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Cooperation can be sustained by institutions that punish free-riders.
Such institutions, however, tend to be subverted by corruption if
they are not closely watched. Monitoring can uphold the enforce-
ment of binding agreements ensuring cooperation, but this usually
comes at a price. The temptation to skip monitoring and take the
institution’s integrity for granted leads to outbreaks of corruption
and the breakdown of cooperation. We model the corresponding
mechanism by means of evolutionary game theory, using analytical
methods and numerical simulations, and find that it leads to sus-
tained or damped oscillations. The results confirm the view that
corruption is endemic and transparency a major factor in reducing it.

cooperation | corruption | evolutionary game theory | social contract |
punishment

According to Gallup polls, a majority holds that corruption is
the “world’s problem number one,” ahead of climate
change, poverty, or terrorism (1). By threatening the institutional
foundations of society, corruption endangers the social contract
on which moral behavior and the rule of law are grounded.

In the words of Nobel Laureate Elinor Ostrom, institutions
are “tools that offer incentives to enable humans to overcome
social dilemmas” (2). Such social dilemmas arise whenever
selfish interests threaten the public good. Social contracts offer a
way out: By punishing free-riders, institutions curb the behavior
of selfish individuals and promote the welfare of the community,
ideally enhancing the long-term benefit of all participants (3-6).

However, this principle has always been endangered by cor-
ruption. Institutions are implemented by individuals who are not
exempt from selfish motives. To pick up Ostrom’s phrasing:
Corruption provides tools that offer incentives to enable humans
to subvert social contracts.

The pervasive influence of corruption has moved into the fo-
cus of contemporary social research (1). The time when Nobel
laureate Gunnar Myrdal could rightly say that “corruption seems
almost taboo as a research topic” (7) is well past. Its study at-
tracts an increasing number of lawyers, political scientists, econ-
omists, historians, and sociologists (see, e.g., refs. 8-17). It is well
established that the corruption of judicial institutions lowers in-
vestments and therefore economic growth (18, 19). In many coun-
tries, and in many fields of activity, corruption has a major impact.
Tellingly, a state’s standing in the Corruption Perceptions Index is
closely correlated with its gross domestic product (GDP) per capita,
its national income per adult, its Global Competitiveness Index, and
its World Happiness Index (SI Appendix, Figs. S1-S4).

Corruption is defined as the “illegitimate use of public roles
and resources for private benefits” (20). It comes in a multitude
of guises, such as favoritism, clientelism (also known as pork-
barreling), embezzlement of public money, etc. Here, we con-
sider one aspect only, namely, the bribery of public institutions
whose task it is to uphold mutual cooperation by penalizing
cheaters. Following Ostrom’s approach, we do not restrict the
meaning of “public institutions” to agencies run by state officials,
but include, for instance, soccer referees, journalists, or executives
of nongovernmental organizations (NGOs)—all those wielding
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power based on social trust and required by their role to punish
or otherwise chastise rule-breakers or law-offenders.

Here, we analyze a basic model of this type of corruption by
means of evolutionary game theory (21-24). We strive for a
minimal model capturing key dynamics relevant for many spe-
cific systems. In particular, we show that the adaptation of in-
dividual agents to the current social situation leads to sustained
or damped oscillations that reflect the waxing and waning of
institutional corruption in response to the waning and waxing of
cooperation within the society.

If institutions are viewed as “guardians” of the community,
then it is up to the community to “guard the guardians.” This is
usually a costly endeavor. Whenever it is neglected, corruption
can spread. In response, cooperation breaks down. Such a crisis
reinvigorates efforts by would-be cooperators to closely watch
the rule-enforcing institution and only invest when they can trust
that the judicial system is reliable. Eventually, this curbs cor-
ruption and bolsters economic activity. But when cooperation
and honesty prevail again, the efforts to watch the integrity of the
institution become superfluous, and therefore slacken. And,
thus, another cycle starts. This recurrence of corruption reflects
what, in the jargon of social science, is termed a “wicked”
problem—one that cannot be solved for good.

By adopting the viewpoint of evolutionary game theory, we
implicitly posit that economic agents are guided by self-interest.
They preferentially adopt strategies that ensure an advantage in
the present state of the population. This choice of a strategy can
occur either through social learning—i.e., by imitating agents
achieving a higher payoff—or through rationally, but myopically,
choosing whatever is currently the most promising option. Such a
process of adaptation affects the frequencies of the strategies,
which in turn affects the strategies’ expected payoffs. The
resulting feedback between frequencies and payoffs drives the
evolutionary dynamics.
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Corruption is widely perceived as a major problem. Bribery of
judicial institutions undermines the trust needed for joint ef-
forts and economic investments. Transparency can reestablish
trust, but at the cost of constant supervision of the institutions.
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ruption at a stable level.
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Results

We start with an interaction that is representative of a social
dilemma: a “mutual aid game” or “public good game” (24, 25).
For simplicity and ease of exposition, we assume that each in-
stance of this game involves only two players and reduces to a
donation game: Both players must decide, independently,
whether or not to confer a benefit b to the other player, at own
cost c. The two alternatives are named C (for “cooperation”) and
D (for “defection”), respectively. If ¢ < b, we obtain a typical
one-shot prisoner’s dilemma. The matrix describing the resultant
payoffs a focal player adopting the strategies in the rows obtains
when interacting with another player adopting the strategies in
the columns is shown in Table A:

C D C D C D
C b-c -—c C b-c- —c— C b—c—-f -c-—
D b 0 D b-A-f -A-f D b—B-f -B-f
Table A Table B Table C

No matter what the other player does, C always yields less than
D to the focal player, so that if both players are guided by self-
interest, they end up by mutually defecting. Their payoff is 0,
instead of the payoff b — ¢ > 0 obtained through mutual coop-
eration. In a population of players meeting randomly, both ra-
tional utility-maximization and imitation through social learning
lead to a homogenous population consisting of defectors only.

This outcome can be overturned by penalizing defectors. We
assume that each game is watched by an umpire, ensuring that any
player who defects must pay a fine A > c. The fine is not part of
the income of the umpire (umpires have to live even if all players
cooperate). Rather, we shall assume that both players have to pay
a fee f to the umpire before engaging in the donation game, with
f < b —c, so that mutual cooperation still pays (see payoff matrix
in Table B). Clearly, C is now the better move for the focal player,
no matter what the other player does. The umpire effectively re-
leases the players from the social trap, at a cost f.

This, however, assumes that the umpire is honest. An umpire
who is corrupt, rather than honest, will accept (in addition to the
fee) a bribe B from the defector, rather than impose a fine 4. If
B < ¢, defection becomes the dominant strategy, again (see
payoff matrix in Table C).

Thus, all depends on whether the umpire is honest or corrupt.
In the absence of specific information, players are reduced to a
game of chance with unknown odds. But if we assume that
umpires imitate the successful behavior of other umpires, then
social learning will corrupt them all, since the bribes offer a
supplementary income. The same holds if umpires chose ratio-
nally, but myopically, their best reply. (For this reason, our
model can easily be adapted to the case that the population of
players is faced with a single umpire, as will be discussed later.)

As a consequence of the corruption of the umpires, cooperation
breaks down. The challenge is to escape from this social trap, and
the investigation of when this is possible is the main aim of the
present study.

We assume that players have the opportunity to find out whether
their umpire is honest or corrupt, by paying a supplementary cost /
for information (an obvious modification of the model works even if
that information is incomplete). Players can then react by dropping
out of the game if the prospective umpire does not suit their in-
tentions. A player who invests % in inquiring about the umpire’s
reputation will be said to be prudent. A player who trusts luck and
skips the cost 4 will be said to be optimistic. Optimistic defectors
(ODs) hope that the umpire will refrain from punishing them after
accepting a bribe, while optimistic cooperators (OCs) hope that the
umpire will punish coplayers who cheat them.
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To sum up, there are two populations of size M and N, re-
spectively—namely, the players (of the donation game) and the
umpires. The former correspond to economic agents, the latter to
judiciary authorities. Umpires can be honest (H) or corrupt (C).
Players can be OCs, prudent cooperators (PCs), ODs, or prudent
defectors (PDs). The game proceeds as follows. Two players meet
randomly and are assigned an umpire (this could be realized by a
state-wide law system or, under more anarchic conditions, by hiring
a law enforcer, such as a strong-man or sheriff). Prudent players pay
h to learn whether their umpire is honest or corrupt; a PD who
learns that the umpire is honest drops out of the game, and so does
a PC who learns that the umpire is corrupt. If both players are
willing to proceed, then both pay a fee to the umpire, each at a cost
f- If the umpire is corrupt, defectors pay additionally a bribe B. Now,
the usual donation game is played between the two players, with
parameters b and c. If the umpire is honest, the defectors have to
pay a fine A. And with this, the game is over.

We shall always assume that /4, the cost of information, is so
small that the following inequalities hold:

f+h<b-c, [
c+h<A, [2]
B+h<ec, [3]

h<+\/f(f+B). [4]

The first three inequalities are modifications of f < b — ¢, c < A4,
and B < c, conditions obviously needed to make economic sense
of the game, the penalty, and the bribe, respectively. Inequality 4
is less immediate: The cost of information must be lower than
the geometric mean of the incomes that an honest and a corrupt
umpire can expect from a client. This condition, as we shall see,
provides an escape from the economic stalemate caused by the
social trap, if only for a while.

The average payoffs for the four types of players (OC, PC,
OD, and PD) and the two types of umpires (H and C) can easily
be computed as functions of their frequencies (Methods), as-
suming that the populations are well-mixed and players and
umpires meet randomly. The average payoff values depend in an
obvious way on the numbers of players M, M,, M5, and M, of
types OC, PC, OD, and PD, respectively, and on the numbers of
umpires N; and N, of types H and C. These numbers sum up to
M and N, respectively.

We now examine what happens when all individuals, players
and umpires, can update their strategies from time to time, in
between playing many games. The updating of strategies by so-
cial learning is due to two mechanisms. With a small probability,
an individual switches at random to another strategy. This cor-
responds to random exploration. Otherwise, an individual X
imitates another individual Y’s strategy with a certain likelihood.
This can be modeled in various ways: All that matters is that the
likelihood that X imitates Y increases in Py and/or decreases in
Py, the average payoffs of Y and X, respectively (Methods).

The resulting imitation—exploration dynamics depends, of
course, on various parameters. What is robust is a cycling ten-
dency (Fig. 1 4 and B and SI Appendix, Fig. S7), possibly damped
by large populations, high exploration rates, weak selection, or
high information costs (Fig. 1 C and D and SI Appendix, Figs. S8
and S9). The oscillations are essentially driven by the fact that
when umpires are honest, OCs prevail. Corrupt umpires then
sneak in, benefitting from the lack of control. Once they are
frequent enough, PCs spread, in alliance with ODs, and pave the
way for the resurgence of honest umpires.

Lee et al.
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Fig. 1. Strategy dynamics resulting from the social-learning process in the player population and the umpire population. (A and B) Sustained oscillations.
Corrupt umpires can invade and take over when players are OCs. Cooperation then gives way to defection, and investments drop drastically. PCs, however,
turn the tide. They can coexist with ODs in sufficient amount to make honesty advantageous for the umpires. At this stage, OCs can spread, and the cycle
resumes. The shown social-learning process is close to the exploration-limited case (with vanishing exploration rates; see text). The time-averaged ratio of
honest-to-corrupt umpires is 2.15, whereas the theoretical value in the exploration-limited case is 2.54. Similar cycles of corruption prevail for a broad range of
other exploration rates and imitation rules, see S/ Appendix. (C and D) Damped oscillations. For larger populations, higher exploration rates, weaker selection,
or higher information costs, the oscillations can be damped, leading to stable levels of persistent corruption (SI Appendix, Figs. S8 and S9). Parameters: b =1,
c=05,f=B=02,h=0.1, A=2,and M=50, N= 10, z = 0.001, » = 0.005, and s = 10'° (A and B), or M = 5,000, N = 1,000, x = 0.01, v = 0.05, and s = 0.3 (Cand
D); thus, in A and B as in C and D, new strategies enter both populations through exploration at the same rate.

This waxing and waning of corruption is clearly displayed by
individual-based simulations of the social-learning process (Fig.
1). It can be checked analytically in two limiting cases, for large
populations and rare exploration, respectively.

Large Populations. When M and N tend to infinity, well-known
replicator—-mutator equations govern the relative frequencies x; =
M;/M and y; = Nj/N of the four types of players and the two types
of umpires (Methods). When social learning is entirely driven by
imitation and unaffected by random exploration, we obtain
replicator equations (26) whose analysis proceeds along the
usual lines: The eight homogeneous states (with all players and
all umpires being of the same type) are clearly fixed points. The
behavior on the edges connecting them is shown in Fig. 2. If all
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umpires are honest, the frequency of OC converges to 1. If all
umpires are corrupt, the frequency of OD converges to 4/(f + B)
and that of PC to (f + B — h)/(f + B), while OC and PD vanish.
The condition /& < \/f(f + B) guarantees that honest umpires can
invade at this state and take over. Next, PCs give way to OCs.
If all players are OCs, corrupt and honest umpires do equally
well. This is why corruption will drift in again as soon as a small
exploration rate is considered. A limit cycle emerges near the
boundary of the state space. It follows orbits along some of the
edges which, in the replicator equations, connect fixed points of
saddle type, as well as along the edge that connects (OC, H) with
(OC, C). In the vicinity of this edge, which consists of fixed points
of the replicator equations, the flow leads toward corruption
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Backbone of the model. Shown are the replicator dynamics (Methods) on a projection of the four-dimensional state space S = A4 x [0,1]. The simplex

to the left is the state space of the player population when all umpires are honest, while that on the right applies when all umpires are corrupt. The colored
balls depict fixed points. Apart from the fixed-point edge with x = (1, 0, 0, 0) and y; € [0, 1] (shown by the line of small colored balls at the top), the fixed
points are isolated; the absorbing state 5 is given by x = (0, 0, h/(f + A), (f+ A — h)/(f + A)) and y, = 1, whereas the absorbing state 10 is given by x = (0, (f + B —
h)/I(f + B), h/(f + B), 0) and y; = 0. The small arrowheads indicate whether the linearized flow near the corresponding fixed point leads toward that fixed point
or away from it, or, technically speaking, whether the corresponding “transversal eigenvalue” is positive or negative (6). If the arrowhead is open, that
eigenvalue is 0: The direction of the flow then follows from its nonlinear components. The two block arrows along the top edge and within the bottom plane
indicate the locally prevailing trends from honesty to corruption (top) and back (bottom).
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(Fig. 3). Indeed, the exploration rate introduces small amounts
of OD, PC, and PD players. Most pairs of players contain at least
one OC player. Corrupt and honest umpires do equally well for
pairs (OC, OC) and (OC, OD). For (OC, PC) pairs, honest
umpires have an advantage f; but for (OC, PD) pairs, the ad-
vantage of corrupt umpires is even greater, namely, f + B. Thus,
the bribe B drives the dynamics toward corruption.

If the exploration rate increases further, the limit cycle shrinks.
For large values, it turns into a stable equilibrium with all types
present. The orbits of the imitation—exploration dynamics spiral
toward it, and the frequencies undergo damped oscillations (Fig.
3). Both in the case of a limit cycle and of a stable equilibrium,
corruption prevails in the long run.

Rare Exploration. When population sizes are finite and explora-
tion rates are very small, the fate of an invading dissident—i.e.,
its invasion or fixation—is settled (in the sense that imitation has
led to an absorbing state of the pure imitation process) before
the next exploration step introduces a new strategy. The dynamics,
then, is reduced to transitions between the absorbing states of the
imitation process (Fig. 1 A and B).

It is easy to compute the stationary frequencies of the absorbing
states if imitation is “hard”—i.e., always in the direction of the
better payoff. We note that in this case, two absorbing states are
mixed—one is a mixture of OD and PD (when all umpires are
honest) and the other a mixture of OD and PC (when all umpires
are corrupt). In particular, if the exploration steps occur with the
same (small) frequency in the player population as in the umpire
population, the ratio of honest to corrupt umpires is 19N + 87:109,
where N is the number of umpires. This result does not depend on
the size M of the player population, nor on the other parameters
A, B, f, h, b, and c. Even for very small values of N, the majority of

Honest Corrupt
umpires umpires
A
B
_—

umpires will be honest in the long run. But it can always be
subverted, for a time, by episodes of corruption.

To sum up, the shift from honesty to corruption occurs when
OCs prevail and monitoring is reduced. The shift from corruption
to honesty occurs when there are enough PCs, which requires that
the information cost 4 is sufficiently small to make transparency
sufficiently high. What corrupt umpires then gain through bribes is
more than offset by what they lose in honest investors. This result
also holds if we assume, instead of a population of umpires, a
single umpire. In this case, the concept of social learning is in-
appropriate. But if the umpire is “rational” in the sense of
adopting the best option (corruption or honesty) given the current
state of the player population, analogous cycles emerge.

Discussion

Cyclic behavior has been found in several other models of cor-
ruption. In ref. 27, cycles are driven exogenously by the periodic
recurrence of elections. In refs. 28 and 29, cycles occur through
an interplay of the popularity of politicians and their “hidden
assets.” Our approach, which is different, centers instead on the
effect of judiciary corruption upon economic investment. It is
grounded in a long tradition of game-theoretical work on co-
operation (23, 24, 30-34).

Experience and experimental games show that players are
often willing to engage in the punishment of cheaters, although it
is costly to themselves (35). They may do this even if they will
never meet again with the defector, and even if they were not
personally victimized, but a third party (36). Such behavior has
been termed “altruistic punishment” or “strong reciprocation”
(37, 38). This form of direct or indirect revenge is frequently
efficient, and theoretical models have shown that it can emerge
through social learning (39, 40). However, since it consists in
“taking the law into one’s own hands,” the punishment of cheaters
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Fig. 3. Strategy dynamics in the large-population limit. Replicator-mutator equations (Methods) describe social learning in large populations of players

and umpires. The orbits in A and B have the same starting point (y; = 1, x; = x4 = 0.1, x, = x3 = 0.4), but differ in the exploration rates = v of players and
umpires (orange, 0.0001; violet, 0.02; blue, 0.07). With increasing exploration rates, the limit cycle shrinks and turns into a stable fixed point reached by
damped oscillations. The limit cycle for small exploration rates follows orbits along the edges of the replicator equations (Fig. 2): Depending on whether
(c — B)/(A — B) < (c — B— h)/(b— B - f) or not, the limit cycle leaves the edge where all players are OCs to visit the absorbing state 8 or 9, respectively, before
moving toward the absorbing state 10 and from there again toward more honest umpires. This is shown for large penalties A = 2 in A and small penalties
A = 0.7 in B. The strategy cycles of the frequencies of the four types in the player population (C) and of the two types in the umpire population (D) are
shown for the orange limit cycle in A, together with the frequencies of cooperators and defectors in the player population. Other parameters are as in
Fig. 1 A and B.
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by their peers can easily lead to counterpunishment, vendettas,
“asocial punishment” (i.e., the punishment of cooperators), and a
“war of all against all” (41, 42).

This dark side of peer punishment can be overcome by so-
called pool punishment (43). In this case, players are offered,
before each round of the public goods game, to contribute to a
punishment pool (essentially, the equivalent of a police force).
The better the punishment pool is filled, the harsher the fines
imposed on the free-riders. Pool punishment is less efficient than
peer punishment (since the police must be paid even if nobody
has to be punished), but it is more stable (44).

Pool punishment is a rudimentary form of the institutional-
ized punishing of free-riders (and of other forms of asocial
behavior) that underlies the “social contract”: Punishment is
meted out not by the players, but by an institution strong
enough to suppress retaliation. Philosophers are familiar with
the concept. The institution to which the agents submit, will-
ingly or not, was called “the sovereign” by Hobbes, Rousseau,
and Kant, who lived in an age of absolute monarchs. More
recently, Ostrom (2, 45) and others (46) have shown that similar
social contracts to enforce cooperation hold in many other
types of societies and often emerge spontaneously, bottom-up,
without state interference, through voluntary commitment.
People frequently agree on rules that are enforced by special-
ized agents. These persons or grass-roots organizations can be
farmers’ or fishers’ councils, village elders, janitors, sheriffs,
judges, local lords, mafia bosses, guild masters, magistrates,
ombudsmen, notaries, referees, etc.

While institutionalized punishment avoids the war of all
against all looming whenever players take the law into their own
hands, it is endangered by corruption. This is the situation we
have modeled here. In a previous paper (47), we used a related
model to analyze situations in which players decide whether to
use a sanctioning institution or not. In contrast, here, players are
obliged to use it, if they wish to participate in the game at all. For
instance, an international company can chose whether to open a
store in a given country or not, but when it does, it must obey
that country’s legislation—i.e., submit to its “umpires.” If the
company decides to avoid a specific country with bad corruption
status, it acts like a PC.

Our model could and should be extended. More than two
players may engage in the joint enterprise. They may have in-
formation about each other and react accordingly. Information
about umpires can be partial, erroneous, even manipulated. The
umpires’ propensity to corruption, and the players’ propensity to
defection, can be heterogeneous. Umpires can take a bribe and
punish nevertheless. The offer of a bribe can be a risky move,
entailing complex signaling. Umpires often come in hierarchies
and can themselves be penalized. Thus, one could investigate an
extended model with players, umpires, and a government. If
umpires are corrupt and players invest less, the government
suffers (less investments, less growth, less taxes, and less votes)
and may start an anticorruption drive to promote honesty among
umpires. We expect the direct incentives to umpires modeled
here and the indirect incentives to umpires occurring in such an
extended model to have analogous game-theoretical conse-
quences and have therefore opted for a minimalistic approach
that neglects all these issues.

Endemic corruption and fluctuating levels of corruption are
widespread all over the world (8, 9). Documented instances of
periodic cycles seem less easy to find. This could mean, in line
with our model, that individual exploration rates are so high
that oscillations are damped. It is even more likely, however,
that periodicity is blurred by stochastic effects, time delays,
spatial diffusion, and the layers of complexity added over time,
by every society, to its governance structure. Nevertheless, the
underlying cyclicity seems to manifest itself in a growing trend,
all over world, to resort to periodic elections. Rather than

Lee et al.

driving cycles of corruption, as in the model used in ref. 27,
such elections could thus be a response to the recurring need
for reestablishing institutional integrity. Real-life models of
such cleanup operations could possibly involve a hierarchy of
umpires, but the basic strategic driver of honesty is the same as
described by our model: More trust leads to more investment in
joint enterprises.

Information is needed to uphold social trust and economic
activity. If distrust in institutions grows, people are less willing to
engage in cooperative interactions, and the social dilemma
returns with a vengeance: Players and umpires both suffer. To
promote economic life, it must be possible and affordable to
check the reliability of the legal machinery provided by an in-
stitution. The institution must have a good reputation, whose
integrity can be trusted because it can be checked. Transparency
is the main tool in the fight against corruption.

Such transparency comes in many forms: as freedom of
the press, as “glasnost” (to use a historical Soviet term), as a
“sunlight test” (19), as “naming and shaming” (48), as incentives
for journalists and “whistleblowers” (49), etc. It is no accident that
the world’s leading anticorruption NGO is named Transparency
International.

Corruption displays a stunning diversity. Our approach has
focused on one part only. It is, however, a core part—the cor-
ruption of those institutions whose task it is to overcome social
dilemmas by enforcing cooperation. The striking negative cor-
relation between corruption and economic performance is well
established (18, 50-52); see also the positive correlation between
the Corruption Perceptions Index and multiple indicators of
social welfare (SI Appendix, Figs. S1-S4).

The corruption of judiciary institutions can effectively strangle
economic life. Since agents unwilling to invest in joint enterprises
no longer need institutions to uphold their agreements, corrup-
tion subverts its own basis in the long run. This feedback allows
the comeback of cooperation and leads to a (possibly damped)
cycle not unrelated to the familiar predator—prey oscillations in
ecology.

Methods

Payoffs. If the umpires are all honest, the payoff matrix for OCs, PCs, ODs, and
PDs is

b-c-f b-c-f
b-c-f-h b-c-f-h —-c-f-h -h
b-f-A b-f-A —-f-A 0
-h -h -h —-h

-c—f 0
Qn=

If the umpires are all corrupt, the corresponding payoff matrix for the four
types of players is

b-c-f 0 —c—f —c-f

~ —h “h  -h —h
Q=| p_f-B 0 —f-B —f-8
b-—f-B-h —h —f-B-h —f-B—h

An honest umpire receives a payoff of 2f, except if there is at least one PD
among the two players, in which case the umpire’s payoff is 0. A corrupt
umpire receives a payoff of 0 if at least one among the two players is a PC. In
all other cases, the umpire obtains a payoff of 2f and, in addition, one or
two bribes B, depending on whether there are one or two defectors among
the two players, respectively.

Dynamics. Individuals update their strategies by either picking another
strategy at random (exploration), with a small probability p (players) or v
(umpires), or by copying another individual’s strategy with a certain likelihood
(imitation). For our numerical simulations, we assume that the likelihood that
X imitates a randomly chosen role model Y is given by Pr(X — Y) = [1 +
exp(s(Px — Py NI~', where s > 0 is the so-called selection strength. For s = 0, we
obtain neutral drift. Imitation occurs at random. The larger the value of s, the
more relevant the payoff difference becomes. This imitation process is often
called the Fermi process. For large values of s, we are close to hard imitation:
Pr(X = Y)is 1if Py > Py, 0 if Py < Py, and 1/2 if Py = Px. We stress that there
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exist many other models of social learning leading to essentially the
same results.

Large-Population Limit. In the limiting case of M and N tending to infinity, we
can use the replicator-mutator equations governing the relative frequencies
Xi = Mi/M and yi= Nj/N,

Xi=Xi [Zko,-k(y)xk —Q| —ux;+u(1-x;)/3, fori=1,2,3,4,
Y1=y1(1=y1)[Pu(x) = Pc(x)] —vy1 + (1= y1),

in the state space S = A4 X [0,1], where A4 is the (three-dimensional) unit
simplex in four-dimensional space. For umpire frequencies y, the matrix
Q(y) = y1Qc + (1 — y1)Qu is the average payoff matrix for the players, and
Q=3 XiQu(y)x« is the average payoff in the player population. For player
frequencies x, Py(x) and Pc(x) are the payoffs of honest and corrupt umpires,
respectively; these are independent of y. It is easy to check that Py(x) — Pc(x) =
2f(x; — xa)(1 + X1 + X3) — 2B(x3 + X4)(1 — X5). For a detailed analysis of the
replicator dynamics, see S/ Appendix.

Rare-Exploration Limit. For small exploration rates and hard imitation (i.e., a
high selection strength s), the fate of an exploration step is settled before
the next exploration step occurs. We assume that the cost h of infor-
mation is positive, h > 0. The case h = 0 yields very similar results, see
Sl Appendix.

When all umpires are honest, we see from the payoff matrix Qy that there
are five absorbing states: allOC, allPC, allOD, allPD, and OD+PD (a mixture of
OD and PC). We number these states from 1 to 5, as shown in the simplex on
the left side of Fig. 2.

When all umpires are corrupt, we see from the payoff matrix Q¢ that the
absorbing states are allOC, allPC, allOD, allPD, and OD+PC (a mixture of OD
and PC). We number these states from 6 to 10, as shown in the simplex on
the right side of Fig. 2.
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As shown in the S/ Appendix, the matrix describing the transition rates
among the 10 states is

* 0O 0 0 0 /N O 0 0 0

u/3 + 0 0 O 0 0 0 0 0

u/3 u/3 « 0 u/3 0 0 0 0 0

u/3 u/6 0 x u/3 0 0 0 i 0

T u/3 0 0 0 & 0 0 i O 0

“{w/N O 0 0 O * 0 u/3 p/3 0 |’

0 A 0 0 0 u/3 & 0 0 u/3

0 0O 0 0 O 0 0 * 0 u/3

0 0O 0 0 O 0 u/3 u/3 « 0

0 u 0 0 O 0 0 0 0 *

where the asterisks (*) are such that each row sum equals 1. Here, u is the
(very small) probability that an exploratory step occurs in the player pop-
ulation (i.e., u is the M-fold of the individual exploration rate), and v = Au is
the corresponding probability in the umpire population. For the stationary
distribution x = (xs,..., X10), i.e., the left eigenvector of T for the eigenvalue 1,
we obtain (up to normalization)

42,0412 6600, 34q, 9 )

_(N(T+12))
B "2+32" 243273024 34)

34(2+3%)

The ratio of H:C in the umpire population is (7 + 12A)N + 331 + 544%: 7 + 48} +
54)2.If ) = vlu = 1, then the frequencies are (1/15)(19N + 30, 57, 0, 0, 0, 30, 3,
45, 15, 16), and the H:C ratio thus equals 19N + 87:109.
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