*). Canadian Journal of
- 1181 Fisheries and Aquatic Sciences, 66, 212–223. doi:10.1139/F08-205
- 1182 de Kerkhove, D. T., Minns, C. K., & Chu, C. (2015). Estimating fish exploitation and aquatic
- habitat loss across diffuse inland recreational fisheries. PLoS One, 10, e0121895.
- doi:10.1371/journal.pone.0121895. doi:10.1371/journal.pone.0121895
- 1185 Lester, N. P., Marshall, T. R., Armstrong, K., Dunlop, W. I., & Ritchie, B. (2003). A
- broad-scale approach to management of Ontario's recreational fisheries. North American
- 1187 Journal of Fisheries Management, 23, 1312–1328. doi:10.1577/M01-230AM
- 1188 Lester, N. P., Shuter, B. J., & Abrams, P. A. (2004). Interpreting the von Bertalanffy model of
- somatic growth in fishes: the cost of reproduction. Proceedings of the Royal Society B:
- 1190 Biological Sciences, 271, 1625–1631. doi:10.1098/rspb.2004.2778
- 1191 Lester, N. P., Shuter, B. J., & Venturelli, P. (2014). Life-history plasticity and sustainable
- 1192 exploitation: A theory of growth compensation applied to walleye management.
- 1193 Ecological Applications, 24, 38–54. doi:10.1890/12-2020.1
- 1194 Levin, S., Xepapadeas, T., Crépin, A.-S., & Norberg, J. (2013). Social-ecological systems as
- 1195 complex adaptive systems: Modeling and policy implications. Environment and
- 1196 Development Economics, 18, 111–132. doi:10.1017/S1355770X12000460
- 1197 Little, L. R., & McDonald, A. D. (2007). Simulations of agents in social networks harvesting

- 1198 a resource. Ecological Modelling, 204, 379–386. doi:10.1016/j.ecolmodel.2007.01.013
- 1199 Mace, P. M. (1994). Relationships between common biological reference points used as
- 1200 thresholds and targets of fisheries management strategies. Canadian Journal of Fisheries
- 1201 and Aquatic Sciences, 51, 110–122. doi:10.1139/f94-013
- 1202 Martin, D. R., Pracheil, B. M., DeBoer, J. A., Wilde, G. R., & Pope, K. L. (2012). Using the
- internet to understand angler behavior in the information age. Fisheries, 37, 458–463.
- 1204 doi:10.1080/03632415.2012.722875
- 1205 Massey, D. M., Newbold, S. C., & Gentner, B. (2006). Valuing water quality changes using a
- bioeconomic model of a coastal recreational fishery. Journal of Environmental
- 1207 Economics and Management, 52, 482–500. doi:10.1016/j.jeem.2006.02.001
- 1208 Matsumura, S., Arlinghaus, R., & Dieckmann, U. (2010). Foraging on spatially distributed
- 1209 resources with sub-optimal movement, imperfect information, and travelling costs:
- 1210 Departures from the ideal free distribution. Oikos, 119, 1469–1483.
- 1211 doi:10.1111/j.1600-0706.2010.18196.x
- 1212 Matsumura, S., Arlinghaus, R., & Dieckmann, U. (2011). Assessing evolutionary
- 1213 consequences of size-selective recreational fishing on multiple life-history traits, with an
- 1214 application to northern pike (*Esox lucius*). Evolutionary Ecology, 25, 711–735. doi:
- 1215 10.1007/s10682-010-9444-8
- 1216 McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P.

1217	Zarembka (Ed.), Frontiers of econometrics (pp. 105–142). New York: Academic Press.	
1218	Mee, J. A., Post, J. R., Ward, H., Wilson, K., Newton, E., & Cantin, A. (2016). Interaction of	
1219	ecological and angler processes: experimental stocking in an open access, spatially	
1220	structured fishery. Ecological Applications, 26, 1693–1707. doi:10.1890/15-0879.1	
1221	Minns, C. K., Randall, R. G., Moore, J. E., & Cairns, V. W. (1996). A model simulating the	
1222	impact of habitat supply limits on northern pike, Esox lucius, in Hamilton Harbour, Lake	
1223	Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 53(Suppl. 1), 20-34.	
1224	doi:10.1139/f95-258	
1225	Muoneke, M. I., & Childress, W. M. (1994). Hooking mortality: A review for recreational	
1226	fisheries. Reviews in Fisheries Science, 2, 123–156. doi:10.1080/10641269409388555	
1227	Neilson, W., & Wichman, B. (2014). Social networks and non-market valuations. Journal of	
1228	Environmental Economics and Management, 67, 155–170.	
1229	doi:10.1016/j.jeem.2013.11.005	
1230	Newbold, S. C., & Massey, D. M. (2010). Recreation demand estimation and valuation in	
1231	spatially connected systems. Resource and Energy Economics, 32, 222–240.	
1232	doi:10.1016/j.reseneeco.2009.11.014	
1233	Parkinson, E. A., Post, J. R., & Cox, C. P. (2004). Linking the dynamics of harvest effort to	
1234	recruitment dynamics in a multistock, spatially structured fishery. Canadian Journal of	
1235	Fisheries and Aquatic Sciences, 61, 1658–1670. doi:10.1139/f04-101	

- 1236 Patterson W. F., & Sullivan, M. G. (2003). Testing and refining the assumptions of
- 1237 put-and-take rainbow trout fisheries in Alberta. Human Dimensions of Wildlife, 18,
- 1238 340–354. doi:10.1080/10871209.2013.809827
- 1239 Paukert, C. P., Klammer, J.A., Pierce, R. B., & Simonson, T. D. (2001). An overview of
- 1240 northern pike regulations in North America. Fisheries, 26, 6–13.
- 1241 doi:10.1577/1548-8446(2001)026%3C0006:AOONPR%3E2.0.CO;2
- 1242 Persson, L., de Roos, A. M., & Bertolo, A. (2004). Predicting shifts in dynamics of
- 1243 cannibalistic field populations using individual-based models. Proceedings of the Royal
- 1244 Society of London B: Biological Sciences, 271, 2489–2493. doi:10.1098/rspb.2004.2854
- 1245 van Poorten, B. T., Arlinghaus, R., Daedlow, K., & Haertel-Borere, S. S. (2011).
- 1246 Social-ecological interactions, management panaceas, and the future of wild fish
- 1247 populations. Proceedings of the National Academy of Sciences of the United States of
- 1248 America, 108, 12554–12559. doi:10.1073/pnas.1013919108
- 1249 Post, J. R., Parkinson, E. A. (2012). Temporal and spatial patterns of angler effort across lake
- 1250 districts and policy options to sustain recreational fisheries. Canadian Journal of Fisheries
- 1251 and Aquatic Sciences, 69, 321–329. doi:10.1139/f2011-163
- 1252 Post, J. R., Sullivan, M., Cox, S., Lester, N. P., Walters, C. J., Parkinson, E. A., Paul, A. J.,
- 1253 Jackson, L., & Shuter, B. J. (2002). Canada's recreational fishery: The invisible collapse?
- 1254 Fisheries, 27, 6–17. doi:10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2

- 1255 Post, J. R., Mushens, C., Paul, A., & Sullivan, M. (2003). Assessment of alternative harvest
- 1256 regulations for sustaining recreational fisheries: model development and application to
- bull trout. North American Journal of Fisheries Management, 23, 22–34.
- 1258 doi:10.1577/1548-8675(2003)023<0022:AOAHRF>2.0.CO;2
- 1259 Post, J. R., Persson, L., Parkinson, E. A., & van Kooten, T. (2008). Angler numerical response
- across landscapes and the collapse of freshwater fisheries. Ecological Applications, 18,
- 1261 1038–1049. doi:10.1890/07-0465.1
- 1262 Raat, A. J. P. (1988). Synopsis of biological data on the northern pike *Esox lucius* Linnaeus,
- 1263 1758. FAO Fish. Synop. 30, Rev. 2. Rome: FAO.
- 1264 Rogers, M. W., Allen, M. S., Brown, P., Hunt, T., Fulton, W., & Ingram, B. A. (2010). A
- simulation model to explore the relative value of stock enhancement versus harvest
- regulations for fishery sustainability. Ecological Modelling, 221, 919–926.
- 1267 doi:10.1016/j.ecolmodel.2009.12.016
- 1268 Schlüter, M., McAllister, R. R. J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hölker, F.,
- 1269 Milner-Gulland, E. J., Müller, B., Nicholson, E., Quaas, M., & Stöven, M. (2012). New
- 1270 horizons for managing the environment: a review of coupled social-ecological systems
- 1271 modeling. Natural Resource Modeling, 1, 219–279.
- 1272 doi:10.1111/j.1939-7445.2011.00108.x
- 1273 Shuter, B. J., Jones, M. L., Korver, R. M. & Lester, N. P. (1998). A general, life history based

- 1274 model for regional management of fish stocks: the inland lake trout (*Salvelinus*
- 1275 *namaycush*) of fisheries of Ontario. Canadian Journal of Fisheries and Aquatic Sciences,
- 1276 55, 2161–2177. doi:10.1139/f98-055
- 1277 Sullivan, M. G. (2002). Illegal angling of walleyes protected by length limits in Alberta. North
- 1278 American Journal of Fisheries Management, 22, 1053–1063.
- 1279 doi:10.1577/1548-8675(2002)022<1053:IAHOWP>2.0.CO;2
- 1280 Swait, J. (1994). A structural equation model of latent segmentation and product choice for
- 1281 cross-sectional revealed preference choice data. Journal of Retail and Consumer Services,
- 1282 1, 77–89. doi:10.1016/0969-6989(94)90002-7
- 1283 Thébaud, O., Little, L. R., & Fulton, E. (2014). Evaluation of management strategies in
- 1284 Ningaloo Marine Park, Western Australia. International Journal of Sustainable Society, 6,
- 1285 102–119. doi:10.1504/IJSSOC.2014.057892
- 1286 Walters, C. J., & Martell, S. J. D. (2004). Fisheries ecology and management. Princeton, NJ:
- 1287 Princeton University Press.
- 1288 Ward, H. G. M., Askey, P. J., & Post, J. R. (2013a). A mechanistic understanding of
- 1289 hyperstability in catch per unit effort and density-dependent catchability in a multistock
- recreational fishery. Canadian Journal of Fisheries and Aquatic Sciences, 70, 1542–1550.
- 1291 doi:10.1139/cjfas-2013-0264
- 1292 Ward, H. G. M., Quinn, M. S., & Post, J. R. (2013b). Angler characteristics and management

- 1293 implications in a large, multistock, spatially structured recreational fishery. North
- American Journal of Fisheries Management, 33, 576–584.
- 1295 doi:10.1080/02755947.2013.785991
- 1296 Ward, H. G. M., Allen, M. S., Camp, E. V., Cole, N., Hunt, L. M., Matthias, B., Post, J. R.,
- 1297 Wilson, K., & Arlinghaus, R. (2016). Understanding and managing social–ecological
- 1298 feedbacks in spatially structured recreational fisheries: The overlooked behavioral
- dimension. Fisheries, 41, 524–535. doi:10.1080/03632415.2016.1207632
- 1300 Wilberg, M. J., Irwin, B. J., Jones, M. L., & Bence, J. R. (2008). Effects of source-sink
- 1301 dynamics on harvest policy performance for yellow perch in southern Lake Michigan.
- 1302 Fisheries Research, 94, 282–289. doi:10.1016/j.fishres.2008.05.003
- 1303 Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical
- 1304 Modelling, 3, 391–405. doi:10.1016/0270-0255(82)90038-0
- 1305 Wilde, G. R., & Ditton, R. B. (1994). A management-oriented approach to understanding
- 1306 diversity among largemouth bass anglers. North American Journal of Fisheries
- 1307 Management, 14, 34–40. doi:10.1577/1548-8675(1994)014<0034:AMOATU>2.3.CO;2
- 1308 Willis, D. W. (1989). Proposed standard length-weight equation for northern pike. North
- 1309 American Journal of Fisheries Management, 9, 203–208.
- 1310 doi:10.1577/1548-8675(1989)009<0203:PSLWEF>2.3.CO;2
- 1311 Wilson, K. L., Cantin, A., Ward, H. G. M., Newton, E. R., Mee, J. A., Varkey, D., Parkinson, E.,

- 1312 & Post, J. R. (2016). Supply-demand equilibria and the size-number trade-off in spatially
- 1313 structured recreational fisheries. Ecological Applications, 26, 1086–1097.
- 1314 doi:10.1890/14-1771
- 1315 Worm, B., Hilborn, R., Baum, J. K., et al. (2009). Rebuilding global fisheries. Science, 325,
- 1316 578–585. doi:10.1126/science.1173146
- 1317 Ziegler, J. P., Golebie, E. J., Jones, S. E., Weidel, B. C., & Solomon, C. T. (2017).
- 1318 Social-ecological outcomes in recreational fisheries: the interaction of lakeshore
- development and stocking. Ecological Applications, 27, 56–65. doi:10.1002/eap.1433

Table 1. Equations of biological and angling processes of the pike population model (from Arlinghaus et al., 2009). Parameter values and their sources are listed in Table 2.

Equations		Descriptions	
Biological processes			
1	$\begin{cases} L_a = \frac{3}{3 + g_{a-1}} (L_{a-1} + h) \\ L_1 = h(1 - t_1) \end{cases}$	Length <i>L</i> of fish at age <i>a</i> . $g_a = 0$ for immature pike ($a < a_M$), while $g_a = g$ (constant) for mature pike.	
2	$W_a = \delta_1 \left(L_a / L_{\rm u} \right)^{\delta_2}$	Length-weight relationship.	
3	$D = \sum_{a=1}^{a_{\max}} N_a W_a$	Biomass density.	
4	$h = \frac{h_{\max}}{1 + \phi_1 (D / D_u)^{\phi_2}}$	Density-dependent growth.	
5	$f_a = \frac{G_a}{2W_e} \exp(-\rho \mathbf{D})$	Density-dependent fecundity.	
6	$G_a = \frac{g_a W_a}{\omega}$	Gonad weight.	
7	$N_{\rm L} = \sum\nolimits_{a=1}^{a_{\rm max}} \psi N_a f_a$	Numerical density of larvae.	
8	$N_1/N_L = \alpha \exp(-\beta N_L)$	First year survival probability (from larvae to recruits, i.e., age 1 fish). See the main text for further explanations.	
9	$s_{1/2,a} = \frac{\exp(\tau_0 + \tau_X X + \tau_Y Y + \tau_L L_a)}{1 + \exp(\tau_0 + \tau_X X + \tau_Y Y + \tau_L L_a)}$	Density- and size-dependent half-year survival probability. <i>X</i> and <i>Y</i> are numerical densities of "small" and "large" pike, respectively. The survival probability differs between "small" and "large" pike (motivating different parameter values). We defined "small" as 2-year-old, and "large" as 3-year-old or older. Note that we found an error in our earlier application of density-dependent natural mortality in Appendix A of	
Arlinghaus et al. (2009), which we corrected here by exactly following the empirically derived functions from Haugen et al. (2007).

Angling processes

 $k_a = \begin{cases} V_a[1 - \exp(-qA)] & \text{(if fish are recognized as legal)} \\ V_a[1 - \exp(-qAR)] & \text{(if fish are recognized as undersized)} \end{cases}$

11
$$V_a = [1 - \exp(-\eta_1 L_a)]^{\eta_2}$$

12
$$P_{\text{Leg},a} = 1/\{1 + \exp[\gamma(L_a - L_{MLL}) / L_{MLL}]\}$$

- 13 $R = \theta + Q \theta Q$
- 14 $Q(t+1) = \varepsilon_1 (C_r(t)/C_u)^{-\varepsilon_2}$

15
$$P_x = \frac{(K+x-1)!}{x!(K-1)!} \left(\frac{m}{m+K}\right)^x \left(1+\frac{m}{K}\right)^{-K}$$

Angler effort dynamics and welfare estimate

16 $U_{i,j} = U_{0,i,j} + U_{\operatorname{catch},i,j} + U_{\operatorname{size},i,j} + U_{\operatorname{crowd},i,j} + U_{\operatorname{status},i,j} + U_{\operatorname{regulation},i,j} + U_{\operatorname{cost},i,j} + U_{\operatorname{distance},i,j}$

Annual fishing mortality. q and A represent the catchability coefficient and annual angling effort density, respectively.

Size-dependent vulnerability to angling.

Probability that fish of size L_a is recognized as legal. L_{MLL} is the minimum-length limit.

Coefficient related to mortality of undersized fish due to catch-and-release. Proportion of undersized fish harvested illegally. C_r is the catch rate of undersized fish.

Probability of catching x fish in an average fishing trip. m is the expected catch per trip. $K = m^2/(\sigma^2 - m)$ is a measure of heterogeneity about the mean, where σ^2 is the variance in catch among trips.

Utility of lake j for an angler of type i (where $U_{0,i,j}$ is the basic utility gained

from fishing in the region, $U_{\text{catch},i,j}$ is the PWU of catch rate, $U_{\text{size},i,j}$ is the PWU of

maximum size of fish caught, $U_{\text{crowd},i,j}$ is the PWU of angler crowding, $U_{\text{status},i,j}$ is

the PWU of stock status, $U_{regulation,i,j}$ is the PWU of harvest regulations, $U_{cost,i,j}$ is

the PWU of annual license cost, and $U_{distance,i,j}$ is the PWU of distance).

17
$$P_{i,j} = \frac{\frac{4}{121} \exp(U_{i,j})}{\frac{4}{121} \left[\sum_{k=1}^{121} \exp(U_{i,k}) \right] + \exp(U_{i,\text{Out}}) + \exp(U_{i,\text{NA}})}$$
18
$$Z_i = \frac{\ln\left(\frac{4}{121} \sum_{k=1}^{121} \exp\left(U_{0,i,k}\right)\right) - \ln\left(\frac{4}{121} \sum_{k=1}^{121} \exp\left(U_{1,i,k}\right)\right)}{\lambda_{\text{cost}}}$$

Probability that an angler of type i chooses a lake j.

Change in WTP associated with the management change from the base scenario to an alternative scenario for an angler of the type i. $U_{0,i,k}$ and $U_{1,i,k}$ are the utilities of the lake k for an angler of the type i under the base scenario 0 and the alternative scenario 1, respectively. λ_{cost} is the linear slope for the cost variable.

Symbo	l	Equation	Value	Unit	Source
Biolog	ical processes				
g	annual reproductive investment	1	0.45	_	Matsumura et al., 2011
h	annual juvenile growth increment (initial value)	1	16.725	cm	Arlinghaus et al., 2010
a _M	age at maturation (onset of reproductive investment)	_	2	yr	Raat, 1988
t_1	(growth trajectory)	1	-0.423	_	Arlinghaus et al., 2010
$\delta_{_1}$	(length-weight relationship)†	2	4.8×10^{-6}	kg	Willis 1989
$\delta_{_2}$	(length-weight relationship)	2	3.059	_	Willis 1989
$L_{\rm u}$	_	2	1	cm	unit standardizing factor
$a_{\rm max}$	maximum age	3	11	yr	Raat, 1988
$\phi_{_1}$	(density-dependent growth)	4	0.18190	_	Arlinghaus et al., 2010
ϕ_2	(density-dependent growth)	4	0.56783	_	Arlinghaus et al., 2010
$h_{\rm max}$	maximum annual juvenile growth increment	4	27.094	cm	Arlinghaus et al., 2010
$D_{\rm u}$	_	4	1	kg ha⁻¹	unit standardizing factor
ρ	(density-dependent relative fecundity)	5	0.04818	ha kg ⁻¹	Craig & Kipling, 1983
W_{e}	egg weight	5	6.37×10^{-6}	kg	Arlinghaus et al., 2009
ω	relative caloric density of eggs compared to soma	6	1.22	_	Diana, 1983
Ψ	(hatching rate)	7	0.735	_	Franklin & Smith, 1963
α	(stock-recruitment relationship, mean value)	8	1.71×10^{-4}	_	Minns et al., 1996
β	(stock-recruitment relationship, the mean value)	8	7.0×10^{-6}	_	Minns et al., 1996
$ au_0$	(natural mortality)	9	2.37 (small pike), 1.555 (large pike)	_	Haugen et al., 2007
$ au_{X}$	(natural mortality)	9	-0.02 (small pike)	. –	Haugen et al., 2007

Table 2. Parameters and parameter values of biological and angling processes.

			0.40 (large pike)			
au	(notural mortality)	9	-0.29 (small pike),		Haugen et al., 2007	
<i>v</i> _Y	(natural moltanty)		-0.88 (large pike)	_		
au	(notive) montality)	0	0.25 (small pike),		Haugan at al. 2007	
ι_L	(natural mortanty)	7	0.00 (large pike)	—	Haugen et al., 2007	
Anglin	g processes					
q	catchability	10	0.01431	ha h ⁻¹	Arlinghaus et al., 2010	
$\eta_{_1}$	(vulnerability)	11	0.25	cm ⁻¹	Arlinghaus et al., 2010	
η_2	(vulnerability)	11	1300	_	Arlinghaus et al., 2010	
γ	(illegal fish recognition)	12	-29.44	_	assumed	
θ	hooking mortality	13	0.094	_	Muoneke & Childress (1994)	
\mathcal{E}_1	(non-compliance mortality)	14	1.25	_	Sullivan, 2002	
\mathcal{E}_2	(non-compliance mortality)	14	-0.84	_	Sullivan, 2002	
$C_{\rm u}$	_	14	1	fish h ⁻¹	unit standardizing factor	

[†] When symbol names are parenthesized, the symbols are parameters in a certain relationship. For example, (length-weight relationship) means that the symbol represents a parameter in the length-weight relationship.

Table 3. Parameter estimates of the latent class preference model for anglers estimated from the choice data presented in Beardmore et al., (2013). Values which are not underlined represent the slope of the PWU (part worth utility) functions, while underlined values represent constants. SD = standard deviation, refers to the standard deviation of data collected from diaries in the study region that were used when standardizing the attribute levels in the original choice experiment. For details on the interpretation of the four angler types, see supporting information.

			4-class model					1-class model
			λ				<u>.</u>	λ
			Type 1	Type 2	Type 3	Type 4		
Attribute	Туре	Unit	51.4	22.9	16.6	9.1	(%)	100.0
Intercept	Nominal	Fish in the region	<u>0.9149</u>	<u>0.1883</u>	-0.5628	-0.4228		<u>0.0900</u>
		Fish outside region	-0.2386	<u>-1.0336</u>	<u>-1.1146</u>	<u>1.1449</u>		-0.4637
		Not fish at all	-0.6763	0.8453	<u>1.6774</u>	-0.7221		<u>0.3737</u>
Catch rate	Numeric	SD from mean	0.1760	0.2337	0.4546	0.2776		0.2040
		Parameter 1 $(\gamma_1)^{\dagger 1}$	4.1162	2.8245	1.2646	2.1866		3.3395
		Parameter 2 $(\gamma_2)^{\dagger 1}$	2.6299	2.7162	7.7092	3.1479		2.6687
		Parameter 3 $(\gamma_3)^{\dagger 1}$	-0.6834	-0.9623	-8.6992	-1.4658		-0.8141
Maximum size ^{†2}	Numeric	SD from mean	0.1458	0.1482	0.1699	0.1997		0.1324
Anglers seen ^{†3}	Numeric	SD from mean	-0.0615	-0.1216	-0.0982	-0.1188		-0.0929
Stock status ^{†4}	Nominal	No information	0.0821	0.0940	-0.0225	<u>0.1580</u>		<u>0.0674</u>
		Good	0.3087	0.3614	0.5258	0.2674		0.3203
		Lightly overfished	-0.0609	-0.0452	<u>0.1618</u>	<u>-0.0961</u>		<u>-0.0338</u>
		Overfished	-0.3299	-0.4102	-0.6651	-0.3293		<u>-0.3539</u>
Regulations ^{†5}	Nominal	None	-0.1660	-0.0544	-0.0675	-0.5259		<u>-0.1307</u>
		Light	0.1462	0.0570	0.0657	<u>0.4538</u>		<u>0.1604</u>
		Medium	0.0937	0.1020	0.2497	0.1268		<u>0.0799</u>

		Strict	<u>-0.0738</u>	<u>-0.1047</u>	<u>-0.2479</u>	<u>-0.0547</u>	<u>-0.1097</u>
Licence cost	Numeric	10 € increment	-0.0212	-0.0981	-0.1501	-0.1251	-0.0621
Distance	Numeric	20 km increment	-0.0558	-0.5212	-1.6055	-0.2627	-0.1293

†1: Parameters for the PWU non-linear function, see supporting information for details. †2: Maximum size of fish captured is defined as the 95th percentile of the size distribution of fish caught annually. †3: All anglers at a particular lake are assumed to see each other because of the small size of lakes (10 ha). †4: In the present study, the level "none" (no information present) was chosen (see text for details). †5: The level "Medium" and "None" correspond to the "traditional harvest regulation" scenario (a minimum-length limit of 50 cm and a daily bag limit of 3 pike per angler day) and the "no regulation" scenario, respectively.

Figure legends

Figure 1. Schematic overview of the model.

Figure 2. An example of the distribution of lake-specific angling effort in the homogeneous and heterogeneous landscapes with the presence of the one-size-fits all regulation in the rural and urban landscapes. Lakes are identical in the homogeneous landscape, while lakes differ in their productivity or carrying capacity in the heterogeneous landscape. The annual angling effort densities are: <30, <60, <90, <120, <150, and \geq 150 [h ha⁻¹].

Figure 3. An example of the spatial pattern of exploitation in the homogeneous and heterogeneous landscapes with the presence of the one-size-fits all regulation in the rural and urban landscapes. Lakes are identical in the homogeneous landscape, while lakes differ in their productivity or carrying capacity in the heterogeneous landscape. Lakes are categorized based on their relative spawning stock biomass (SSB) to their pristine SSB (SSB/SSB₀). Green: healthy (0.35 or higher), yellow: overfished (between 0.35 and 0.10), red: collapsed (less than 0.10). pAED is potential annual angling effort density [h ha⁻¹].

Figure 4. Comparison between the homogeneous (Homo) and heterogeneous (Hetero) landscapes. Lakes are identical in the homogeneous landscape, while lakes vary in their productivity (top) or carrying capacity (bottom) in the heterogeneous landscape. Regional outcomes in terms of average lake-specific angling effort, degree of overexploitation of lakes (ROF = recruitment overfished stocks), biomass yield, and angler welfare as represented by average willingness-to-pay (WTP) per year in the rural and urban landscapes with the presence of the one-size-fits all harvest regulation are shown.

Figure 5. Comparison between the situations with or without the presence of the one-size-fits all harvest regulation in the rural and urban landscapes. Regional outcomes in terms of angling effort, overexploitation of lakes (ROF = recruitment overfished stocks), biomass yield, and angler welfare as represented by average willingness-to-pay (WTP) per year are shown. Lakes vary in their productivity (top) or carrying capacity (bottom).

Figure 6. Comparison between the 4-class heterogeneous (Hetero) and 1-class homogeneous (Homo) angler models in the rural and urban landscapes. Regional outcomes in angling effort, overexploitation of lakes (ROF = recruitment overfished lakes), biomass yield and angler welfare as represented by average willingness-to-pay (WTP) per year with the presence of the on-size-fits all harvest regulation are shown. Lakes vary in their productivity (top) or carrying capacity (bottom).

Figure 7. Proportions of each angler class within the realised angling effort density (AED, angling-h ha⁻¹) in the urban case with the presence of the one-size-fits all harvest regulation. Lakes vary in their productivity. Lakes are categorized by the distance from the metropolis: Zone 1 (<28 km), 2 (<56 km) 3 (<84 km) and 4 (\geq 84 km). The original proportion of the angler classes is shown on the left.

Figure 8. Relationship between a lake's intrinsic quality (pristine $SSB = SSB_0$) and the degree of exploitation (represented by SSB/SSB_0) and average angler catch rates (pike per hour) at equilibrium with the presence of the one-size-fits all harvest regulation in a rural landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential pAED (annual angling effort density) = 50, 150, 250, and 350 [h ha⁻¹].

Figure 9. Relationship between a lake's intrinsic quality (pristine $SSB = SSB_0$) and the degree of exploitation (represented by SSB/SSB_0) and average angler catch rates (pike per hour) at equilibrium with the presence of the one-size-fits all harvest regulation in an urban landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential pAED (annual angling effort density) = 50, 150, 250, and 350 [h ha⁻¹].

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Appendix I

Title:

Ecological, angler and spatial heterogeneity drive social and ecological outcomes in an integrated landscape model of freshwater recreational fisheries

Authors:

Matsumura, S., Beardmore, B., Haider, W., Dieckmann, U., and Arlinghaus, R.

Estimating a generic utility model for anglers

Most previous revealed or stated preferences models of anglers were directed at a particular target species (e.g., Dorow et al., 2010; Oh & Ditton, 2006,). Beardmore et al. (2013) presented a substantial innovation by generating stated choice data from a sample of anglers in northeastern Germany that exploited various fish species, including pike. However, different species differ in catch rates and other units of interest (e.g., size dimension), which complicates the standardized estimation of the relative importance of selected attributes across a range of species for angler choice. Beardmore et al. (2013) found a way of tailoring a stated preference discrete choice experiment to a random sample of anglers for which a previous diary survey indicated target species and variation in catch rates and captured sizes to be expected across species by individual respondents. The very same anglers were then confronted in a second survey with a stated choice experiment tailored to their specific target species, where the variation in levels of attributes describing choice option were made species independent by drawing levels for attributes such as catch rates or fish sizes in a standardized fashion across species, thereby varying levels in a comparable way related to species-specifics means and standard deviations for attributes of interest. Thereby, the model generated speciesindependent estimates of the so-called part worth utilities of different attributes known to be important to anglers, both catch- and non-catch related. To our knowledge this is the most general representation of angler behaviour published so far and hence was chosen for our work. We used these preferences to simulate angler behaviour in silico.

In the choice experiment described in detail in Beardmore et al. (2013), randomly selected anglers drawn from fishing license holders in the state of Mecklenburg-Vorpommern (M-V) were presented with a set of hypothetical angling experiences composed of several attributes including target fish species, licence cost, distance to the lake, catch number per trip (catch rate), average and maximum size of catch, number of anglers seen a measure of

crowding, minimum-length limit, daily bag limit and stock status. Each attribute was systematically varied to allow estimation of preferences for varying attribute levels. For each choice set, anglers were asked to allocate 10 days among six alternatives: four angling places in the region (i.e., M-V), angling outside the region, and no angling. Besides discrete choice tests, anglers were asked to answer a questionnaire concerning their angling activities during the last twelve months as well as their attitudes towards angling. Random utility theory (McFadden, 1973) assumes that individuals choose one alternative to another to maximize their utility, and the utility of one alternative is a function of its components, i.e., attributes (e.g., expected catch rate) and attribute levels (e.g., different catch rate levels). Based on the observed allocation of days among alternatives, we estimated the part-worth utility (PWU, a measure of importance) for attributes and attribute levels, i.e., the contributions of each attribute and attribute level to the overall utility of the alternative to the angler. We assumed that the PWU for each attribute was a linear function of attribute levels, and estimated the coefficient of the linear function similar to Beardmore et al. (2013). For further details of the choice experiment and its theoretical background, see Beardmore et al. (2013).

Recreation specialization theory: a framework for understanding angler heterogeneity Human dimensions researchers have long recognized that the "average angler" does not exist (Aas & Ditton, 1998; Shafer, 1969). In his seminal paper on recreation specialization, Bryan (1977) observed "a continuum of behaviour from the general to the particular, reflected by equipment and skills used in the sport and activity setting preferences" (p. 175) in American trout anglers, concluding that anglers may be grouped into types that share specific values, beliefs, attitudes and behaviours. While conceptualizations of specialization posited that as one gains experience in a recreational activity, one also becomes more emotionally involved or "specialized" (Ditton et al., 1992); however, the notion of clear predictable stages in an angling career being correlated with degree of specialization has been challenged (Scott & Shafer, 2001). That said, specialization is a multidimensional concept (Ditton et al., 1992), with clear correlates related to affective, cognitive and behavioural measures of attachment to the activity (Scott & Shafer, 2001). These measures reflect the degree to which one selfidentifies with the activity (Scott & Shafer, 2001), one's dedication to the values and norms of the social world of angling (Buchanan, 1985; Ditton et al., 1992), one's level of expertise (Salz & Loomis, 2005), and one's investment of time, money, and other resources to the activity (Ditton et al., 1992). While these three dimensions form the core of specialization theory, Bryan's (1977) observation also relies on observations of heterogeneous "activity setting" preferences. Preference can be defined as an evaluative judgment in the sense of

liking or disliking an object or outcome (Scherer, 2005). Thus, specialized anglers may also be differentiated from one another by their individual preferences for certain fishing experiences to the exclusion of others. For example, in some fisheries, specialization may be associated with a shift in catch orientation (Anderson et al., 2007; Fedler & Ditton, 1986; Graefe, 1980) from a focus on number of fish towards size of fish; and/or a tendency to release more fish (Bryan, 1977; Salz & Loomis, 2005). In this sense, the concept of specialization may be applied to any segmentation of anglers based on preferences for particular fishing experiences. For example, one may refer to the "fly fisherman" (Bryan, 1977) or "specialized carp angler" (Arlinghaus & Mehner, 2003) as technique or species specialists, or the "trophy angler" (Arterburn et al., 2002) as someone whose behavior is primarily motivated by the outcome of catching a large fish (Fedler & Ditton, 1986, p. 198). While such species-, technique- or outcome- specific preferences may not be fully resolved using the generic model of angler preferences used in this study, specialization still provides a rich conceptual framework for incorporating angler heterogeneity into an examination of social-ecological interactions. We used latent class modelling (see main text) applied to the utility data to identify classes of anglers and investigated whether the angler types followed specialization levels.

One challenge associated with latent class analysis is that the probabilistic nature of the class assignment does not necessarily provide a clear picture of the archetypal member of each class (Beardmore et al., 2013). Examining the angler types identified by latent class analysis through the lens of recreation specialization, however, provided some insights that aided in this regard. For ease of understanding, Table S1 presents a qualitative rating of the relative PWU values among the four angler types for attributes included in the choice experiment, along with other indicators of specialization taken from the surveys, interviews and diaries completed by study participants (for details, see Beardmore et al. 2013; Dorow & Arlinghaus 2011).

Type 1 anglers were the least likely to choose choice alternatives other than fishing in the study region. They were the least averse to paying high license fees, as well as the most accepting of high travel distances to get to fishing destinations within the region. They were the most tolerant of fishing in sight of other anglers, and strict regulations. This group also derived the least utility from the number of fish harvested. The commitment to fishing under less than ideal conditions demonstrated by this group was consistent with their tendency to score highly on a centrality to lifestyle index (measuring the degree to which fishing is a core aspect of their identity and lifestyle, data not shown here), their self-assessment of their fishing skill level, and their financial and travel investments into fishing in the region. These anglers therefore were considered to be highly specialized, fitting the label of "Committed anglers".

Type 2 anglers and Type 3 anglers represented incremental decreases in specialization, with each of these types more likely to opt out of fishing the last. Of note is the apparently increasing importance of catch outcomes among these groups, indicating that perceptions of high fishing quality are necessary to overcome the propensity to pursue non-fishing activities. Type 2 and Type 3 anglers were therefore considered to exhibit moderate and low specialization levels, respectively, fitting the labels of active and casual anglers.

While the first three angler types represent a specialization continuum from committed to casual in their preferences and commitment to angling in the study region, Type 4 anglers presented a different breed. In their choice responses, Type 4 anglers demonstrated a strong preference for fishing outside the region, showed a medium aversion to license costs and travel within the region. They derived higher utility from larger fish. They considered themselves to be more skilled on average than did the other groups, but were similar to Type 2 in their centrality to lifestyle. On average they tended to travel farthest to fish, while paying less than other anglers for their regional licenses. On the other hand, they had the highest average investment in fishing equipment. On the whole, Type 4 anglers appeared less invested in fishing freshwaters in Mecklenburg-Vorpommern; however, their commitment to fishing extended beyond the borders of the state with substantial investments in time and money to pursue their fishing activities. Consequently, one should consider these anglers as highly specialized (similar to Type 1 anglers) but with a greater emphasis on fishing elsewhere than in the study region.

Calibration of the mechanistic angler model

The original choice model presented the levels of some attributes (in particular catch rates, the size of fish captured and the angler numbers seen while fishing) in a standardized and personalized fashion to remove scale and units issues different among species (Beardmore et al. 2013). This was done by varying the levels of the mentioned attributes around a species specific distribution in units of SD so that choice sets presented to respondents for species A and species B varied in the same fashion along species-specific characteristics (e.g., the same SD change in length of fish captured when a pike scenario was evaluated compared to a perch scenario, for example). To find means and SDs for the attributes Fish number, Maximum size, and Angler seen in our simulated virtual landscape and allow the calibration of Beardmore et

al.'s (2013) model, initial simulations were run assuming that anglers are distributed across the lakes to achieve the maximum sustainable yield (MSY) of any one population. The resulting distribution of the three attribute levels at equilibrium across lakes were used to define the expected variation in the virtual landscape at optimal conditions and to compute means and SDs so that variation in catch rate, size and crowding all exerted effect on utility, and hence on lake choice.

For application of the choice model to our landscape, we modified the originally estimated linear PWU function for the utility effect of catch rates (fish numbers, Table S1). This was done because during preliminary simulations using the original functions given by Beardmore et al. (2013), we found that anglers also visited lakes where catch rates are zero. This unreasonable outcome arouse from the fact that the original stated preference choice experiment did not include extremely low catch levels by design. Moreover, the extreme nonlinearities of the PWU function for fish catch reported in subsequent work by Arlinghaus et al. (2014) (i.e., infinitely low utility of zero catch and marginal diminishing returns as catch rates close some threshold level of one to two fish per day) could not be approximated by the original linear function fitted through five catch levels in the experiment by Beardmore et al. (2013). To avoid systematically overestimating the number of anglers at lakes present at even extremely low catch rates, we re-fitted logarithmic functions

$$PWU(x) = \log_{\gamma_1}(x + \gamma_2) + \gamma_3$$

through the PWU values predicted by the original functions at five levels of expected catch rates (x), that is, $\mu - 2.63\sigma$, $\mu - 0.5\sigma$, μ , $\mu + 1.0\sigma$, and $\mu + 3.76\sigma$, where μ and σ represent the mean and SD for catch rates at MSY, respectively. The first and last values correspond to actual catch rates that are zero and the maximum number of catch rates per angler possible in the region, respectively. Note that we a standardized catch rate before calculating PWU, so the mean of the standardized catch rate is zero and the absolutely zero value for catch rate is negative on the standardized curve (Fig. S1). The PWU at the point of actual zero catch rate was determined to achieve a low probability of fishing of 6.3% when PWUs of all other attributes are zero. The probability value (6.3%) was chosen corresponding with angler diary data from anglers in M-V; it corresponds to the average percentage of trips taken by anglers who had average daily catch rates of zero. The modified functions are shown in Fig. S1, and the values of parameters γ_1 , γ_2 , and γ_3 are reported in Table S1. The functional form agreed with the diminishing marginal return of utility of catch rate expected from economic theory and reported for German anglers elsewhere (Arlinghaus et al. 2014). In Fig. S1 you can also see variation in angler types in how utility of catch rate changes with

increasing catch.

We also modified regulation-related attributes in Beardmore et al. (2013). We combined the original attributes "Minimum-size limit" and "Daily bag limit" and created a single attribute "Regulations", and estimated parameter values of the new PWU function.

References

- Aas, Ø., & Ditton, R. B. (1998). Human dimensions perspective on recreational fisheries management: implications for Europe. In P. Hickley, & H. Tompkins (Eds.), *Recreational fisheries. Social, economic and management aspects* (pp. 153–164). Oxford, UK: Blackwell Publishing Ltd.
- Anderson, D. K., Ditton, R. B., & Hunt, K. M. (2007). Measuring angler attitudes toward catch-related aspects of fishing. *Human Dimensions of Wildlife*, 12, 181–191.
- Arlinghaus, R., & Mehner, T. (2003). Determinants of management preferences of urban anglers: Habitat rehabilitation versus other options. *Fisheries*, 28, 10–17.
- Arlinghaus, R., Beardmore B., Riepe, C., Meyerhoff, J., & Pagel, T. (2014). Species-specific preferences of German recreational anglers for freshwater fishing experiences, with emphasis on the intrinsic utilities of fish stocking and wild fishes. *Journal of Fish Biology*, 85, 1843–1867.
- Arterburn, J. E., Kirby, D. J., & Berry, C. R. (2002). A Survey of angler attitudes and biologist opinions regarding trophy catfish and their management. *Fisheries*, 27, 10–21.
- Beardmore, B., Haider, W., Hunt, L. M., & Arlinghaus, R. (2013). Evaluating the ability of specialization indicators to explain fishing preferences. *Leisure Science*, 35, 273–292.
- Bryan, H. (1977). Leisure value systems and recreational specialization: The case of trout fishermen. *Journal of Leisure Research*, 9, 174–187.
- Buchanan, T. (1985). Commitment and leisure behavior: A theoretical perspective. *Leisure Sciences*, 7, 401–420.
- Ditton, R. B, Loomis, D. K., & Choi, S. (1992). Recreation specialization: Reconceptualization from a social worlds perspective. *Journal of Leisure Research*, 24, 33–51.
- Dorow, M., & Arlinghaus, R. (2011). A telephone-diary-mail approach to survey recreational fisheries on large geographic scales, with a note on annual landings estimates by anglers in northern Germany. In T. D. Beard Jr., R. Arlinghaus, & S. Sutton (Eds.) *Proceedings from the fifth world recreational fishing conference. American Fisheries Society Symposium 75* (pp. 319–344). Bethesda, MD: American Fisheries Society.
- Dorow, M., Beardmore, B., Haider, W., & Arlinghaus, R. (2010). Winners and losers of conservation policies for European eel, *Anguilla anguilla*: An economic welfare analysis for differently specialised eel anglers. *Fisheries Management and Ecology*, 17, 106–125.

- Fedler, A. J., & Ditton, R. B. (1986). A framework for understanding the consumptive orientation of recreational fishermen. *Environmental Management*, 10, 221–227.
- Graefe, A. R. (1980). *The relationship between level of participation and selected aspects of specialization in recreational fishing*. (Doctoral Dissertation). Texas A&M University, College Station.
- McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.) *Frontiers of Econometrics* (pp. 105–142). New York: Academic Press.
- Oh, C., & Ditton, R. B. (2006). Using recreation specialization to understand multi-attribute management preferences. *Leisure Sciences*, 28, 369–384.
- Salz, R. J., & Loomis, D. K., (2005). Recreation specialization and anglers' attitudes towards restricted fishing areas. *Human Dimensions of Wildlife*, 10, 187-199.
- Scherer, K. R. (2005). What are emotions? And how can they be measured? *Social Science Information*, 44, 695–729.
- Scott, D., & Shafer, C. S. (2001). Recreational specialization: A critical look at the construct. *Journal of Leisure Research*, 33, 319–343.
- Shafer, E. L. Jr. (1969). *The average camper who doesn't exist*. Upper Darby, PA: U.S. Forest Service, Northeastern Forest Experiment Station.

Table S1. Relative utility values across angler types and indicator variables associated with for classification by recreation specialization assessed from the choice model (see main text) and a qualitative assessment of differences among anglers in additional variables (cognitive and affective as well as behaviour) taken from the survey data (for details see Beardmore et al., 2013).

	Type 1	Type 2	Туре З	Туре 4
Attribute				
Propensity to Fish	High (in region)	Medium	Low	High (Elsewhere)
Cost aversion	Very Low	Low	High	Medium
Travel aversion	Low	High	Very High	Medium
Utility from fish harvested	Low	Medium	High	Medium
Utility from max. size	Medium	Medium	Medium	High
Congestion aversion	Very Low	Medium	Low	Medium
Overfishing aversion	High	High	Medium	High
Regulation aversion	Low	Medium	High	Medium
Cognitive and Affective			_	
commitment				
Centrality to lifestyle				
(affective)	High	Medium	Low	Medium
Self-rated angling skill				
(cognitive)	Medium-High	Medium	Low	High
Behavioral commitment				
Average travel distance	High	Medium	Low	Very high
License expenditures in MV	High	High	Medium	Low
Average trips targeting pike	4.3	4.3	3.6	3.3
(per year)				
Equipment value (Euro)	1520	1120	913	1834
Specialization label	Committed	Active	Casual	Committed
	(in region)			(elsewhere)

Fig. S1. Modified part worth utility (PWU) functions for standardized catch rate. The smallest value of the standardized catch rate corresponds to zero catch. Thick, dotted, dashed and thin lines correspond to the type 1, 2, 3, and 4 angler classes (Table S1), respectively.

Appendix II

Title:

Ecological, angler and spatial heterogeneity drive social and ecological outcomes in an integrated landscape model of freshwater recreational fisheries

Authors:

Matsumura, S., Beardmore, B., Haider, W., Dieckmann, U., and Arlinghaus, R.

pAED = 50pAED = 100pAED = 150 pAED = 200Ì Rural Ď Homogeneous • Ō _____ Ĭ • Urban ièèe • ŎŎŎŎŎ ------Heterogeneous in productivity • ē ĕ Rural • • ŏ • ē ••• . • Ō ŏ • ĬŎŎŎŎ ē • Urban iii ē Ď • . • Heterogeneous in carrying capacity ē ... • • . • ē Rural ō ē • ž ē Urban • ŏ • • ŎŎŎŎŎŎŎ

Figure S2. An example of the distribution of lake-specific angling effort in the homogeneous and heterogeneous landscapes in the absence of harvest regulations in the rural and urban landscape. Lakes are identical in the homogeneous landscape, while lakes differ in their productivity or carrying capacity in the heterogeneous landscape. The annual angling effort densities are: <30, <60, <90, <120, <150, and \geq 150 [h ha⁻¹].

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint

Figure S3. An example of the spatial pattern of exploitation in the homogeneous and heterogeneous landscapes in the absence of harvest regulations in the rural and urban landscapes. Lakes are identical in the homogeneous landscape, while lakes differ in their productivity or carrying capacity in the heterogeneous landscape. Lakes are categorized based on their relative spawning stock biomass (SSB) to their pristine SSB (SSB/SSB₀). Green: healthy (0.35 or higher), yellow: overfished (between 0.35 and 0.10), red: collapsed (less than 0.10). pAED is potential angling effort density [h ha⁻¹].

Figure S4. Comparison between the homogeneous (Homo) and heterogeneous (Hetero) landscapes. Lakes are identical in the homogeneous landscape, while lakes vary in their productivity (top) or carrying capacity (bottom) in the heterogeneous landscape. Regional outcomes in terms of average lake-specific angling effort, degree of overexploitation of lakes (ROF = recruitment overfished stocks), biomass yield, and angler welfare as represented by average willingness-to-pay (WTP) per year in the rural and urban landscapes in the absence of harvest regulations are shown.

Figure S5. Comparison between the 4-class heterogeneous (Hetero) and 1-class homogeneous (Homo) angler models in the rural and urban landscapes. Regional outcomes in angling effort, overexploitation of lakes (ROF = recruitment overfished lakes), biomass yield and angler welfare as represented by average willingness-to-pay (WTP) per year in the absence of harvest regulations are shown. Lakes vary in their productivity (top) or carrying capacity (bottom).

Figure S6. Proportions of each angler class within the realised angling effort density (AED, angling-h ha⁻¹) in the urban case in the absence of harvest regulations. Lakes vary in their productivity. Lakes are categorized by the distance from the metropolis: Zone 1 (<28 km), 2 (<56 km) 3 (<84 km) and 4 (\geq 84 km). The original proportion of the angler classes is shown on the left.

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S7. Relationship between a lake's intrinsic quality (pristine $SSB = SSB_0$) and the degree of exploitation (represented by SSB/SSB_0) and average angler catch rates (pike per hour) at equilibrium in the absence of harvest regulations in a rural landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential pAED (annual angling effort density) = 50, 100, 150, or 200 [h ha⁻¹].

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S8. Relationship between a lake's intrinsic quality (pristine SSB = SSB₀) and the degree of exploitation (represented by SSB/SSB₀) and average angler catch rates (pike per hour) at equilibrium in the absence of harvest regulations in an urban landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential pAED (annual angling effort density) = 50, 100, 150, or 200 [h ha⁻¹].
bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S9. Relationship between the distance from the central lake and the degree of exploitation (represented by SSB/SSB_0), the number of trips taken per year to each lake, and average angler catch rates (pike per hour) at equilibrium in the absence of harvest regulations in a rural landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential AED (annual angling effort density) = 50, 100, 150, and 200 [h ha⁻¹].

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S10. Relationship between the distance from the central lake and the degree of exploitation (represented by SSB/SSB₀), the number of trips taken per year to each lake, and average angler catch rates (pike per hour) at equilibrium in the absence of harvest regulations in an urban landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential AED (annual angling effort density) = 50, 100, 150, and 200 [h ha-¹].

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S11. Relationship between the distance from the central lake and the degree of exploitation (represented by SSB/SSB₀), the number of trips taken per year to each lake, and average angler catch rates (pike per hour) at equilibrium with the presence of the one-size-fits all harvest regulation in a rural landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential AED (annual angling effort density) = 50, 150, 250, and 350 [h ha⁻¹].

bioRxiv preprint first posted online Dec. 3, 2017; doi: http://dx.doi.org/10.1101/227744. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure S12. Relationship between the distance from the central lake and the degree of exploitation (represented by SSB/SSB₀), the number of trips taken per year to each lake, and average angler catch rates (pike per hour) at equilibrium with the presence of the one-size-fits all harvest regulation in an urban landscape. Each lake is represented by a circle. Variation among lakes in their pristine SSB arises either from variation in their productivity (a) or carrying capacity (b). From the left to the right: potential AED (annual angling effort density) = 50, 150, 250, and 350 [h ha⁻¹].