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Abstract

This paper addresses the problem of learning in greenhouse gas (GHG) emission
inventories understood as reductions in uncertainty, i.e., inaccuracy and/or imprecision,
over time. We analyze the National Inventory Reports (NIRs) submitted annually to the
United Nations Framework Convention on Climate Change. Each NIR contains data on
the GHG emissions in a given country for a given year as well as revisions of past years’
estimates. We arrange the revisions, i.e., estimates of historical emissions published in
consecutive NIRs into a table, so that each column contains revised estimates of
emissions for the same year, reflecting different realizations of uncertainty. We propose
two variants of a two-step procedure to investigate the changes of uncertainty over time.
In step 1, we assess changes in inaccuracy, which we consider constant within each
revision, by either detrending the revisions using the smoothing spline fitted to the most
recent revision (method 1) or by taking differences between the most recent revision and
the previous ones (method 2). Step 2 estimates the imprecision by analyzing the columns
of the data table. We assess learning by detecting and modeling a decreasing trend in
inaccuracy and/or imprecision. We analyze carbon dioxide (CO,) emission inventories
for the European Union (EU-15) as a whole and its individual member countries. Our
findings indicate that although there is still room for improvement, continued efforts to
improve accounting methodology lead to a reduction of uncertainty of emission estimates
reported in NIRs, which is of key importance for monitoring the realization of countries’
emission reduction commitments.
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1 Introduction

Assessing the uncertainty of greenhouse gas (GHG) inventories is a complex problem that has
been investigated for many years; however, no commonly accepted solution has been found.
Low uncertainty of GHG emission inventories, namely, high accuracy and precision of
emission estimates, is key to setting reduction targets for climate treaties (Jonas et al. 2010),
monitoring treaty implementation (Bun et al. 2010), and establishing reliable emission trading
schemes (Ermolieva et al. 2014).

According to the Guidelines for National Greenhouse Gas Inventories (cf. IPCC 2006, vol
1, Ch. 3), accuracy is an agreement between the true value and the average of repeated
measured observations or estimates of a variable. Thus, inaccuracy (systematic error) is a
result of failure to capture all relevant processes involved, because the available data are not
representative of all real-world situations, or because of instrument error. Precision, in turn, is
the agreement among repeated measurements or estimates of the same variable. High precision
corresponds to a low random error.

Over time, as methods for accounting GHG emissions evolve (from the tier 1 and tier 2
approaches recommended in IPCC (2000, 2006) to the tier 3 approach considered in IPCC (2006),
both the accuracy and precision of GHG inventories may change, undermining or improving the
effectiveness of policies. The evolution of accounting methodology is particularly well reflected in
the emission estimates published each year by the parties to the United Nations Framework
Convention on Climate Change (UNFCCC) in the form of National Inventory Reports (NIRs).
Each of these reports contains GHG emission data for a given year and revised estimates of past
years’ emissions. These estimates are considered to reflect the best available knowledge and are
therefore treated as “true emissions.” Yet, they are bound to change with the following year’s
revisions, as new data and knowledge about emission sources and processes become available to
the institutions preparing the GHG inventories. The emergence of this new knowledge may allow
the reporting institutions “to learn” how to prepare better quality GHG inventories. Here, we
understand learning in a positive (not normative) sense as a detectable increase in the accuracy of
revisions and/or an increase in the precision of initial estimates of new GHG emissions over time.

The problem of investigating learning is in line with the discussion on uncertainty assess-
ment of NIRs considered, for example, in Nahorski and Jeda (2007), where the uncertainty of
each reported revision was analyzed separately, and in Marland et al. (2009) and Hamal
(2010), where changes in uncertainty over time were investigated. The concept of learning was
also discussed in Zebrowski et al. (2015). Here, we especially build upon the work of Jarnicka
and Nahorski (2015), and Jarnicka and Nahorski (2016), where models for evolution of
uncertainty structure over time were developed and applied to CO, emission inventories
submitted by parties to the UNFCCC in their NIRs; however, we distinguish between
uncertainty related to reported revisions and uncertainty related to emissions, referring to them
as inaccuracy and imprecision. This allows for learning to be considered in terms of reduction
of inaccuracy and imprecision over time.

In this paper, we discuss methods of detecting and assessing learning in a set of consecutive
NIRs. More specifically, we exclude estimates of carbon dioxide (CO,) emissions from the
land use, land use change, and forestry (LULUCF) sector, as the uncertainties of LULUCF
emissions are large and may easily overshadow subtle trends in emission estimates. Detecting
learning requires a two-stage analysis. First, information on inaccuracy and imprecision needs
to be extracted from revisions of GHG inventories. We deal with this problem in Section 2,
where we describe our main method of assessing uncertainty components (method 1), based
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on the detrending of consecutive revisions. Subtraction of the estimated trend extracts inac-
curacy and the transformed emission estimates are thus used to evaluate imprecision. The
method works on the assumption that detrending “cleans” the data of the information on the
“real emission,”’ leaving only the inventory uncertainty. To assess the quality of this
“cleaning,” we use an auxiliary method (method 2), which follows a similar analysis, but
with the estimated trend being replaced by the most recent revision of historical emission
estimates. We conclude Section 2 with a graphical illustration of methods 1 and 2. The second
stage of our analysis—the detection of learning—is discussed in Section 3; there, we consider
the question of detecting trends in changes in inaccuracy and imprecision over time and how to
interpret those trends as learning and develop an algorithm to detect and assess learning
(algorithm 1). Section 4 presents the results obtained by applying this procedure to the GHG
emission inventories of the EU-15 and its individual member countries. Section 5 presents
conclusions.

2 Data presentation and uncertainty assessment

The idea of investigating learning is strictly connected with the structure of the data. Each report
contains inventory data on GHG emissions from a given year and revised estimates of emissions
in past years, back to 1990; in other words, it contains a revised time series of historical emissions.
The NIRs are submitted annually, providing revisions for the data from 2001 up to 2015.> We
organize these data in a table, the rows of which consist of estimates published in consecutive
NIRs, as presented in Table 1. The j-th row of Table 1 corresponds to revisions of estimates
published in the year’ j and relating to emission years 7= 1990, ... ;. The E” symbol denotes the
inventory data for the year n, revised in the year j. The nth column of Table 1 contains the
estimates of emissions for the year #, revised in years j= 2001, ... ,2015.

We start by interpreting the data in such a way that the uncertainty can be extracted.
Following Jarnicka and Nahorski (2015, 2016), we assume that each inventory data Ej
represents the “real emission” RE"; (i.e., all emissions covered by the accounting scheme that
would be reported if our knowledge of activity data and emission factors were perfect),
distorted by uncertainty U’ Accordingly, each revision j (row of Table 1) is a time series
(with time indexed by n), given by

E} =RE}+U"%, n=1990,...,j. (1)

Uncertainty U’} represents an interplay between the inaccuracy and the imprecision unique to
cach data point £. We observe that inaccuracy is associated with each revision, namely, an

entire row of Table 1, rather than its single entries. Indeed, for each year j, j=2001, ..., 2015,
the estimates £7, n = 1990, ..., j, published in that year, were calculated using the same

accounting method (by this, we mean choices on adopting specific emission factor values and
on ascribing activity data to subsectors, but still following the accounting schemes suggested

! We explain this notion in greater detail in Section 2.

2 Calculation of the emission estimates, based on the measurements collected, takes approximately 2 years; thus,
the most recent data reported in 2017 originate from the year 2015.

3 To simplify the notation, we omit the delay in publishing the data and assume that the NIR containing the
estimates of emissions for the year j and the revised estimates of all previous years were published in the year ;.
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Table 1 Indexing the data
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by the UNFCCC) and thus have the same systematic error, that is, the same inaccuracy.
However, inaccuracy differs across revisions (for instance, due to improved emission factors or
minor changes in the classification of activity data, which occurs from revision to revision).
The evolution of inaccuracy is described by the time series U; j=2001, ..., 2015, where U;
denotes the inaccuracy of the jth revision.

Imprecision, on the other hand, is an attribute of a set of repeated estimates of the same
quantity. It is therefore associated with the columns of Table 1, where the nth column, n=
1990, ..., 2015, contains repeated estimates of emissions that occurred in the year n. The
changes in imprecision of emission estimates are reflected by the time series U”, n=1990,
..., 2015, where U" is the estimate of imprecision based on U;f,j =max {2001, n}, ..., 2015.

Table 1 carries entangled information on the “real emission,” the inaccuracy of revisions, and
the imprecision of emission estimates in the period covered by the inventory. To disentangle this
information and detect learning, we proceed with the analysis summarized in Fig. 1.

First, we “clean” the data of information about the “real emission” to extract uncertainty.
We perform that “cleaning” by operating on the rows of Table 1 and propose two variants of
the “cleaning” procedure. The first variant is based on detrending the rows of Table 1. The
second complementary method makes use of the most recent revision (the last row of Table 1)
in place of the estimated trend, in order to assess the amount of information captured by the
trend. We analyze the data thus transformed row-wise to extract the inaccuracy of consecutive
revisions, reflected by the time series U, j=2001, ..., 2015. Finally, once the inaccuracy of
revisions is extracted from the data, we perform a column-wise estimation of the imprecision
of emission estimates U”, n=1990, ..., 2015.

We start the above-mentioned analysis with estimating the “real emission” RE%) s by
fitting the smoothing spline Sp,,s to the most recent revision data E7s, as presented in
Nahorski and Jgda (2007). Residuals of this nonparametric approach are asymptotically
normally distributed, with the mean value equal to zero and standard deviation o,g;s; we thus
assume that the detrending of £%, 5 with the smoothing spline Sp),5 gives

do1s = SPao1s Edorss da15~N (0, 02015) (2)
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Fig. 1 The idea of quantifying learning by means of the inaccuracy (changing from revision to revision) and the
imprecision (changing in time as our knowledge about emission processes accumulates) of reported GHG
emission estimates

Next, we detrend each of the earlier revision time series (1) using the smoothing spline
Spho1s. by subtracting them from this spline, and we assume that the differences obtained
follow the same type of distribution

d} = Sphos—Ej, dj~N(0,0;), j=2001,...,2014 (3)
Parameters o;,j= 2001, ... ,2015 can be estimated using the maximum likelihood estimators
(e.g., Cowan 1998; Soong 2004), which leads us to the following model

di~N(0,5,), where &; = \/Ni ﬁ (djf—mj)Z, j=2001,...,2015 4)
J n=1990
where m; denotes the mean value for the sample d}990, ey dj and N;=;—1990.

Differences (2) and (3) correspond to the inaccuracy of revisions. Inaccuracy is understood
as a systematic bias, i.e., the difference between the true value and the average of its repeated
estimates. However, each revision consists of a series of different values (i.e., just one estimate
for each year, starting in 1990), not repeated estimates of the same value. Hence, using the
standard deviation is a suitable way of describing the inaccuracy of revisions.

If differences (2) and (3) are normally distributed, with the population mean value
equal to zero and with o; (different for each revision but equal for all estimates in this
revision) as in model (4), then the detrending can be interpreted in terms of extracting
inaccuracy. To estimate the inaccuracy of revisions, namely, the time series U; j= 2001,
...,2015 we normalize parameters &;, j= 2001, ...,2015, dividing them by the “real
emission,” assumed to be represented by the smoothing spline. This gives the following
relative inaccuracy estimates
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. G; .

j=—, Jj=2001,...,2015 (5)
SPaois

To assess the imprecision of emission estimates, i.e., U",n=1990, ... ,2015, we analyze the

columns in the data table, the rows of which were detrended to assess the inaccuracy, i.e., we

analyze columns, indexed by n=1990, ... ,2015, and having entries d;, j= max {2001, n},

...,2015. Note that, although each column contains estimates of emissions for the same year,
they are based on different activity data and different emission factors. Thus, they are
realizations of different time series, and, in consequence, not readily comparable. To analyze
them, we first bring them to the same units by means of standardization, consistent with model
(4), where the population mean value was assumed to be zero. For each j = 2001, ... ,2015, we
divide difference d;f by corresponding &, which gives columns of the form

el = 3. indexed with time n = 1990, ..., j.
J

At this point, two problems arise. Firstly, the converted columns are not identically
distributed. This means that we cannot use distribution parameters, as in model (4), but
have to deal with sample characteristics instead. Secondly, samples ¢ are quite small and
vary in size (the columns for n=1990, ... ,2001 are of equal size, and from then on, each
column is one data point shorter than the previous one). This makes it difficult to compare
standard deviations, which we use to estimate imprecision, as the sample standard devi-
ation is sensitive to sample size. Hence, to compare them, a size correction is required. To
calculate the size-corrected standard deviations, we first take the sample standard devia-

tion given by
o IR ( ,,>2
= e.—m ,
N"—1 ;501 \ /

where (S7)? is the unbiased sample estimator of variance, m” denotes the sample mean
value, and N is the sample size. Then, we implement the size correction by multiplying S”

by, /% = %. This gives the following imprecision estimates

o L ( ”)2 1990, ..., 2014 (6)
=\ 7o o ei-m") , n= -

The above discussion leads us to the two-step procedure aiming to estimate inaccuracy and
imprecision. We will refer to it as method 1 and we present it graphically in Diagram 1.
Interpreting the results obtained when applying method 1 depends on the fulfillment of
assumptions in model (4), in particular, on the normality of differences a’;f . To verify normality,
we use the Shapiro-Wilk test (considered the most reliable normality test) with significance
level a=0.05 and confirm the results with the Lilliefors test (recommended for use in small
samples). If the normality assumption is satisfied, we also test the differences in model (4) for
the significance of the population mean value, using the two-tailed ¢ test with a = 0.05. If the
normality condition is not met, the ¢ test cannot be used, as we deal with small samples (see,
e.g., Cowan 1998). We can apply its nonparametric version, i.e., the Mann-Whitney test, but
need to take into account that it refers to the median, not the mean value. In fact, that test only
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Step 1 Analyzing revisions to estimate inaccuracy

Fit the smoothing spline SpJ,;5 to the most recent revision EJy,5

Calculate differences between the smoothing spline and revisions E}* in years
j =2001,...,2015

d]ﬁ = SPzo1s — Ejn

Test differences d}' for normality and insignificance of the population mean value

Find maximum likelihood estimators of standard deviations g; of differences d}‘

For each revision year j, find the inaccuracy estimate U; = o
P2015

Step 2 Analyzing emissions to estimate imprecision

a
—3

Standardize each difference d]’-1, for j = 2001, ...,2015, according to ej" =

52

For each column e]-", n = 1990, ..., j, estimate the sample standard deviation S™

N™—1

and implement size correction to obtain the imprecision estimate U™ = S™ m

Diagram 1 Illustrating method 1 for estimation of inaccuracy and imprecision of reported GHG emission
inventories

provides some information on the mean value for normal-like distributions (in particular
symmetric ones) when the mean and median are close to each other.

The assumption on the insignificance of the population mean value is of secondary importance
and is needed only to formally confirm the way the standardization is performed. The assumption
of normality, however, is of critical importance. If this assumption is satisfied, we can say that
detrending “cleans” the data sufficiently, removing all the information on the “real emission,” so
that we are left only with information on inaccuracy. If normality condition is not met, this may
indicate that the estimation of the “real emission” was not good enough (most likely due to
substantial approximation errors), which makes detrending less effective. This may affect the
inaccuracy assessment and lead to different results in the learning investigation.

On the other hand, normality of analyzed differences does not guarantee that detrending
with spline removes only the information on the “real emission” while leaving the information
on uncertainty intact. As a nonparametric approach, the smoothing spline gives asymptotically
normally distributed residuals that are likely to pass normality tests (not only in the case of the
difference between the smoothing spline and the most recent revision, but also for most of the
remaining differences). However, the smoothing spline, fitted to the most recent revision £%, 5,
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may grasp not only the “real emission,” but also a part of the uncertainty. Thus, we cannot be
certain if the detrended data fully reflect the uncertainty. To test this in practice, we consider a
modified version of method 1, with no extra estimate of the “real emission,” and called method
2 (depicted in Diagram 2).

In method 2, we assume that the most recent revision is the best approximation of the “real
emission,” and we consider differences between the most recent and the remaining revisions

d" = Ejys—E", for j=2001,...,2014.

Note that, there is one row of data less to be analyzed in method 2, compared with method 1, as
for every n, E%)5—E5;,s=0. Moreover, as opposed to (2), the difference
dyo1a = E5015—E504 does not represent residuals in a nonparametric regression approach.
We can therefore expect that the normality condition may not be met (not only for this
difference but for other differences too). This should result in a different behavior of these
differences, compared with the approach based on the smoothing spline, but we have to check
whether it helps in the learning investigation.

According to the above interpretation, verification of normality provides two types of infor-
mation. If the normality condition is met, we can assume that differences (both in method 1 and
method 2) consist only of inaccuracy (which needs to be estimated), but we must be aware that
this information may be incomplete. On the other hand, the lack of normality means that part of

Step 1 Analyzing revisions to estimate inaccuracy

Calculate differences between the most recent and the remaining revisions Ej* in
years j = 2001, ...,2014

n _ n n
dj = Ej015 — Ej

Test differences d}! for normality and insignificance of the population mean value

Find maximum likelihood estimators of standard deviations g; of differences d}1

9j
J
Ej015

For each revision year j, find the inaccuracy estimate 171 =

Step 2 Analyzing emissions to estimate imprecision

QU
[~-3

Standardize each difference d}, for j = 2001, ..., 2014, according to ej* =

Q

1

For each column ej", n = 1990, ..., j, estimate the sample standard deviation S™

N"—-1

and implement size correction to obtain the imprecision estimate U™ = S™ T

Diagram 2 Illustrating method 2 for estimation of inaccuracy and imprecision of reported GHG emission
inventories
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the “real emission” has been left over in the analyzed differences, which may affect the behavior
of inaccuracy (and therefore also imprecision), and make it difficult to capture learning.

Note that the interpretation of inaccuracy estimates (5) obtained with method 1 is similar to
that for the inaccuracy estimates calculated with method 2, as in both cases, the relative
estimates are calculated with respect to the “real emission” represented either by the smoothing
spline Sp),,s or by the most recent revision £%,s. The relative imprecision estimates calcu-
lated in the second step of methods 1 and 2 are based on the results obtained in the first step—
thus, they are also relative to the “real emission.”

3 Investigating learning

To detect and assess learning, if present, in inaccuracy and imprecision, we analyze the time
series of their estimates Uj‘ Jj=2001,...,2015 and U”, n =1990, ...,2015, obtained using
method 1 or method 2 (presented in Section 2).

We assume that learning refers to improvement in the certainty and precision of emission
inventories over time, that is, to an observed reduction in uncertainty. We distinguish between
learning in the inaccuracy of revisions and learning in the imprecision of emission estimates;
however, we may not be able to fully disentangle the two.

We check the aforementioned time series of inaccuracy and imprecision estimates for a
trend, namely, the presence of a trend and then its monotonic behavior. In both cases, learning
corresponds to the trend decreasing over time (the downward trend), where time is understood
as a year of revision in the case of inaccuracy, and as a year in which emissions occurred, in the
case of imprecision. This trend can be modeled by a regression curve taking positive values,
being decreasing, and approaching zero asymptotically. We can expect some residual uncer-
tainty always to be present. In that case, the trend will stabilize around some level above zero,
which in principle can be modeled within the framework proposed here. However, assump-
tions on asymptotic behavior are of low practical importance, as we work with short samples.
For simplicity, we assume that the trend decreases to zero. In addition, we require the curve
modeling the trend to be concave up. This is a mild technical assumption, facilitating the use of
regression models to assess learning, as we want to avoid the situation where the curve
modeling the trend crosses the horizontal axis and takes on negative values.

Examples of changes in uncertainty over time where learning can be observed are
depicted in Fig. 2.

Figure 3 illustrates uncertainty structure, where no learning can be detected due to (a) strong
random oscillations instead of a clear trend, (b) an upward instead of a downward trend in

(a) N (b)

Uncertainty
Uncertainty

Time (years) Time (years)

Fig. 2 Examples of learning in uncertainty
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(a) ‘ (b}. 0o (c)

Uncertainty

Uncertainty

Uncertainty
[ J

Time (years) Time (years) Time (years)

Fig. 3 Examples where no learning is detected

uncertainty, or (c) polynomial-like non-monotone behavior (where the curve fitted crosses the
horizontal axis at some point, leading to a negative uncertainty).

Both examples presented in Fig. 2 illustrate learning, although the one depicted in Fig. 2b,
illustrates it at a much slower rate. This shows that we can also assess the rate of learning based
on the model fitted and on its goodness of fit. Thus, having estimated inaccuracy and
imprecision, we first check them for a downward trend (detecting learning) and then assess
that learning (if detected).

3.1 Detecting trends in uncertainty

To test uncertainty estimates for a downward trend, we first perform the Bartels test* for
randomness (Bartels 1982), testing the null hypothesis Hy: randomness against the left-sided
alternative hypothesis H;: trend. This nonparametric rank test is very sensitive in trend
detection, showing evidence of a trend even if it is very weak. It does not, however, distinguish
between a downward and an upward trend. To check this, the Cox-Stuart test® (Cox and Stuart
1995) can be used, with null hypothesis Hy: randomness against the left-sided alternative
hypothesis H;: downward trend.

Both the above tests are quite easy to perform and work well for small samples (as in the
analysis considered here) but as nonparametric ones they may, in some cases, be insufficiently
powerful. Their combination is therefore important, allowing us to confirm the presence of the
trend detected by the Bartels test (slightly oversensitive and therefore ideal for initial analysis)
and, at the same time, to apply the Cox-Stuart test (less powerful) only to those data where the
trend is present. To perform the aforementioned tests, we take the most common significance
level a=0.05, (e.g., Cowan 1998; Brandt 2014), as it works well in most cases. Setting « at
0.05 means that there is 5% chance of rejecting the null hypothesis when it is true (a type I
error). By reducing o (e.g., to 0.01), we reduce the chance of a type I error but increase the
chance of not rejecting H,y when the alternative hypothesis is true (a type II error). Thus, 5%
seems to be a good balance between these two issues.

4 The Bartels test is the nonparametric version of von Neumann’s ratio test for randomness. It ranks the
observations from the smallest to the largest and tests the ratio of the sequential variance calculated from
consecutive ranks to the variance based on deviations of ranks from the mean. For values far from the test statistic
(two-sided test), there is evidence for non-randomness. In the left-sided test (used in our analysis), randomness is
tested against trend, while in the right-sided against regular oscillations.

% The Cox-Stuart sign test is based on the binomial distribution. Its test statistic is the number of positive slopes
between points that are separated by about half of the observations. The null hypothesis on randomness can be
interpreted in terms of positive and negative slopes being equally likely. Both two-sided or one-sided alternative
hypotheses can be considered. The left-sided alternative hypothesis, (considered here for the analysis) indicates
that negative slopes are more likely than positive ones, which corresponds to a downward trend.
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3.2 Assessing learning

If a downward trend in uncertainty is present, we can model it by fitting a regression curve.
Since the linear regression cannot be used (a straight line does not satisfy the model require-
ments as it crosses the horizontal axis at some point) and we want to keep the analysis as
simple as possible, we consider nonlinear regression models that can be transformed into a
standard linear regression (e.g., Myers 1990; Hocking 2013). This allows us to use coefficients
of determination R? to compare the results.

We focus on the following models:

—  exponential model

Y =" a <0, (M1)
which can be log-transformed into Y’ = at+ b, taking ¥ =In(Y),

—  power model
Y=t MO0t g <0, (M2)

which can be transformed into ¥ =af + b, by ¥ =In(Y) and ¢ = In(z).

Variable Y represents uncertainty (inaccuracy or imprecision), while ¢ corresponds to time
(in years). Thus, both take only positive values and can be log-transformed. If a < 0, both
curves are decreasing to zero, but the first one at a much faster rate. The difference between
their shapes can be observed in Fig. 2, where panel (a) illustrates model (M1), while panel (b)
corresponds to model (M2).

Because of that difference, we distinguish between strong learning (learning at a faster rate)
and weak learning (learning at a slower rate). We say that there is a strong learning in
uncertainty when the observed downward trend can be modeled using (M1) with a reasonably
good fit. If model (M2) is fitted instead, we call it weak learning (or learning at a slower rate).

We select the model based on its goodness of fit, measured by R2, which indicates how
much of the relationship between variables Y and ¢ (uncertainty and time, respectively) is
explained by the model used (e.g., Soong 2004; Ryan 2008). For instance, the value of RZ < 0.5
indicates that less than 50% of the relationship between variables is explained (and in such a
case, the model most likely fails to satisfy the assumptions required, e.g., on the normality of
residuals).

In this paper, we will consider such explanatory capabilities of the model as being
insufficient and will use a cutoff value for R? equal to 0.5. This choice of the cutoff value is
arbitrary, as there are no strict rules regarding the threshold, although it is often assumed that it
should equal at least 60-70%. In some areas, low values of R? (around 30%) are considered
sufficient. Taking a cutoff value at 50% seems to be reasonable here.

The values of R2<0.5 for model (M1) will be interpreted as no evidence of a strong
learning. In such cases, model (M2) will be used, but if R? for this model is again smaller than
0.5, we will say that even a weak learning could not be detected.

The method for detecting and assessing learning is described by the following algorithm
(depicted in Table 2).
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Table 2 Algorithm to detect and assess learning

Algorithm 1. Detecting and assessing learning.

Input: u — time series of uncertainty estimates
Output: NoLearning, StrongLearning or WeakLearning
1. Detecting learning
Test u for a downward trend
if no downward trend is detected
then return Nolearning D> It stops if no downward trend is detected
2. Assessing learning D> We suspect learning at this point
Model the downward trend in « using (M1) and (M2)
Validate the model and check its goodness of fit R?
if model (M1) provides R? > 0.5
then return StronglLearning
if model (M2) provides R? > 0.5
then return WeakLearning
return NolLearning

According to Algorithm 1, the exponential model is preferred over the power model, which
is consistent with the interpretation given above. If fitting the exponential model gives R? >
0.5, this is equivalent to a strong learning, in which case the power model is not considered.
We use the power model, if fitting the exponential model gives RZ < 0.5. This means that the
criterion for the choice of model (M1) or (M2) is, in fact, the cutoff value and that the values of
R2 obtained as the results should be compared independently for each model.

4 Learning in the EU-15 emission inventories

The method of detecting learning discussed in previous sections is generic and can be applied
to any set of consecutive GHG inventories or their parts (specific sectors). Here, we demon-
strate that potential, by applying the method to analyze the estimates of total CO, emissions
excluding LULUCF sector, submitted annually to the UNFCCC in the form of the NIRs®
produced by each of the EU-15 member countries, along with the emission estimates for the
entire EU-15.7 The emission estimates analyzed cover the period from 1990 to 2015, published
in the years 2001-2015.

4.1 Analyzing the EU-15 emission inventories
We start by estimating the “real emission” in two ways. In method 1, the “real emission” is

estimated by the smoothing spline Sp5,5 fitted to the most recent revision £%,5 (see Fig. 4).
Method 2 works on the assumption that the most recent revision involves the best knowledge

¢ Available at http://unfccc.int/national reports/annex i ghg inventories/national inventories
submissions/items/8812.php .

7 EU reports are the aggregate of GHG emission inventories of all member countries. Originally, these were EU-
15 countries, but after expansion of European Union these reports contain also emissions of new member states.
However, for comparison, the EU-15 data are included in reports of expanded EU.
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Fig. 4 Estimating the “real emission” in method 1, using the smoothing spline fitted to the most recent revision
(considered the “real emission” in method 2)

on the “real emission” and can be considered its best approximation. Thus, no extra estimate
for E%,,5 is used.

We calculate differences between the “real emission” and revisions, using both the afore-
mentioned methods. We find differences between the smoothing spline and consecutive
revisions (depicted in Fig. 5a), as well as between the most recent and earlier revisions (Fig.
5b). As discussed in Section 2, these approaches are based on a different interpretation of
uncertainty extraction. By estimating the “real emission” with the smoothing spline and finding
the differences (see Diagram 1), we detrend consecutive revision data series. When the most
recent revision is considered to be the “real emission” (as presented in Diagram 2), the
differences, illustrating changes between the most recent and earlier revisions, do not actually
detrend the data. This means that these differences remove a different amount of information
regarding the “real emission,” which results in each behaving completely differently.

The detrended differences oscillate randomly around zero. However, if we compare them,
we can observe some regularities, as if they were following the same pattern (see Fig. 5a). The
differences calculated according to the second method show rather chaotic behavior (Fig. 5b),

200000,0 EU-15 (a) 90000,00 EU-15 (b)
= N 80000,00
g r—,
g 1500000 B 7000000 | S St
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Fig. 5 Illustrating differences (in [Gg]) a between the smoothing spline and consecutive revisions (method 1) and
b between the most recent and earlier revisions (method 2)
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but we can also observe groupings of differences with similar behavior, for example, those
related to the most initial or most recent revisions.

This suggests that the detrended differences have been “cleaned” sufficiently, while those
based on the most recent revision may still involve some information on the “real emission.”
To verify this, we carry out normality tests (the Shapiro-Wilk and the Lilliefors test), with o =
0.05, and (if possible) ¢ tests to verify the insignificance of the population mean value. The
tests conducted show that in most cases, no statistical evidence can be found against the null
hypothesis on the normality of the detrended differences. The tests fail in the case of the most
initial revisions, which can partly be explained by the small sample sizes. In all cases where
normality condition is met, we also conduct the two-tailed # tests, which show that in most
cases, the true population mean is statistically insignificant and can be assumed to be zero.

Checking normality for differences based on the most recent revision shows, in turn, that in
most cases, the differences cannot be considered to be normally distributed. This translates into
a different behavior and properties of differences calculated by method 1 and method 2.

Corollary 1 According to the above discussion, we can conclude that

* By detrending the revisions, we managed to remove all the information on the “real
emission,” leaving only the inaccuracy.

* By subtracting the most recent revision, we “cleaned” the data only partially; some
information on the “real emission” is still present.

We find 6; and use them to evaluate changes in inaccuracy over time, as described in Diagrams
1 and 2 (for methods 1 and 2, respectively) and apply algorithm 1 (depicted in Table 2) to check
them for learning. First, we analyze the inaccuracy estimates obtained using method 1. The
Bartels test for randomness, with null hypothesis H): randomness against the left-sided
alternative hypothesis H;: trend, performed taking av=0.05, detects a trend in inaccuracy (as
p value =0.0028 < o, we reject the null hypothesis on randomness). To check if it is a
downward trend, we use the Cox-Stuart test, with Hy: randomness against H;: downward
trend. As p value =0.77 > o, we reject H; on a downward trend. However, to explain the results
obtained by applying the Bartels test, we also use the right-sided Cox-Stuart test, with the
alternative hypothesis on an upward trend. This time p value =0.007 < «, which shows
evidence for an upward trend in inaccuracy. Therefore, no learning in inaccuracy is detected.

Now, we consider the columns of the data table, with the rows detrended in the first step of
the analysis. First, we standardize the differences, dividing them by corresponding &;. Then,
we find estimates of imprecision, using formula (6). According to algorithm 1, we test these
estimates for a downward trend, applying both aforementioned tests for randomness. The
Bartels test gives p value=6.5x 1078 < «, thus we accept the alternative hypothesis on the
presence of a trend. The Cox-Stuart test shows evidence of a downward trend (p value=
0.000024 < «, thus we accept H; on a downward trend). Once learning in imprecision is
detected, we can assess it by fitting model (M1) or (M2). Model (M1) provides a good fit (see
Table 3), with a determination coefficient R2=0.69. Thus, we can observe strong learning in
imprecision.

The results are depicted in Table 3 both for inaccuracy and imprecision. The relative
inaccuracy estimates are presented in Fig. 6a. The relative imprecision estimates, along with
the model fitted, are depicted in Fig. 6b.
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Table 3 Investigating learning in EU-15 CO, emission inventories (method 1)

Tests for randomness vs trend model Y=e#*+b
Inaccuracy Bartels test Cox-Stuart test No learning in inaccuracy detected
p =0.0028 p=0.007
Trend Upward trend
Imprecision ~ Bartels test Cox-Stuart test Significance tests Resid. Fit
p=65x108%  p=0.000024 b 280.2 p=56x10% SE=0.7 R?
a —014 p=53x107 Norm. (S-W) 0.69
Trend Downward trend ~ F-test p=53x107 p=0.34

Strong learning in imprecision

Similarly, we estimate changes in inaccuracy, evaluated using method 2. We start with tests
for randomness, taking o = 0.05. Both the Bartels test and the Cox-Stuart test show that there is
no trend in inaccuracy (see Table 4); therefore, we can say that no learning in inaccuracy can
be observed.

We then convert columns in the data table and estimate changes in imprecision, following
the procedure described in Diagram 2. As described in Algorithm 1, we check the estimates
obtained for a downward trend. The Bartels test with null hypothesis H): randomness against
the left-sided alternative hypothesis H;: trend gives p value =9.3 x 1079 < . This means that
we reject the null hypothesis and accept H; on the presence of a trend. We then use the Cox-
Stuart test with the left-sided alternative hypothesis on a downward trend. Since p value =
0.000021 < &, we clearly accept the alternative hypothesis on a downward trend. Therefore,
learning in imprecision is detected. To assess it, we fit the exponential model, which provides
R2=0.47. Thus, we use the power model instead. This gives RZ=0.79 (the results of its
validation are presented in Table 4), and hence we can say that weak learning in imprecision is
observed. The results of learning investigation using method 2 are presented in Fig. 7.

The analysis carried out according to algorithm 1 with both methods 1 and 2 showing that
there is no learning in inaccuracy. Method 1 enabled a weak upward trend to be detected.
Using method 2, we could observe random inaccuracy behavior over time. As the differences
in method 2 were non-normally distributed, it can be concluded that the inaccuracy has not
been sufficiently extracted. Both methods allowed us to capture learning in imprecision, but
method 1 resulted in detecting learning at a faster rate, while method 2 detected learning at a
slower rate. This can be explained by a worse “cleaning” of the data when using method 2.
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Fig. 6 Investigating learning in EU-15 emission inventories (method 1). a No learning in (relative) inaccuracy. b
Strong learning in (relative) imprecision
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Table 4 Investigating learning in EU-15 CO, emission inventory (method 2)

Tests for randomness vs trend model Y=e# n(0+b

Inaccuracy Bartels test Cox-Stuart test No learning in inaccuracy detected
p=0.312 p=0.773
Randomness Randomness

Imprecision  Bartels test Cox-Stuart test Significance tests Resid. Fit
p=93%x10"7  p=0.000021 b 16548 p=70x10° SE=04 R?

a 2175 p=69x10° Nomm. (S-W) 0.79

Trend Downward trend ~ F-test p=69x107° p=021

Weak learning in imprecision

Corollary 2 We can observe that

* There is no learning in inaccuracy (none of the approaches used allowed us to capture it).

* We have not lost any information on uncertainty due to detrending, while extracting
uncertainty with method 2 was insufficient

* There is strong learning in imprecision (even insufficient extraction of uncertainty allowed
us to capture it, although at a slower rate).

4.2 Learning assessment for the EU-15 member countries

The data on GHG emissions in the EU Inventory Reports checked for possible learning in
Section 4.1, are obtained by adding those reported by member countries. Analysis of the NIR
data for each of the EU-15 member countries should explain and confirm the previous results.
Firstly, some countries are expected to follow the same scheme, where strong learning in
imprecision is captured by applying method 1, and only weak learning in imprecision is
captured by applying method 2. This refers to countries with high emissions reported (as their
contribution to the data is significant), and those with particularly strong learning in impreci-
sion detected using method 1. Secondly, there are likely to be countries showing no learning at
all (which may have slightly weakened the downward trend in imprecision observed for the
EU-15). Of interest to us are any results in between, far from these extreme cases, and whether
or not any similarities between neighboring countries can be observed.
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5 8
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Fig. 7 Investigating learning in EU-15 emission inventories (method 2). a No learning in inaccuracy. b Weak
learning in imprecision
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We conduct the analysis, using both method 1 and method 2, and applying algorithm 1 to
detect and assess learning, as in Section 4.1, and compare the results obtained for various
countries.

Firstly, no learning in inaccuracy is detected for any of them, when using method 1 (see
Fig. 8). To confirm the lack of learning in inaccuracy, and to make sure that the results obtained
are not consequences of possible exaggerated “cleaning” of the data by detrending, and thus
also removing part of the information on inaccuracy (as discussed at the end of Section 2), we
also use method 2. The changes in imprecision are also analyzed using both methods.

The results of learning investigation allow for division of the countries analyzed into six
groups.

4.2.1 Group I: no learning in inaccuracy, strong learning in imprecision

There are three countries whose data on CO, emission inventories follow the scheme observed
for the EU-15 (Fig. 9). This applies to the data reported by Germany, Netherlands, and the UK
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Fig. 9 Illustrating learning investigation in CO, emission inventories for Germany, Netherlands, and the UK. No
learning in inaccuracy detected when using method 2, strong learning in imprecision due to method 1, and weak
learning in imprecision using method 2

for which there is evidence of strong learning in imprecision but no learning in inaccuracy is
detected.

When analyzing inaccuracy estimated with method 2, the Bartels test indicated the presence
of a trend, but that result was not confirmed in further analysis. As with the EU-15, learning at
a faster rate was captured using method 1, with the fit of the exponential model R2=0.79 for
Germany, R% =0.74 for Netherlands, and R? =0.59 for the UK. A weak learning was captured,
using method 2, where the fit of the power model, used to illustrate changes in imprecision for
those countries, was equal to R2=0.73, R2=0.62, and R?2=0.52, for Germany, Netherlands,
and the UK respectively.

Given that the CO, emissions for those countries are quite high compared with other
countries, they have a large impact on the results obtained by the entire EU-15. This impact is
also due to the fact that similar statistical properties of the differences analyzed can be
observed. The detrended differences turned out to be mostly normally distributed with the
population mean value zero, while those obtained based on the most recent revision, as for the
EU-15, were mostly non-normal. This can be interpreted, as before, in terms of sufficiently and
insufficiently “cleaned” revision data series.

4.3 Group lI: weak learning in inaccuracy, strong learning in imprecision

In the case of two countries Austria and Finland, we managed to capture strong learning in
imprecision and weak learning in inaccuracy (Fig. 10).

By investigating learning with method 1, we managed to observe strong learning in
imprecision. Tests for randomness showed the presence of a downward trend in
imprecision, and the exponential model fitted to this trend gave RZ2=0.77 for Austria
and R?2=0.84 for Finland.
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Fig. 10 Illustrating learning investigation in CO, emission inventories for Austria and Finland. Weak learning in
inaccuracy detected using method 2, strong learning in imprecision due to method 1, and weak learning in
imprecision using method 2

Method 2, in turn, allowed learning to be captured both in inaccuracy and imprecision,
although both at a slower rate. Tests for randomness showed evidence of a downward trend in
inaccuracy. To assess this, the power model was used, giving a fairly poor fit with R2, slightly
over 50%, namely, R?=0.58 for Austria and R2=0.59 for Finland. This, however, enabled us
to consider it a weak learning in inaccuracy. The analysis of changes in imprecision also
indicated a weak learning, with the fit of the power model R? =0.61 for Austria and R?>=0.75
for Finland. Such results may eventually indicate a strong learning in imprecision, as a weak
learning was captured despite the insufficiently “cleaned” data. As we did not detect learning
in inaccuracy in the case of detrending, the learning can be considered so weak that the
sufficient “cleaning” of the data (by detrending) makes capturing it impossible.

4.3.1 Group llI: weak learning in inaccuracy, strong learning in imprecision (detected
only when using method 1)

The results of the investigation of emission inventory data for Ireland (Fig. 11) partly follow
the scheme observed for Austria and Finland. Strong learning was detected in imprecision,
thanks to method 1. The fit of the exponential model used in that case was quite good (R? =
0.63). We also captured weak learning in inaccuracy, with a fairly good fit of the power model
(R2=0.61), using method 2, but in this case, no learning in imprecision was detected.
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Fig. 11 Illustrating learning investigation in CO, emission inventories for Ireland: weak learning in inaccuracy
was detected using method 2 and strong learning in imprecision using method 1
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Comparing the results obtained for Ireland with those for Austria and Finland, we can see a
good fit of the exponential model, used to illustrate the changes in imprecision over time. This
translates into strong learning in imprecision. In the case of Ireland, the fit is slightly worse,
with R2=0.63, which may indicate that learning in imprecision is slightly less pronounced and
becomes undetectable after extracting inaccuracy with method 2. Thus, leaving some infor-
mation on the “real emission” (in method 2) enables a weak learning in inaccuracy to be
captured, at the price, however, of not detecting learning in imprecision.

The case of Ireland illustrates the discussion in Section 2, confirming that using different
approaches may, in some cases, be crucial.

4.3.2 Group IV: no learning in inaccuracy, weak learning in imprecision

In the case of Italy, Portugal, and Spain, only weak learning in imprecision was detected
(Fig. 12), when using method 1. The power model fitted gave R? =0.67 for Italy, R2=0.69 for
Portugal, and R =0.61 for Spain. By using method 2, we were unable to detect learning either
in inaccuracy or in imprecision. Following the interpretation used in the case of Ireland, this
can be explained by a really weak learning in imprecision. In the case of “noisy” revision data,
where some information on the “real emission” is left over in the differences analyzed (method
2), it becomes undetectable.

At the same time, analysis of changes in inaccuracy over time with method 2 confirmed that
there is no learning in inaccuracy. The behavior of inaccuracy estimates was, however,
different than under method 1 (see Figs. 8 and 12).

In the first case, we observed an upward trend in inaccuracy. Method 2 showed, in turn, that
changes in inaccuracy are random (as confirmed by tests for randomness). For Spain, the
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Fig. 12 Illustrating learning investigation in CO, emission inventories for Italy, Portugal, and Spain: weak
learning in imprecision was detected using method 1 and no learning in inaccuracy using both method 1 and
method 2
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Bartels test indicated the presence of a trend, but further analysis did not confirm this result
(the Cox-Stuart test showed the evidence for the randomness of the data).

4.3.3 Group V: weak learning in inaccuracy, no learning in imprecision

The analysis of emission inventories for Denmark and Sweden allowed only weak learning in
inaccuracy to be captured using method 2 (see Fig. 13).

The power model fitted provided R2=0.59 and R?=0.67 for Denmark and Sweden,
respectively. Neither method 1 nor method 2 enabled learning in imprecision to be captured.
Tests for randomness showed no presence of a trend in imprecision, indicating random
changes in imprecision over time and hence no learning in imprecision.

It is easy to observe the similarity in the behavior of the estimated uncertainty over time
with respect to the changes both in inaccuracy and imprecision. We should stress that the data
analyzed, both for Denmark and Sweden, seem to be chaotic and random. This was already
noticeable when the differences were being analyzed. The detrended differences were mainly
non-normally distributed, which means that detrending did not sufficiently “clean” the data.
The same could be observed for differences based on the most recent revision. Thus, due to the
nature of the data for Denmark and Sweden, we were, in fact, unable to sufficiently extract the
uncertainty.

4.3.4 Group VI: no learning in inaccuracy, no learning in imprecision

We close the classification with four countries, where no learning was detected when using
both method 1 and method 2: Belgium, France, Greece, and Luxembourg. The tests for
randomness conducted in the case of those countries showed no presence of a trend, either
in inaccuracy or in imprecision, indicating the randomness of the data analyzed (see Fig. 14).

It should be noted that as two of these countries (i.e., Greece and Luxembourg) started their
official reporting to the UNFCCC later (Greece since 2002, and Luxembourg since 2004), the
samples analyzed in those cases were slightly shorter. However, this did not affect the results
obtained. It is worth mentioning that for each of these four countries, as in the case of the data
for Denmark and Sweden, the random and chaotic behavior could be observed. Only some of
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Fig. 13 Tllustrating learning investigation in CO, emission inventories for Denmark and Sweden: weak learning
in inaccuracy was detected using method 2 and no learning in imprecision using both method 1 and method 2
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Fig. 14 Illustrating learning investigation in CO, emission inventories for Belgium, France, Greece, and

Luxembourg: no learning in inaccuracy or in imprecision detected

the detrended differences turned out to be normally distributed, which, as in the previous case,
confirms the random nature of the emission inventories for these countries.

Corollary 3 Summarizing the results, we can observe that

*  Only for three countries (Austria, Finland, and Ireland) we managed to capture learning
both in imprecision and in inaccuracy (the latter one at a slower rate).

e Only three countries (Germany, Netherlands, and the UK) followed the scheme observed
for the entire EU-15, with learning in imprecision.

e For 9 of the 15 countries considered, the CO, emission inventories showed random
changes in inaccuracy and imprecision rather than learning.

* In most cases, we managed to detect only weak learning, either in inaccuracy (Denmark
and Sweden) or in imprecision (Italy, Portugal, and Spain), or we detected no learning at
all (Belgium, France, Greece, and Luxembourg).

The results of learning investigation based on algorithm 1, with the use of both method 1 and

method 2 are summarized in Table 5. Countries are sorted alphabetically, but we also indicate
the group to which the given country belongs.
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Table 5 Summary of learning results for EU-15 countries

Country Learning in inaccuracy Learning in imprecision Group
Method 1 Method 2 Method 1 Method 2
Austria - Weak Strong Weak I
Belgium - - - - VI
Denmark - Weak - - v
Finland - Weak Strong Weak 1
France - - - - VI
Germany - - Strong Weak 1
Greece - - - - VI
Ireland - Weak Strong - I
Italy - - Weak - v
Luxembourg - - - - VI
Netherlands - - Strong Weak I
Portugal - - Weak - v
Spain - - Weak - v
Sweden - Weak - - \%
UK - - Strong Weak

5 Conclusions and policy recommendations

The practice of revising GHG inventories provides a unique opportunity to conduct a
diagnostic analysis of the quality of emission estimates, in terms of both their accuracy and
precision. The volume of data collected over the last 15 years has just become sufficient to
allow for the application of statistical methods to detect a reduction of uncertainty (i.e.,
learning) in accounting-based estimates of national GHG emissions published in NIRs. We
emphasize that further collection of new data (both new emission estimates and revision of the
old ones) is recommended, as longer data samples increase the confidence in the results
obtained in Section 4.

In general, method 1 appears to be better at detecting learning in imprecision compared
with method 2. For the EU-15, with method 1, we were able to find evidence of strong learning
in imprecision, while with method 2, we captured only weak learning. This conclusion is
strengthened by an observation (cf. Table 5) that whenever method 1 detects a strong learning
in imprecision, method 2 indicates only a weak learning (for countries from groups I and II);
Ireland (group III) is an exception here, as a weak learning in inaccuracy instead of imprecision
was detected by method 2. Moreover, whenever method 1 detects weak learning in impreci-
sion, method 2 fails to find any evidence of learning (for countries in group IV). Method 2,
however, occasionally allows detection of weak learning in inaccuracy, when method 1 fails to
find evidence of learning in inaccuracy (for countries in groups II, III, and V). Yet, this comes
at the price of a generally worse performance in detecting learning in imprecision (only weak
learning was detected for countries in group II, and no learning for groups III and V).

A closer look at the fulfillment of normality assumption sheds some light on this apparent
difference in performance between the two methods discussed. In most cases, the differences
between the emission estimates and the trend used in method 1 are normally distributed. Thus,
detrending removes all the information about the “real emission,” but potentially also some
information on inaccuracy. This may render inconspicuous trends in relative inaccuracy that
are virtually undetectable using method 1. On the other hand, the differences between the most
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recent revision and the older ones, as analyzed in method 2, are in general not normally
distributed. This means that some information on the “real emissions” was still left over in the
data transformed, interfering with the estimation of inaccuracy and thus affecting the assess-
ment of imprecision. This may be the reason why method 2 detects only weak learning (if
any). However, this insufficient “cleaning” of the data from information on the “real
emissions” may, in some cases, retain some information on inaccuracy (while being removed
by method 1), making method 2 more suitable for detecting feeble trends in inaccuracy. To
summarize, method 1 may have a slight tendency to underestimate learning in inaccuracy,
while method 2 may be more pessimistic in assessing learning in imprecision.

We should note that there is no central agency providing independent inventorying of GHG
emissions for the whole EU-15, and the NIRs for the EU-15 are simply obtained as the
aggregated NIRs of its member countries. Thus, any learning which we were able to detect in
emission data for the EU-15 is due to improvements in GHG inventorying at the national level.
This aggregation, however, has a smoothing effect on the evolution of inaccuracy and
imprecision for the EU-15 (Figs. 6 and 7) compared with individual member countries
(Figs. 8,9, 10, 11, 12). The reduced variability helps with detection of learning and in drawing
stronger conclusions about the satisfactory performance of the methods proposed.

The results presented in this paper have several practical consequences for policy. First, the
analysis carried out both for the entire EU-15 (Section 4.1), and for its individual member
countries (Section 4.2) shows that there is still much room for further reductions in the
uncertainty of emission inventories reported to the UNFCCC. Evidence of a slow increase
in accuracy is feeble at best, while many countries also fail to improve the precision of their
emission estimates in a noticeable way.

We were unable to detect learning in inaccuracy in the emission estimates of the EU-15 as a
whole, which is generally consistent with our findings for individual member countries. Only
in several cases of relatively small emitters did method 2 capture weak learning (as presented
in Table 5). This apparent general lack of improvement in accuracy of inventories (both for the
entire EU-15 and on the national level) is likely to be explained by the fact that all emission
estimates (both new and revised) are based on the same accounting schemes suggested by the
UNFCCC in IPCC (2000), and later in IPCC (2006). However, the result of introducing new
accounting guidelines in IPCC (2006) is noticeable in the formation of peaks in the differences
between the smoothing spline and the most recent revision (Fig. 5a), as well as in inaccuracy
estimates for the EU-15 (Figs. 6a and 7a) and for most countries analyzed (see Figs. 8, 9, 10,
11, 12, 13, 14). This observation suggests that subsequent updates of GHG emissions
accounting guidelines have the potential to reduce the inaccuracy of emission estimates.

An improvement in the precision of the EU-15 emission estimates was detected by both
methods proposed. We ascribe this effect to learning in imprecision detected for individual
countries, mainly by the big emitters: Germany and the UK (strong learning), and possibly
Italy and Spain (weak learning). A possible explanation of this improved precision is the
availability of better knowledge about emission processes and emission factors. Further efforts
to improve this knowledge are recommended, as they have been proven to reduce the
inaccuracy of GHG estimates in the past.

Methods 1 and 2 presented here offer alternative ways of assessing uncertainty suggested in
the reporting guidelines, namely, the tier 1 or tier 2 approach, and later also the tier 3 approach
IPCC (2000, 2006). These different approaches used in uncertainty assessments published in
NIRs make it difficult not only to compare uncertainty for various countries (using different
approaches), but often also to track changes in uncertainty over time for a given country
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(which used different approaches in consecutive years). Step 1 of the proposed methods (cf.
Diagrams 1 and 2), together with the evaluation of inaccuracy changes over time, can be useful
in such cases (similar analysis was carried out in Jarnicka and Nahorski (2016) where the
parametric model was considered, although the results were compared with official assess-
ments only in a few available cases). Moreover, uncertainty estimates published in NIRs are
not revised (except for emissions in the base year, usually 1990). This limits the insights into
the evolution of uncertainty that could be collected from NIRs. The method proposed here
offers a way of building a more complete picture of the evolution of uncertainty.

We conclude with a recommendation for continuation and expansion of the practice of
annual revisions of GHG emission estimates published in consecutive NIRs. With the help of
methods proposed here, these revisions allow monitoring of improvements in the quality of
national GHG inventories and can possibly identify countries (or sectors) for which uncer-
tainty of emission estimates are still not satisfactory. Reducing uncertainty of national GHG
inventories is of key importance for monitoring whether countries have achieved their
emission reduction commitments and for setting future reductions targets that are likely to
ensure the desired results.
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