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Abstract

We study the problem of optimal insurance contract design for risn ™2» .gement under a budget
constraint. The contract holder takes into consideration that che I~ - distribution is not entirely
known and therefore faces an ambiguity problem. For a given sc - of inod s, we formulate a minimax
optimization problem of finding an optimal insurance cont: *ct thet - inimizes the distortion risk
functional of the retained loss with premium limitation. We ac ~onstrate that under the average
value-at-risk measure, the entrance-excess of loss contre +s are oj timal under ambiguity, and we
solve the distributionally robust optimal contract-desigr oro.’>m [t is assumed that the insurance
premium is calculated according to a given baseline loss a.. ribution and that the ambiguity set of
possible distributions forms a neighborhood of the I .. Z...ribution. To this end, we introduce
a contorted Wasserstein distance. This distance is finer .~ the tails of the distributions compared to
the usual Wasserstein distance.

JEL code. G22, D81.
Keywords: insurance contract optimization, .. ~dei >rror, minimax solution, distributional robust-
ness.

1 Introduction

Finding an optimal insurance or reinsur nce con ract is an important topic in actuarial science, describing
one of the most efficient tools for ris! man. ~e aent. The works of Borch (1960) and Arrow (1963) were
the first to discuss the structure of uch contracts under budget constraints and with the risk quantified
by variance or utility function. Su. = cher, the problem of finding an optimal insurance contract has
been studied under different ms ket ass. aptions and under various risk preferences for the insurance
participants. The expected util vy . ~mework analyzed in the aforementioned papers was further extended
in the work of Raviv (1979).Voung (1.99) and Kaluszka (2001) among others. Another direction that
drew substantial attention * as 1 1e consideration of the optimal insurance contract that minimizes some
risk functional, with the mc * ¢ bmmon ones being the value-at-risk (V@R) and the average value-at-risk
(AV@R). The problem v as stua. 1 in Bernard and Tian (2009), Tan et al. (2011), Chi and Tan (2011),
Chi and Tan (2013), As.a (215) and Lo (2017a) under different choices of premium principle calculations.

The papers mentione. abo e rely on the assumption that the loss distribution is completely known.
However, this assur .puon ha. been proven too restrictive. In most cases, approaches relying on such a
hypothesis ignore 1 sssible ¢ 'rors in modeling, which can lead to an underestimation of the risk associated
with the insured eve. *s. T overcome such drawbacks, we focus on the problem of quantifying the impact
of model missy :citication when designing insurance contracts. This issue becomes crucial in the context
of extreme cliiatic evi nts, where the need for more efficient insurance contracts has grown significantly
in recent years.

The id ~ . ~~nsidering model ambiguity has been used previously in environmental and finance
applications o obtain more robust solutions. For instance, Zymler et al. (2013) used model ambiguity to
control the pro. ability that the water level in some reservoir remained within certain predefined limits. In
portfolio optimization, we mention the work of Pflug and Wozabal (2007) and Esfahani and Kuhn (2017)
as examples of constructing financial strategies when the underlying probability model is not completly
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known. In actuarial science, there is a rich literature on worst-case risk measurement in the presence
of incomplete probabilistic information, reviewed and extended in Goovaerts et al. (2011), but only in
recent years a theoretical framework for the problem of optimal (re)insurance under ambiguity has been
formulated (see Balbés et al. (2015), Asimit et al. (2017)).

To this end, it is important to mention that the terminology ambiguity was uses hefore in literature
to refer to the ambiguity averse attitude of market participants. More precisely, it wa. 2bserved that
people are more likely to gamble when the probability of loosing is known rat’.c. than when the loss
probability is unknown, although the latter may be significantly lower. This par «dox was first formulated
by Daniel Ellsberg (Ellsberg (1961)) and is nowadays known as FElilsberg’s vare ~x. The subsequent
literature analyses the effect of ambiguity aversion on the structure of insurance “ntracts (see Klibanoff
et al. (2005), Klibanoff et al. (2009), Alary et al. (2013)). Assuming that .ne ambiguous distribution of
losses is parameterized by a finite set of priors, Gollier (2014) derives t} : op’ ima. form of an insurance
contact that maximizes the ex ante welfare of policyholder, under some ins. =nce tariff constraints.

Our notion of ambiguity differs from the aforementioned Bayesiar appreach, since we do not assume
any a priori structure on the probability models. The ambiguity arises from th uncertainty set of possible
probabilistic models and leads to a minimax solution.

The objective of this paper is to incorporate ambiguity into che < -icture of the optimal insurance
contract designed to protect against extreme natural events. In tl - - untex , of low probability-high impact
events, the climate-change dynamics and the scarcity of data ¢."1d e .y lead to model misspecification
of the underlying loss distribution. These factors motivate use " the model ambiguity approach in
the assessment and management of risk. The first objeci. = of t'.is paper is therefore to determine
the structure of the optimal contract under model ambigu'“v. rur a given set of models, we formulate
a minimax optimization problem of ﬁndmg an Optima] inenra. e contract that minimizes the concave
risk functional of the retained loss under the budget ¢ nstraint of the premium. To compensate for
possible model misspecification, the optimal decisior is taken v.r.t. a set of non-parametric models. The
ambiguity set is built using a modified version of t. = v 2u-xnown Wasserstein distance, which is more
sensitive to deviations in the tails of distributior <. If ( 1e risk measure is the average value-at-risk, the
optimization problem is solved using a distributic 'a." rubust optimization technique. We examine the
dependence of the objective function as well a< the p. rameters of the insurance contract on the tolerance
level change. Numerical simulations illustrate .. » procedure.

The paper is organized as follows. Section 2 u..roduces the notions of risk measure and premium
principle. As our focus is on low prob- L. "*v-high impact events insurance, we will provide a short
introduction to extreme value theory (F VT), t1 » statistical methodology used to model extreme events.
In section 3 we specify the stochastic opti.. *zati ,n problem of finding an optimal contract which is robust
under a given set of models. The str .ctu~e ot .ne optimal solution is based on the Lagrange dual method
for minimax optimization. In the r xt - actir 1, we consider the structure of the ambiguity set based on a
modified version of the Wasserst' in di. ~v _.e. The computational aspects of the minimax procedure are
treated here. In section 5 we 2 _, 'v the framework described above to a dataset of tornado claims and
study the impact of model ampiguity -n the structure of an insurance contract.

2 Preliminaries . «d notations

Let (Q,F,P) be a pr.~ab ity .pace and L' be the set of all non-negative random variables X on {2
representing losses ¢ ... that / | X (w)| dP(w) < 0.
0

Distortion ris =~ meas wres. The distortion risk measure is defined using the notion of a distortion
function.

Definition 2.l. A (¢ ncave) distortion function is a non-decreasing, concave function g : [0,1] — [0,1]
such that g(0) = dar . g(1) = 1.

Throug, »ut ..o article we will focus on distortion risk measures built using concave distortion func-
tions.

Definition 2.2. The distortion risk measure p? of a random variable X with a distortion function g is

0= [ Ty - F()) dr, 1)

where F' is the distribution function of X.



If X also takes negative values, then p? is defined as

0

() = / g~ F(a))da + [ a0 - F@) - 1ds.

— 00

The definition of a distortion risk measure comes from the axiomatic charac’c. ~tics of insurance
pricing in Wang et al. (1997). The distortion risk measure p9 with concave distortion func. on g satisfies
the following properties:

1. Properness: p9(X) > E(X).
. Positive homogeneity: p9(cX) = cp?(X), for c € Ry.
. Translation equivariance: p9(X + ¢) = p9(X) + ¢, for ¢ € R.

2

3

4. Monotonicity: p9(X) < p9(Y), for X <Y a.s.

5. Comonotone additivity: p?(X +Y) = p9(X) + p?(Y), for comc rotone 1 andom variables X, Y 1.
6

. Version independence: p9(X) = p9(Y), if F = G, where X -,V ~ G.
By a simple integral transform, a distortion measure p9 can L. cquiv Jently represented as
1
p9(X) = / VaR,(X) dg(t),
0
where g(t) =1 — g(1 —t) (see Dhaene et al. (2012)) and the . ~lue-at-risk

V@R, (X) = F ! (a) := inf{z € R| P(« < 2) > a}, for a € (0,1). (2)

We refer to g as a flipped distortion function.
The family of all distortion measures is convex and 1. extremals are given by the average value-at-risk.

Definition 2.3. The AV@R of a random variable X a. confidence level « € (0,1) is defined as

1 1
AV@R,(X) := 1 N / VAR, (X) dt,
—a,
provided that the integral exists. It is t’.e distc tion risk measure pertaining to the functions
t A\ t—
g(,(t)mln(\l_a,ll and ga(t)max<1_z,0>2 (3)

To see that the extremal distc tion .'nc.ionals are AV@Rs, consider the Kusuoka representation (also
called Choquet representation)

1
o X) = / AV@R, (X) dv(a),
0
where the relation between “he probability measure v on [0, 1] and the flipped distortion function g is
1
_ t—y
gty =1—g(l—t)= [ —dv(y).
o 1—y

The proof is provic :d in FfAug and Pichler (2016), Chapter 3.
While the AV@ R has t} 2 dual representation

AVAR,(X) =sup{E(X - Z):0< Z < 1/(1 — ), E(Z) =1},
any distortion “nctio’ al has the dual representation
~9(X) =sup{E(X - Z) : (1 — «)AVQR,(Z) <1 - g(«), E(Z) = 1}.

(see Pflug ana Pichler (2016), theorem 3.16). This representation as the maximum of linear functionals
shows that pY is convex in X; see proposition below.

ITwo random variables X and Y are comonotone if they can be represented as X = F~1(U) and Y = G~Y(U),
respectively, with the same U ~ Uniform|0, 1].

2The value-at-risk V@R is not a distortion functional in our sense, since it cannot be represented in form (1). Zhuang
et al. (2016) also call the V@QR a "distortion functional.” Notice that there are also examples where V@R, < E(X), even
for « arbitrarily close to 1.



Proposition 2.1 (Pflug and Pichler (2016), theorem 3.27). All distortion measures with concave distor-
tion function g, and in particular the AV@QR,,, enjoy the following properties:

1. pY is convex in the random variable: pd(AX 4+ (1 = N)Y) < Ap9(X) + (1 = A\)p9(Y), for 0 < A < 1.

2. p9 is compound concave in the probability distribution: if Y = X7 with probs .ty A and ¥ = X5
with probability 1 — A, then

(V) > AP (X1) + (1= \)p?(Xa), for 0< A<

As the distortion risk measure p9 depends on the underlying probability dis.. “huticn F', the notion of
robustness plays an important role when evaluating p¢ under different dist.i. “tions.

Definition 2.4. Let D be a distance for distribution functions. A distc. *ic 1 risk measure p9 is robust
(continuous) w.r.t. the distance D if for VX, Y € L', X ~ F|Y ~ G ‘e > . there exists some § > 0
such that D(F,G) < § implies |p9(X) — p?(Y)| < e.

Distortion risk premium. Distortion risk measures are also w. '~ ased as insurance premium
principles; in fact, their origin lies in the premium calculation ntre” -~ed by Denneberg (1990). The
derivative g’ of g is also called the loading function.

Definition 2.5. Let g : [0,1] — [0, 1] be a distortion function. " = distortion premium 79% of the loss
random variable X with distribution F' is defined as

799 = - — "lx))dx
(%) <1+e>/0 g(1 — 7ix)) dr,

with constant 8 > 0 called safety loading of the insurer. Us.. ~ the flipped distortion g(t) = 1 — g(1 — ¢),
the distortion premium principle can be equivalentl, wi. .. as

1
(X)) = (140>, VAR(X)dg(t).
)
Wang et al. (1997) proved that any premu.™ principle that is equivariant, comonotone additive,
positive homogeneous, and continuous in the followi.ig sense
lim m(max(X —d,0) =7x(A" and lim 7(min(X,d)) = 7(X),
d—0 d—o0
is a distortion premium. If g is concs ve, then ».7%(X) > E(X), which on average ensures insurer survival.
Extreme value theory. The : ‘ans gem' at of insurance companies relies on the necessity to precisely
quantify the risk, namely, the prr oabi. 7«  occurrence and the magnitude of the associated losses. The
problem becomes crucial in th . -ase of extreme events. Extreme value theory (EVT) represents the
statistical framework needed to mode. '~w probability-high consequence events and to compute a measure
for extreme risk.
Typically there are twc way of modeling extreme distributions:

e The block mazim . avpro.ch considers the sample mazima M, = max(Xi, Xs,...,X,) for an
ii.d. sequence (3 :);> . Br the Fisher-Tipett Theorem, extended by Gnedenko (Fisher and Tippett
(1928), Gnedenko (."43"), the only non-degenerate limiting distributions H of the standardized
sequence c,, ' vl,, — 1,) are of the form

L [ewt-r e e, g0,
He(w) = {exp{—exp{—x}}, if £€=0,

where 1+ _~ > J for shape parameter ¢ € R. The one-parameter representation of H is known as
gene. wee. ' omtreme value distribution (GEV). It includes the three types of extreme value distri-
butions ‘.e., Fréchet with £ > 0 characteristic to heavy-tailed distributions, Gumbel with £ = 0 for
thin-taile.” distributions, and Weibull with £ < 0 for finite endpoint distributions.

e The peak over threshold (POT) approach studies the distribution of exceedances over a given thresh-
old. By the Balkema-de Haan Theorem (Balkema and Haan (1974), Pickands et al. (1975)), the
excess distribution Fy(x) = P(X — @ < z|X > u) satisfies

Fa(z) = G, 4 — oo,



where G is the generalized Pareto distribution (GPD) with location p € R, scale ¢ € (0,00)
(depending on @) and shape £ € R given by

—p\ —1/€
1— (1+gm “) . for €40,

g

1—exp(—u), for £ =0,
o

G(z) =

forz > p when £ >0, and p <z < p—&/o when £ < 0.

For a detailed discussion on EVT, see Coles et al. (2001) and Embrechts ev ' (2u13).

3 Problem formulation

In this section we formulate the problem of optimal design for insuran e contr. <ts from the policy holder’s
point of view. For simplicity, we consider only a single-stage proble. » wher : the contracting time is 0
and the observation period is [0,7]. Let X > 0 be a random var’ ...e representing the accumulated loss
over the observation period, where X has estimated distribution . V.e & sume that the insured entity is
susceptible to high losses caused by extreme events. We refer t~ F as the vaseline/underlying distribution
of X.

To mitigate potential losses, the person affected by catas’ ~ophic e :nts is seeking an insurance contract
in exchange for a premium 79%(I(X)), with § > 0 being *he ». - loading. Here I(X) is the payment
function associated with loss X, written as the insurance conv. *ct. The most common types of insurance
contract are the proportional contract, with payment .., = c¢X, for 0 < ¢ < 1, the stop-loss contact
with I(X) = min(X,d) and the entrance-stop loss contrac. with I(X) = min(max(X — d1,0),ds — d1).
The last is also known in literature by the name stc_-.c. ‘eurance contract with an upper limit or as a
one-layer insurance contract.

The retained loss that still needs to be coverc « “w ti ~ insured entity is X — I(X) + 79%(I(X)). For
the set of admissible contracts, we follow the same "ne .s Cheung et al. (2012), Chi and Tan (2013), Lo
(2017b) and consider the set of feasible contr. . €+t e form

Z:={I:Ry — Ry : I is non-decreasing,0 < I(z) < z, |[I(z) — I(y)| < |z —y|,z,y € Ry }.

The aim is to find the optimal insu- ance cor ‘ract design that minimizes the risk associated with the
retained loss. More precisely,
if o0 (X — I(X) + 790 (I(X)))
Bl (Pl)
st C7(I(X)) < B,

where B > 0 is a fixed budget. Disu. -tion function g; is used by the insurance buyer to quantify the risk
associated with the retained '_ =, while the insurer uses the distortion g to compute the premium. One
can observe that (P;) assu aes ! 1ll knowledge of the underlying distribution ]3', i.e., the non-ambiguous
case. Problem (P;) will be e.." nded to the ambiguous case later in this section.

Zhuang et al. (2016 solved (>1) for general distortion functions, using a reformulation of the ad-
missible set Z. By def niti'n, a .,y I € F is absolute continuous; hence there exists A : Ry — R such
that

I(z) = /O " h(2) de. (1)

The function h . calleu che marginal indemnification function (MIF)(see Assa (2015)). In reality, the
insurance mar et incl les coverage limitations (see Doherty et al. (2013), Cummins and Mahul (2004))
or encounters a moral aazard when facing large claims (see Balbds et al. (2015)). From the optimization
point of vir— this means that we restrict the codomain of function h. The set of feasible MIF's therefore
becomes

H = {h Ry —[0,1]: 0<h <1 a.e. and h is Lebesgue measurable}. (5)

Thus Z is reformulated as

T= {I:R+ SRy I(z) :/ h(z)dz,Vx€R+,h€7-[}.
0



o0

If I is of the form (4), then p9(I(X)) = / g(1— F(2))h(z) dz for some distortion function g (see
0

lemma 2.1. in Zhuang et al. (2016)).

Our next proposition generalizes this result for the ambiguous case, where more than one loss distri-
bution is compatible with the observed data. To emphasize the use of alternative mo- <ls when evaluating
risk measures, we write X for a random variable, which has distribution F.

The distributionally robust formulation of (Py) is

inf gl(XFfIXF 90 (1(xF )
inf sup p (X)) +m99(1(X"))

5.t 0 (1(xF)) < B.

(P2)

The insurance buyer considers an optimal contract I(X) which minim.. ~ the risk measure p9 of the
retained loss for the convex hull of alternative models Fy, Fs, ..., Fp,, 1 . C:=c nw(Fy, Fa, ..., Fy,). The
insured person is inclined to buy the resulting contract I(X) as lo' g as tL ' associated premium does
not exceed the budget B. The premium is constructed based on a cu ~cave .stortion function g and is
computed w.r.t. the baseline distribution Fec.

For the above problem, we impose the following condition:

Assumption 3.1. There exists some K < oo such that p9' (X "\ <., VF € C.

Considering the properness of the distortion risk mez “ire we 1ave p9t(XF) > E(XT); thus the
assumption 3.1 implies the finiteness of the first moment ‘>~ an ™ - C.

Proposition 3.1. Let C = conv(Fy,...,F,,) be the e~ ' 1 of a set of alternative models and let
F € C be a baseline model based on which the insurance p. . mium is computed. Let g, g1 : [0,1] — [0,1] be
two concave distortion functions used to construct th ~omium 79¢ and the risk measure p9, respectively.
Then there exists some F* € C such that the distrib tis nally robust optimization problem (P3) has an

x
optimal insurance contract I*(z) = / h*(z)dz, .-« e
0

0, ifgi(1—270z) = (1+0+n7)g(1 = F(2)) <0,
W(2) = { 6(2), i gi(1=F* () = (1+60+n")g(1 = F(2)) =0,
1, ife,(1—7(2) = (1+0+n")g(1 — F(z)) >0,

for some k, a Lebesgue measurable fructic. wioh 0 < k(z) < 1 and for some n* > 0 satisfying
w0 (1"(x")) = B.

Proof. Due to the comonotone ¢ ditivity and translation equivariance properties of p9t, the problem (P3)
is equivalent to

inf sup /OOO (= F 2))dz — /OOO 911 = F(2))h()dz + (1+6) /OOO g(1 = F(2))h(2)d=

heH pec
s.t. / J(1- F(»)h(z)dz < B,
0

where B = B(1+/,~+. To prove the existence of a saddle point (see definition 6.3 in appendix), it is
necessary to check whethe (Pg) satisfies the conditions in the minimax theorem (see Sion’s minimax

theorem 6.1 in - . penaia,. The set H, := H[) {h EH: / g(1 — F(2))h(z)dz < E} is non-empty as
0

h = 0 belongs ‘o the i tersection. Moreover, since the constraint in (Ps) is linear in h, then H, is also
convex.

It can « w.., "~ seen that C is closed in the topology of weak convergence, as it is the convex hull of
finitely many .stributions. Let K be as in assumption 3.1. For any ¢ > 0 define K5 := K/§ < co. By
Markov inequa. ty, we then have that for all F' € C,

E(XT) >1-94
Ks — ’

F(Ks)>1-

which implies (uniform) tightness of C. Because C is closed and (by Prokhorov (1956), in appendix)
relatively compact in the topology of weak convergence, then C is weakly compact.



The objective function in (P2) is continuous in h and F', linear in h and concave in F', while H, is a
convex set and C is a convex and compact set. By Sion’s minimax theorem (see 6.1 in appendix) there
exists a saddle point, i.e., 3F* € C such that

inf max/o gl(l—F(z))dz—/O gl(l—F(z))h(z)dz+(1+0)/0 91— ~Vh(2)dz

heH, FeC
=it [Ca0-FE— [ a0 e a0 [ g0 - E@me:
= /O 91(1 = F*(2))dz — hselgt)w [/0 91(1 = F*(2))h(z)dz — (1 + 9)[ U= f{z))h(z)dz]

The inner optimization problem in the last equality can be equivalent y w .cu. = as:

fszlel%pt/o g1(1 = F*(2)h(z)dz — (1 + 9)/0 g(1 - r'(2Mhi<)dz

00 ) . (Pinner)
s.t. /0 g(1 — F(2))h(z)dz < B.

As problem (Pipner) is linear in h € H, the strong duality holds. k.. a dv . variable n > 0, the dual inner
problem is

inf sup £L(h,n) = inf sup / {gl(l —F*(2))— (14 0+ al" — F(2))|h(z) dz +nB. (Dinner)
n20 hen n20hew Jo

Similar to Zhuang et al. (2016) in the case of a single « ~uipution, define the sets:

AT = {2 (1= F*(2) = 2+ myg(l = F(2)) > 0},

AV i={z: (1= F*(2)) — (1 +n)g(1 - F(2)) =0},
A= {2 (1= F(2)) - "+ +n)g(l - F(2)) <0}

Define the MIF h* € H, which depends o- .~ va, e of n > 0, to be of the following form:

0, ifzeA,
h*(;m) - S k(z), if ze A°, (6)
1, if 2€ AT,

for some arbitrary x : [0,00) — [0,1" Lel csgue measurable function.
The constraint in (Pipner) only o7 sider s the baseline distribution; hence the existence of the dual
variable n* > 0 such that

[~ -
e - P e - (7)
is guaranteed by theorem ( .1.) n Zhuang et al. (2016).

Then n* > 0 and the cori. ~ sonding h*(+;n*) € H of the form (6) are feasible for (Dinner) and (Pinner),
respectively. Moreover, Ly consu. «ction, n* and h*(-;n*) satisfy (7); hence by complementary slackness
condition, n* and h*(- 2*) .re ¢ stimal solutions of (Dipner) and (Pinner), respectively.

The original problem (.>~) "ias an optimal value:

oo (o) oo
[ o= @nd - [ o= Fre G+ (40) [ g - bz,
0 0 0
where the corr :spond. ng MIF h* is of the form (6). O

If the risk me. e p9t is AV@R,,, for some a € (0,1) and Fy, . .., Fy, are continuous, strictly increasing
distributic. ... **ons, then (P3) has an explicit solution, as is shown below.

Proposition ¢.2. Let C = conv(Fy, Fa, ..., Fy) be the convex hull of a set of strictly increasing, con-
tinuous cumulaw.ve distribution functions and let F' € C be a baseline distribution. Let g : [0,1] — [0, 1]
be a strictly increasing, concave distortion function. Then the optimal I € Z that solves problem

. F F 9,0 o
}Ielgi}gc) AV@R,, (X I(X") +m9%(1(X )))

5.t 790 (1(XF)) < B,

(P3)



for some « € (0, 1) is an entrance excess-of-loss contract, i.e., there exist di,ds € Ry, d; < dy such that

0, if0<2<d,
I*(l'): l’*dl, ifd1<1’§d2, (8)
dg—dl, if dy < z.

Proof. Using the minimax property proven in proposition 3.1, there exists son : ¢ 'timal F* € C such
that the problem (Pj3) can be reformulated as follows:

/000 ga(l — F*(2))dz — sup [/000 [9a (1= F*(2)) = (1+0)g(1 — F(-)\h(2) dz}

heH

s.t./o g(1- F(z)) h(z)dz < B,

where B = (1 +60)"'B and g,(z) = min (L, 1) is the distortion "nctior corresponding to AV@QR,,.

Again, the inner problem is

Sup /Oo [9a(1 = F*(2)) = (1+0)g(" — F(-)) h(2)dz
heH Jo

¢ - (Ploner)
s.t./ g(1=F(2)) h(z)dz < B.
0

mner

If b= 1{ga (1-F*(2)) = (1+0)g(1 —F(z)) > 0} satisf - wue coustraint in (P{, ), then it is the optimal

mner

solution of (P{ .. ). Otherwise, due to linearity in h, the s. ng duality holds with the dual problem

| = (ga(l—F %2, _
inf sup/ g1 —-F(2))| =—/————_ +—(1+0+n) |h(z)dz+nB.
120 hen Jo g(1 - ™(z),

1

Denote G(z) := 9“(1_—F(’Z)) - g(1 _1{\%4\*\(;)

9(1-F(2)) T T if VAR (XF") < 2.

Since F* is continuous and g is a con. ~ve fun cion, then G is continuous, increasing on [0, V@R, (X 7")]
and decreasing on (V@R (XT"), 00" with 4" @R, (X)) = g(1 — F(V@RQ(XF*))Y1 > 1. Moreover,
lim G(z) =1 and lim G(z) = 0. S"ce (1~ F(2)) >0, to determine the optimal h € H, one need only
study the sign of G(2) — (1 + 6 4 n). W “.stinguish two cases.

if 0 <z < VAR4(XT),

A\

Case 1. If 1 + 6 +n < G(V@R, X" ) then by the intermediate value theorem, there exists some d; €
[0, VAR, (XF)] and 7, « (VAR (XF"),00), such that G(d1) = G(dz) = 1+ 6 + 1. Then the
optimal h*, which de «end on n, has the following form:

0, if z <dj,
hW(z;m) =41, ifd <z<ds, 9)
0, ifds <z

T

This defines [(.0 — / h*(z;n)dz as in (8).
0

Case 2. If 1 +0- n > Q\V@RQ(XF*)), then h* = 0. In this case, dy = do = co. We are going to prove
later on thay wus case is not possible, when taking into account the constraint in (P, . )-
o0

The existence »f 7 > 0 such that / g(1— F(z))h*(zm) = B is proven in theorem (4.1.) in Zhuang
0
et al. (2016). This implies that h* # 0. Again, (P3) has an optimal value given by

/ T gall— F(2)) dz — / g1 = FF(2) — (1 +0)g(1 — F(2))]h* () 2.
0 0



Figure (1) illustrates the payment function of the contract I(X) = min(max(X —dy,0),ds —d;). The
entrance excess-of-loss insurance contracts are proven to be optimal in the contexts of very large claims
and the coverage limitations of the insurance market (see Cummins and Mahul (2004) and Doherty et al.

(2013)).

payment ,

dq do loss

Figure 1: Insurance contract with deductible d; and ¢« » da.

4 Alternative models

In the distributionally robust problems (P3) and (Pj3), the set o. alter iative models is given a priori,
without any further specification. In this section, we will discuss ~ method of generating the alternative
models and of finding the optimal parameters of the contre~t obtair, »d in proposition 3.2.

For r > 1, let F and G be two distributions on (Q,]—"7 P) \,’*h f.ite moments of order r.

Definition 4.1. The Wasserstein distance of order r hetwean  -obability distributions F' and G is

. I— 1/’)“
WD (F,G) = i " wrz();,y)r} ,

Vol
where the infimum is among all joint probabilitie. ¢. Q .. Q with fixed marginals F' and G. Here d is a
metric on R. Typically d is the l-norm, i.e., d(z,y) = |z —y|.

The Wasserstein distance satisfies the triangle mequality and enjoys the following properties:
o If 1 <1y, then WDy, (F,G) < W7_q4,,'F,G).
e WD, is symmetric and convex m. “oth # guments, i.e., for 0 < A <1,

WDd,T(F, NG + A= /\)G'\)T < /\WDd,T(F, Gl)r + (1 — )\)WDd,T(F, Gg)r.

For more on interpretation and roperties of Wasserstein distance, see Villani (2008), Chapter 6.
The Wasserstein distance c. orac = > 1 in the case {2 = R with 1-norm is given by

- 1/r 1 1/r
WD, ,.(F,G) = |L / |F(x) - G(x){rdzv] = {/0 |F71(y) - Gil(y)rdy . (10)

For a proof for r = 1, < e Viller ler (1974). The general case r > 1 can be proven in a similar way.
The average value-at-i. % i, robust with respect to 1-Wasserstein distance in the sense of definition
2.4:

1
|/ V@R, (X)) — AV@R, (X%)| < T2 WDLi(F,G). (11)

See Kiesel et ¢ . (2010).

From (10) « = can c »serve that WD ; assigns equal weight to the difference between the distributions
F and G. The .. of replacing the Euclidean distance on R with another distance is motivated by
observation * or w..rance for extreme events. More precisely, when we consider the order statistics of
losses X(1) < ((2) < ... < X(y), the difference between low losses (e.g., the distance between the first
and second sma.lest observations) should not be seen as equal to the difference between very high losses
(e.g., the distance between the 100-th and 101-th largest observations) from the insurance pricing point
of view. The reason is that in extreme events, we would impose a higher penalty on the deviations from
the baseline model at high quantiles while allowing differences between models around the mean of the
distribution. We therefore need to define a metric which is more sensitive to the tail of the distribution.

For this reason, we propose the following transformation of the positive real line:



Definition 4.2. Let z, € R, fixed and let ¢, ., : R>g — R be a bijective transformation of the
positive real line defined by

S
g cx®, else

if z <
(pswq(gj) = {Jj,ls T < Z‘q , se N,
x
which induces the metric ds 2, (2,¥) := |¢s,2, (L) = P52, (¥)]-

Figure (2) indicates the manner in which the transformation ¢, ., contorts  oc;: the values smaller
than the constant x, are unchanged, while the larger values are inflated. Th'~ pro, ~rty turns out to be
appropriate for extreme value analysis, where the focus is on the shape paramete. €.

@s,mq

|
!
!
|
|
|
1

0 T4 x
Figure 2: Transformat.. - Ds,zq-

Remark 4.1. 1. In extreme value analysis, g is » high p.obability from which we consider that the
tail of all the models begins and x, := F~1(,). "ve can assume without loss of generality that
Tq >> 1.

2. For s > 2, d, ,, and d(z,y) = |z —y| are equivc 'en. on bounded intervals. For a proof, see appendix.

If X ~ F is a random variable with support [0, .~), tnen ¢, . (X) ~ Fy , with

(F(x) if X(w) <z
Fop (2) =Psq (X)< )= 1 1/s o ,s €N.
() (o2, (X) ) 11‘(331/533; Y ), else
Definition 4.3. The Wasserstein d tan<e o1 order 1 with the underlying metric given by d; ., between
the probability measures F' and G vith finit : first s moments, is defined as
WDy, . 1(F,G) = )}an Elds,.,(X,Y)] (12)
Y~G

s,xq

and is called contorted Was ers. in distance between F' and G.

Remark 4.2. Using a simila. oroof as in Vallender (1974), the contorted Wasserstein distance between
probability distributions F' end G has the following form

WDy

sy

(B, = /O‘X’ |F(z) — G(m)|<p;7xq dx
o o (13)
= [ F@ @i+ [ ]P@ - Gw)ste/a) !

q

From now ', as ai the distances considered are of order 1, we omit the order in the notation.

Remark 4 2. If 4, -~ 1, \(p’s7lq| > 1, then WD (F,G) < WDy, . (F,G), for any probability distributions
F and G. h'ore swver, the contorted Wasserstein distance satisfies the same properties as WDy .

Proposition 4« 1. The contorted Wasserstein distance satisfies the following properties:

1. Wdeq characterizes the weak topology on sets of distributions with uniformly bounded s mo-
ments: let (F},)n>1 be a sequence of distribution functions and F' another distribution function. If
F,,, F have bounded s moments, then

WDy, , (Fn,F)—— 0 <= F, —— F weakly.
e n—oo

n—oo
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2. Assume that the right endpoint of a probability distribution F is finite, i.e., ess sup(F') < co. Then
there exists some constant K such that
P{WDq, , (Fn,F)>e} < Ke''n™,
n

where Fn(ac) = 721(_00733] (X(4)) is the empirical distribution function on "< or e ii.d. sample
n
i=1
{Xa), X@2),.-., X} from a probability distribution F.

3. Let (Xi’Yi)ieN and ()N(i,Yi)ieN be two renewal models (as in definitior 6.1 1. appendix) with the

same claim times Y;. Let F' and G be the distribution functions of V; aun’ X;, respectively. If
F=1-F and G =1 — G are regularly varying functions, then for larg = ~ough initial capital w,
the ruin probability ¢ (u, ) (see definition 6.2 in appendix) satisfies

9 (u, F) — (u, G)' <C- WDds.zq (,4),
for some positive constant C.
Proof. 1. Since d; 4, is a distance on R, the property follow, 1 » similar way as in Villani (2008),

theorem 7.2.

2. If M := ess sup(F'), then / |, (x) — F(z)| dz = 0. The co *orted Wasserstein distance is
. M JM [ );iq(M)

WD, (FurF) = [ [Faloi}, () = Flos} (0] e =
0

g (M)

Lps,lq
< Wha, (M)/

0
= @;,xq (M) WDl(Fn,F) < cCo.

Fy(z) = F(2)] 0, 1, () do

J0

Fo(z) — 7(x)| dx

E[WDds‘mq (F‘,L,F)] < Vo, (M)E[WDl(Fn I < C-n~t for some constant C, where the last
inequality holds by Dudley (1969). Applying "he ~ larkov inequality yields the desired result.

3. The proof is straightforward and is prese.."»d 1 the appendix.
O

From now on, we fix ¢ € (0,1) and s ¢ N. Sw. ce zq = F1 (¢) is related only to the baseline distribution
F, we may omit the subscript z, and, for “he sak : of simplicity, write WDy, . The corresponding ambigu-
ity set around F of radius € > 0 will b specifie.. by the Wasserstein ball P (F) := {F : WDy, ,(F, F) <e}.
Remark 4.4. If the alternative mc s F' |, F5,..., F,, € ”PE(F), then the compactness of the set C =
conv(Fy, ..., Fy) in proposition 3.1 anc 3.2 is guaranteed by the compactness of P.(F). To see this,
observe that C is a subset of 7 (r , since any F' € C can be written as F' = Z:’;l A F;, for some \; > 0
with 377, A; = 1 and hence

WDg, ,(+7 ’ ) = WDdsﬁq(Zx\iFi,ﬁ‘) < Z)\iWDds‘q(Fi,F) <e.
=1 =1

We obtain that C is a .~ Jd su'set of a compact set P(F), and hence compact.
Furthermore, if *' - risn ~.easure p9' is robust w.r.t. WDy,  (as in definition 2.4), then for any

FeCandanyé> 0, Wb _ (F, F) < e implies p9 (XT) < p9t (XF) + 6. Therefore, the condition that

P9 (XT) < oo, for &' F 7. C reduces to the assumption that p9t (X F ) is finite only under the baseline
model.

Problem (}F ) can ! e further extended by replacing the feasible set C by P.(F).

Propositi _ 1 2. Let I’ be a baseline distribution and g, g : [0, 1] — [0, 1] be some concave distortion
functions. "The . there exists some F* € P.(F) and h € H such that the optimal insurance contract
I* € 7 of the 1. lowing problem

inf sup  p» (XF —1(xh) +7r9*0(I(XF))>
TeL pep.(F) (P4)

5. 0 (1(xF)) < B
has a MIF h* of the form (6).
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Proof. For h € Hr =H() {h eH: / g(1 — F(2)h(z)dz < E} and a probability distribution F, let
0

[(h F) = p? (X7 = I(XT) + 79 (1(xT))),

where I(-) is given by (4). Note that both P.(F) and H, are convex sets, P, F) 15 ~ompact w.r.t.
the contorted Wasserstein distance and the function I'(h, F') is linear in h and .. ~ave in F, therefore
applying again Sion et al. (1958) yields:

inf max I'(h,F)= max inf I'(h, F).

het~ pep (F) FeP (F)h€Hx
The structure of the optimal A* € H is then proven in a similar way to } -oprc sition 3.1. O
Denote by C(e) the convex hull of some distributions Fi,..., F,, = P.(F). The next result gives a

bound on the optimal value of (Py) when increasing the ambiguity r dius e.

Proposition 4.3. Let g; : [0,1] — [0, 1] be a concave distortion f ..ction such that the flipped distortion
function g, (z) = 1 — ¢g1(1 — 2) satisfies ||g7’]|cc < 00. For 0 < €. < r, a1 biguity radii, then there exists
some § > 0 such that

a

min max I'(h, F) — min max T'(h, F‘)‘ <2(¢ 4 )91 || so-
heH FEC(er) heH FeC(es)

Proof. For h € H, define T'¢, (h) := chz%x )I‘(h, F)and T, (h) . - chz%x )F(h, F). Since T, (h) is concave
eC(er eC(e2

in F, one can find Fy = argmax{l'¢,(h) : F € C(&;)}, or i = 1,2 and for given h € H. Because
Er e P, (F ) then by triangle inequality of the con' . *~1 Wasserstein distance,

WDy, ,(Ff, F5) < WDq, (5. F) - WDy, (F5,F) = & + €.
Then the following holds

ITe, (h) =T, ()| = |FIEHCBE)€( )F(h JF) — Frg}ja(icz)l"(h r,

= [D(h, F}) = T(h, F3>
< pP (XY — p (X | (I(XTT)) = p (I(XT2))|

<Awma—ﬁa>gu—& 1@+Ammu—@@>gm—& )[h(z)

(e
S(Hllhlloo‘j lg1(1 = F{(2)) = g1 (1 = F5(2))|d>
0

<+M@Ufwmr<>um-umwwz

<(1- Mvumu/|ﬂ — (F) M (2)|d

<O+ ! 191l WD (FY, Fy)
< (X[l o)1 lloo (€1 + €2).

Without los- .. genc. atity, assume that e; < ¢;. Then choose h € H such that T, (k) < hml?I_Ll ., (h)+5,
€

for some € > C Then

., (h) —minT,(h) < minT,, (h) — T ¢
min [, (h) — min e, (h) < min T, (h) — Te,(h) +€
<Te(h) =T (k) +¢€

< (L+[[Alloo) [ lloo (€1 + €2) + €

Since € is arbitrary and max [A]loc = 1, the result follows. O
€
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Minimax algorithm.  For the numerical section, we assume the continuity of the distribution
functions. The convex hull of the set of alternative models C is constructed in a dynamic way via the
following distributionally robust optimization problem:

. F F 9,0 F
min max AVAR, (X" — I(X*) + 97 (I(X™)))

st m0(I(x") < B (Ps)

Since the risk measure in the objective function of the problem (P5) depends o.. ~lternative probability
distribution F, as well as on the MIF h, the minimax problem is solved ir a s emwise manner (see Pflug
and Wozabal (2007)). The inner problem is of the form:

max AV@R, (X — (XT) + 790(I(X )))
st. WDg, (F,F)<e

and requires as input some h € H. It is a convex optimization p1 "\b! .n (s e proposition 2.1); hence there
exists some F* that maximizes AV@R, (). The outer problen.

. F F . g0/ vE
min max AVAR, (X" —I(X", - #m9%(] X7)))

st. 7(1(xF) < B

is linear in h. The minimax procedure is then the follow.. »: in the initialization step, the admissible
set C contains only the baseline distribution F'; he. <c, " ~ outer problem is a non-ambiguous problem
for which the optimal MIF is of the form h(z) = ]1{(\’( ),déo)]} for some values dgo) < dgo). The inner

problem is solved with parameters dgo) and déo) «” . num, and the worst-case model F} is computed via
convex optimization-based algorithm. The new-fou~d model Fj is added to C and the outer problem
is solved, where the maximum is chosen w.r... tne .. larged admissible set, i.e., C = conv(F ,F1). The
optimal insurance contract over C in the outer prob.:m is of the form (8) for some dgl) < dgl), according

to proposition 3.2. The optimal solutior \alﬂ d(zl)) at this iteration will be used again as input for the
next inner problem. The procedure stc s when she number of alternative models reaches m.

One of the difficulties in the minimax , *ok’em lies in the computation of the contorted Wasserstein
distance between the baseline distri’ utic 1 F' and the alternative distribution F. In spite of the compact
form of this distance (see (13)), i. s mprc ssible to determine the integral in an analytic way, unless
strong assumptions regarding th . class ¥ distributions considered are imposed. For instance, if all the
probability distributions are di- .. *e, then a linear programming approximation to compute WDy, = can
be formulated. The quality ot the ap, ‘oximation depends on the discretization technique, i.e., optimal
trade-off between a finer d'scre ization and the numerical challenges faced when evaluating it. The
problem can become even i. e difficult when discretizing the tail of the distributions, where the extreme
events lay. To tackle t} zse pi.hlems, we propose the following representation for the models in the
ambiguity set.

Ui e model F is piece-wise linear until x, with a finite number of breakpoints

Assumption 4.1. The ba,
W 2@ 2 yhere . (W = zq. For x > x4, we assume that F has a Pareto type tail, ie., 1 —
F(x) = ¢z~ /¢, for ~ cong’ant é > 0 and shape parameter 0 < é < 1. These values are known a priori
by estimating ‘L baseune distribution. An alternative distribution F € P.(F) is assumed to have a
similar structt e, i.e., " is piece-wise linear between (x(i), x(”l)), i = 0,n, but has different probabilities
0=F0 <« FO* <« F') < ... < F®=1_ As the tail of the alternative distribution is assumed to start
from the & -~ .. we required that F(") = F(™) and that it is of Pareto type, i.e., 1 — F(z) = cx— /¢,
for some ¢ > 0 nd € € (0,1).
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Figure 3: Distributions Fand F satisfying assumpt »m 4 ..

The assumption of Pareto tails for distributions in P, (F ) come: from F VT modeling of insurance
losses. Since the extreme losses are considered positive random variab. - *Leir distribution is usually a
heavy tailed one in the domain of attraction of the Fréchet dist'.but’ .. with a shape parameter { > 0.
Since |[E(XT) — E(XT)| < WDy, (F, F) < o0, then the finiteness . the irst moment implies £ < 1. For
a discussion on the typical values of parameter £ in the insurai.. » coucext, see Embrechts et al. (2013),
Chapter 6.

In any e-neighborhood w.r.t. the WD; of some baseline ‘istrit ation with Pareto-like tail, one can
find distributions with arbitrary shape parameter. The nex. ~emark shows a relation between the shape
parameter ¢ and the power of contortion s € N in defiri*:-~ * <

Remark 4.5. Let F be a baseline distribution such +hat 1 —.7(z) = ex= Ve x> Zq, ¢ > 0 and £e(0,1).
Let s € N with {C < 1/s and ’Pe(ﬁ') the correspondi. 7 7 mbiguity set w.r.t. ds,. Then any alternative
distribution F in P.(F) such that 1 — F(z) = ca" /¢, ¢ « Ry, € < € satisfies £ < 1/s.

To see this, let 4 = 1/§A > 1land v = 1/ > 1 .~ the tail indices of the baseline distribution F
and the alternative distribution F', respectiv:’, We “cus on the case 1 < v < 4 where the alternative
distribution has a heavier tail than the baseline « ~e. The contorted Wasserstein distance is

WDy, (F,F) :/0 |F(z) — J(x)‘\’”c—k/oo|F(m)—G(m)’s(x/xq)s—1dx

q

ZTq N o0 N
= / |F(x — F(x), « +/ |cszé75z77/5 - és:céfsva/ﬂ dx < oo,
0 T

q

The second term in the above re ation 1. ' ounded in only two cases.
Case 1. If £ < 1/s, then £ < 1/s.
Case 2. If € =1/s, then é =1, sa d é=c.

Using the structure .f the «'tributions as in assumption 4.1, the contorted Wasserstein distance
between F' and F is th . are . be*ween the cumulative distribution functions F' and F' as in figure (3).

WDdS’q(F,F) = / q|.”(x)—ﬁ’(x)|dm+/ |F(x)—13’(x)|sm5*1x;*5da: (14)
0 T4
.
LN G i i f(i i f(i 1y n—1/s€ —s
= 2) @O ) H (RO - FO R +1>)+/ jea /€ ga V9|51~ d,
=1 Tq

where the . ~*ian H computes the area of the trapezoid with corners (F'), F(i+1) @) pli+1)y e

H(x )7 |z —yl, ifzy >0
W= (22 +y?)/|x —y|, if 2y <O0.

The function H is convex in F() i =1,... n (see Pflug et al. (2017), appendix). Contorted Wasser-

stein distance WDy, , is linear in ¢ and increasing in {. The computation of the alternative model F is
shown in the appendix.
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Problem (P5) is solved using an iterative procedure (see algorithm 1). Note that according to
proposition 3.2, the admissible contracts are the entrance excess-of-loss contracts characterized by pa-
rameters 0 < d; < dy. To emphasize the dependence on d; and ds, we denote the contract by
Iy(z) := I(z) = min(max(z — dy,0),dy — dy), where d = (dy, d2).

Algorithm 1: Algorithm to solve problem (Pj).

Data: e Baseline model F satisfies assumption 4.1;

e Ambiguity radius € > 0;

e Number m of iterations;

e Set of considered models C, i = 1.

Result: Optimal df and d} such that I;(z) = min(max(z — df,0),d5 -d;’ 1s . sensitive w.r.t. C.
initialization: C = {F};

while i < m do

Outer problem:

Input: C;
i A XF I (XF) 4 ol (1 XF
gl}(g r;}eaé( VAR, ( aX)+ (X))
s.t. 790 (XF) < B
0<d; <ds

Output: parameters d = (dgi)7 déi)) of the contrac. “nd ..~ _st-case distribution F* € C.

Inner problem:

Input: parameters (dgi),déi)) from outer problemn.,

max  AVGRG(X" — Ty 7, + 799 (I (X))
s.t.  F satisfies . mp ‘on 4.1
WDy, ,(F.F) ~ ¢

Output: alternative model F;; update C = .,mv(ﬁ, Fo,....,Fi_1,F;);i=1i+1.
end

The resulting worst-case distributior F* € C = conv(Fy, ..., F,,) for some alternative models F}, ..., F,, €

P(F) and for some € > 0 will have a shap. na ameter £* given by

€ - max {&[ A > 0},

i=1m

where F* =" XNFi, A; > 0. ", \; =1 and & is the shape parameter of F;, i = 1,...,m.

5 Numerical example

Tornadoes are extreme - .atu-al events that affect the U.S. mainland more than other parts of the world,
with an annual averagc ~f 1200 r vents. The area on the east side of the Rocky Mountains, including parts
of Oklahoma, Kansas ana o Jhern Texas, is most prone to tornadoes, which is why it has received the
name "tornado alle /7. To nadoes of category F5 on the Fujita scale are considered extreme events, even
though less than 19 of the otal number fall into this category, but may cause significant damage. Conse-
quently, there is °1 in. - .sing need for more efficient tools in risk assessment and insurance mechanisms
in the face of ¢ uch ex. -eme events.

Data is tak n from he Storm Events Database (https://www.ncde.noaa.gov/stormevents), which con-
tains records crea... by the official United States National Oceanic and Atmospheric Administration
(NOAA). C€au w.. meteorological events registered, we focus on tornadoes, since this type of event has
the longest pc «od of record, i.e., 1951-2015. Each tornado is coded as an episode which may contain one
or more events, aniquely identified by a key. For each such event, there are around 50 variables which
include, among others, the state affected by the particular tornado, the date of the beginning and end
of the phenomenon, its length and width while on the ground, the number of dead or injured people
(directly or indirectly) and its F-scale. The direct economic losses caused by tornadoes include property
and crop damage, determined in the weeks and sometimes months after the event. The indirect damage
(long-term macroeconomic effects and loss of human life) are excluded.
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The claims included in this database are gathered from insurance companies, mass-media, or other
non-official sources, and the data we use may thus already contain some uncertainty. Moreover, especially
for extreme tornadoes, the lack of data and the difficulty in forecasting together increase the model
ambiguity. These sources of ambiguity enable us to apply the framework develop d in the previous
sections.

The losses provided by NOAA are first adjusted for inflation in 2015 dollars and .. »n rescaled in
billions of dollars. The first step in our procedure is the estimation of a baseline ..» “ibution F of losses.
Based on data and using statistical tools from EVT, a variety of distributio” s be onging to the class
of GEV and GPD are tested and the goodness of fit is verified using graphical v *s such as P-P plots
and Q-Q plots (see Coles et al. (2001)). From this analysis, the baseline disu. >ution is considered as
GPD with a shape parameter £ = 0.45. However, the choice of an app’ op. ate tureshold is a crucial
first step in fitting GPD: on one hand, the threshold must be sufficientl; hig’ to cnsure the asymptotic
behaviour of GPD and on other, be low enough to allow parameter estimat.. » (for a review see Scarrott
and MacDonald (2012)). This situation of epistemic uncertainty ent’.tes th~ use of an ambiguity set in
the design of optimal insurance contracts.

The minimax optimization problem is solved according to algorith. 1 is input, the level at which
the tails of distributions are assumed to start is ¢ = 0.997 and .he r ~er of contortion on R is s = 2.
To compute the premium, we employed the distortion power g -* = 2%, and the level for AVQR,, is
a = 0.8. The budget for the premium is B = 1.2 (in billions « ¢ dol! ) and parameter § = 0.2. If the
ambiguity radius is considered to be € = 0.5, then the optimization ~roblem to solve is the following:

min max  AV@Rgg(X7 — Iy(a ™) + a2 (I4(XF))
dids F

subject to ﬂ'g’e(Id(XF)) <1l.
WDd2,0.997(F7 A; Z0A
0<dy <ds.

When the optimal value is reached, as already (bu.‘ned in proposition 3.2, the premium w.r.t. the
baseline distribution equals the available bud~et. Ti.~» optimal values of the parameters are d; = 0.5092
and do = 3.0879. For this input, the premium c. 'culaved w.r.t. the worst-case model is 1.242.

We also solved the problem for different ambigui.y radii and studied the dependence of the objective
function as well as the deductible and ca-. .c ~ls of the insurance contract on the tolerance level change.
As we can observe from figure (4), bot’. param ‘ters of this contract are increasing with the increase in
the ambiguity radius. In the risk-averse sc.“ing che insured person is more likely to cover the small losses
using a risk reduction procedure, in 2xcl ange for protection against high losses offered by the insurance
company.
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Figure 4: Dependence of di (left) and ds (right) on e.

We define the ambiguity premium as the difference between the insurance premium under ambiguity
and the insurance premium computed w.r.t. the baseline distribution. More precisely,

Tambiguity = rlrwlagwg’e(fd(XF)) — Wg,G(Id(XF))'
€
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As expected, an increase in the ambiguity set results in an increase in this difference (see table (5)).

Table 1: Optimal parameters of XL-contract and premium w.r.t. worst-case model.

€ dy do 790 (XF* ) Tambiguity
0 0.3609 2.6750 1.2000 0
0.006 0.3614 2.6765 1.2005 5-1074

0.04 0.3647 2.6857 1.2031 3.1-1073
0.08 0.3695 2.6989 1.2060 6-103
0.2 0.3952 2.7701 1.2145 1.43-102
0.7 0.5217 3.1230 1.2585 5.85-1072
1 0.5355 3.1618 1.2819 8.19.1r 2

1.3 0.5456 3.1900 1.3043 0.1C ®
1.5 0.5510 3.2051 1.3191 0.1101
The size of the ambiguity radius depends on the amount of inf~rme. - . available and hence, on the

risk-averse attitude of the participants in the insurance market. ” ypic ... = a larger sample size allows the
size of the ambiguity set to be decreased.

At each change of ¢, the minimax problem yields a worst-ca. ~ dis...bution F* € C which is a convex
combination of alternative models Fy, ..., F,, (see figure (6) a). 'L e risk and premium corresponding
to the worst-case model are illustrated in figure (5). As ea, 2ctec, both quantities increase with the
enlargement of the ambiguity radius, emphasizing the effec. ~f model ambiguity on risk assessment and
insurance premium.
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Figure 5: Dependence of risk and 7 on e.

The worst-case distr’ butions « sociated with the minimal risk in figure (5) a) are shown in figure (6)
a). The shape parame er ¢ the worst-case distribution increases with the size of the ambiguity radius,
generating heavier-tailed « <tr'outions. From remark 4.5, the shape parameter of each F* in algorithm
1 is between 0.45 s ad 0.5 (see figure (6), b)); however, the upper limit is obtained for large values of
ambiguity radius.

To minimize the .~ -, the retained losses, the insurance contract would cover more of the extreme
claims, which ¢ e mor expensive for the insured person. Therefore, for small €, the worst-case distribution
is close to the baseline distribution, and there is a steep increase in the values of dy and ds, from 0.36
to 0.48 and from 7 .o 3, respectively, for € € [0,0.3]. For larger values of €, the worst-case distribution
stochastica 'y u . ates the baseline distribution; therefore, covering large losses requires a significant
increase in t. - premium. In this case, the parameters d; and ds are increasing at a slower rate, i.e.,
dy € (0.48,0.58, and dy € (3,3.2) over a range of € from 0.3 to 1.5. The value of € at which this change
in behavior happens depends on the choice of z(¥), i = T, n used to construct alternative models in the
Wasserstein ball.

From the decision process point of view, it is advisable to maintain part of the budget for an increase
in the premium to protect against possible model misspecification.
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6 Conclusion

The classical approach for designing an optimal insurance -mtrac relies on the assumption that the
loss distribution is completely known. However, estimat..» eriuis or lack of information can lead to
uncertainty about a single suitable model. The model ambiom. increases even more when dealing with
extreme natural events due to the limited number of obs. ~vations and the global dynamics typical of rare
events. Considering these sources of ambiguity, our aim in this paper is to determine an insurance contract
which is robust under possible model misspecificatic. . ') aivagh a stochastic optimization approach, we
study the optimal balance between the contract nara. eters that minimize some risk functional of the
retained loss. To include model ambiguity, a se. " feasible models is incorporated into the decision
process, resulting in a minimax formulation. This s * is constructed based on a modified version of the
Wasserstein distance, which is more appropri. ~ tor .eavy-tailed distributions. The resulting solution
proves robust in the following sense: this insuran.2 contract might be slightly sub-optimal w.r.t the
baseline model, but it is stable under m J '+ within the ambiguity set of the base model. Sensitivity
analysis and numerical implementations are ada. =ssed, and the performance is assessed using an insurance
claims dataset.
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Appendix

Proof of Remc 'k 4.1. 2. When z, > K, then d, ;, = d;. Solet 1 <<z, < K.

Case 1. Ifm,y - "o then Ps,zq (33) =z and |QL‘ - y‘ = ‘905,1-[1 (33) — Ps,xq (y)|

Case 2. .'xq ~ .,y < K, then ¢, (2) =z %z% and |z} 2* —x)75y*| = z)Sle—y|(* ' +.. 4y 1)

q q
wh h is bounded by
9:(1178|x —y| < a:é*s|scs -y’ < :L'(lfssstl\x -y

Case3. If v < 2y <y < K, then ¢, (r) = z and ., (y) = :Eéfsys. Therefore |z — zé*5y5| >
1—s

zg Yt — x> |r -yl
1—

Since z < x4, then z,

*z® < x and hence |a)75y® —x| < |o) " SyS—al 2| < alSsKST o —y).
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Therefore 3C1, Cy > 0 constants such that Cy|z —y| < d, ., (z,y) < Colz —yl.

Definition 6.1 (Renewal model). The renewal model is given by the following conditions:
(a) The claim size process: the claim sizes (X;)ien X F are positive random variab' .. R(X[) = u < oo;
(b) The claim times: the claims occur at the random instants of time 0 < T} < ™~ < ... a.8.;

(¢) The claim arrival process: the number of claims in the interval [0,¢] is d¢ ~ote « by
N(t) :==sup{n >1:T, <t}

\

(d) The inter-arrival times: (Y;);en are iid random variables with E(Y;) =1 * where Y; is defined as

i=TYi=T—Ti1,i=2,3,...;

(e) (Xi)ien and (Y;);en are independent of each other.
For simplicity, we denoted the renewal process by the couple (Xi, 4')

Definition 6.2 (Ruin probability). The ruin probability in infir ite # .. is defined as
N(t)
P(u, F) :P(u+ct— ZXi <0, for su met < oo),
i=1
where u > 0 the initial capital and ¢ > 0 the premium inc. e 1. ..
Remark 6.1. Let F be the distribution of claim si=~~ /¥ ' § as in definition 6.1. If the survival

distribution F(x) = 1 — F(z) is regular varying of somc index ~, then for large enough capital u, the

following holds
1 A [~

lim ——— -
whoe Y(u, F) ¢ iy,
For a proof, see Embrechts et al. (2013), Chapter .

F(x)dr = 1. (15)

el
Proof of proposition 4.1 3. Denote p1 = E(X; , and ug = E(X; ). From remark 6.1, there exists some

2

X[ [T
01,02 > 0 such that ¥(u, F) < (1+ 51)0 / F(x)dr and ¥(u,G) < (1 + 52)c W / G(z)dx.
N Ju - 2Ju
If § .= max{él, 52},
°° 1 1 =
F) - Y <1 A Fly) - —— d 1
90 F) = (.G < Ao [ | P ) — G| dy (16)
1
Denote a := and b:= — ——. Jrall z € (u,00), the integrand becomes
- )\Hl i’ M2

|aF (z) — bG(2)| = l2F(z) — oF () + bF(z) — bG(2)| < |a — b|F(2) + b|F (2) — G(=)]
|aF () — bG(2)| = |aF \x) — aG(x) + aG(z) — bG(z)| < a|F(z) — G(z)| +|a — b|G(2)
Summing up the two nequ.’*ties, we obtain
aF (2 = 0G( )| < 5 (la— Bl(F(@) + G(@) + (a + B)[F(x) - C(x)]).
Then (16) becor aes

[(u, F) — (u. () ~ (1 J;ﬂ :a - b(/uoo F(x)dr + /uoo G(x)dx +) + (a+b) /00 |F(z) — G(z)| dx}

u

< 1 +25)/\ —\a = b|(p1 + p2) + (a +b) /000 IF(@) - Gla)l da:}
< B2 e 1 ) 4 (0 4) [P0 - Gl (o)

- 2
_ (40N — po
2 [(e=m)(e— Aug
< LHOAT Al + po2)
2 [(e=Au)(c— Auz)
— WDy, (F,G).

N+ z) + (a4 DWDs,_, (P G)}

WD, . (F,G) + (a+b)WDds’zq(F,G)}
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For § =0, C = )>O. O

Ac
(c=Ap1)(e—Apz

Computation of alternative model F'. We consider that distributions in the contorted Wasserstein
ball follow assumption 4.1. From the computational point of view, each distribution F' in PC(F ), for some
€ > 0 is an n-tuple given by (FM, F@ _ F0=1 ¢ ¢) such that F©O = 0 and ~ ™ = F™)  Using
these approximations of the distributions, we have an analytical expression to ¢ mpu ~ the contorted
Wasserstein distance between F and F' given by (14). The inner optimization pr~' 'em then becomes:

ma;EcAV@Ra(XF — I(XFY + 790 (1(XF)))

st. Av <0
0<v<1
WDy, (F,F)<e

-1 1 0 ... 0 O
o -1 1 ...

where A = | . c R=2x(=1 and v = (#D F&)  FO-D)T
0 o o0 ... -1 1

Saddle point and minimax theorem.
Let X and Y be two topological spaces and let f be a re.! vaiucd function on X x Y. We consider the
minimax problem

minmin f(z, (P)

zeX yeY

Notice first that

min max N >nxmin f(z
zeX yeyY > ye.  zeEX fz,y)

holds always. The reverse inequality needs the exist. nce of a saddle point.

Definition 6.3. A pair (z*,y*) is called saddle p.nt of f if

flay) = @™ y) < flay)
for all x € X and y € Y.

Observe now that if (z*,y*) is « sad ie yoint, it follows that

rmnelgr;ngf(x y) < aag;f(x wy) = fla%,y") = min f(z,y7) < r;lggglmf(x Y).
The relation between sad . voints and the solutions of the problem (P) requires additional assump-
tions on the structure of sy «ces  and Y, as well as on the function f.

Theorem 6.1 (Sion et . (19.7)). Let X and Y be two convex subsets of a linear topological space.
Suppose that f is a qu .si ¢ nver-concave function on X x Y, such that f(z,-) is upper semi-continuous
on Y, for all z € X, and " -.y) .s lower semi-continuous on X, for all y € Y. If X is compact, then

minsup f(z,y) = supmin f(z,y).
zeX yey yey T€X
If Y is compac’, then

inf ma: a f
inf max f(z,y) = max inf f(2,y).

If both arc v.. —~ct, then

min max f(x,y) = max min f(@,y).

We mention another important result required in the proof of proposition 3.1.

Theorem 6.2 (Prokhorov (1956)). Let (X, d) be a complete separable metric space, P(&X’) the set of all
Borel probability measures on X and Y be a subset of P(X). Then Y is tight if and only if the closure
Y of Y is compact in X.
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