
One Earth, Volume 2
Supplemental Information
Cultural Evolution of Sustainable

Behaviors: Pro-environmental

Tipping Points in an Agent-Based Model

Roope Oskari Kaaronen and Nikita Strelkovskii



 

 

Supplemental Experimental Procedures 

 

Software  

In this research article and NetLogo (version 6.1.0) model, we use NetLogo’s native 

BehaviorSpace tool for parameter sweeping, and NetLogo’s BehaviorSearch for Genetic 

Algorithms 1. We use R 2 and R Studio 3 and R packages tidyverse 4, factoextra 5, Hmisc 6, plyr 

7, RColorBrewer 8, reshape2 9, gridExtra 10 and nlrx 11 for data analysis and visualisation. 

 

ODD Protocol  

The following model description follows the ODD (Overview, Design concepts, Details) 

protocol for describing agent-based models 12,13. 

1. Purpose 

This model illustrates the cultural evolution of pro-environmental behaviour patterns. It shows 

how collective behaviour patterns evolve from interactions between agents and agents (in a 

social network) as well as agents and the affordances within a niche. More specifically, the 

cultural evolution of behaviour patterns is understood in this model as a product of: 

1. The landscape of affordances (action opportunities) provided by the material 

environment, 

2. Individual learning and habituation, 

3. Social learning and network structure, 

4. Personal states (such as habits and attitudes), and 

5. Cultural niche construction, or the modulation of affordances within a niche. 



 

 

More particularly, the model illustrates how changes in the landscape of affordances 14 can 

trigger nonlinear changes in collective behaviour patterns. The model also shows how several 

behavioural cultures can emerge from the same environment and even within the same 

network. 

The model is an elaboration of Kurt Lewin’s 15 heuristic equation, B = f(P, E), where behaviour 

(B) is a function (f) of the person (P) and the environment (E). The model introduces several 

feedback loops (1–5 above) to Lewin’s equation, and thus provides a framework for studying 

the evolution of dynamical and complex behavioural systems over time. The model should be 

considered an abstract model, since many of its parameters are unspecifiable due to limits to 

current understanding of human (social) behaviour. However, the model can be tuned to 

replicate real-world macro patterns, and be used as a sandbox environment to locate tipping 

points in social systems. In the present manuscript, for example, we use the model to reproduce 

real-world patterns of bicycle and car use in Copenhagen. 

 

2. Entities, state variables, and scales  

The model includes three types of agents: human individuals, represented by mobile circle-

shaped agents (or ‘turtles’ in NetLogo lingo), affordances (static patches that occupy grid cells) 

and links (which connect agents in a social network). 

Individuals: Agents represent a single human being, located within a broader collective social 

network and ecological niche. Each individual has two personal states. These personal states 

correspond to the individual’s probability of engaging with a specific kind of affordance. 

Affordances are opportunities for action provided by the environment. The two personal states 

in this model are pro-env and non-env. The former, pro-env, defines the probability of an 



 

 

individual to engage with pro-environmental affordances, and the latter, non-env, defines the 

probability of an individual to engage with non-environmental affordances. 

The personal states of individual agents are sampled from a normal distribution with mean 

values initial-pro (for pro-env) and initial-non (for non-env), and SD 0.15. This standard 

deviation is roughly in line with empirical data related to environmental attitudes and self-

reported behaviours 16. Owing to the model’s probabilistic representation of human behaviour, 

the values of pro-env and non-env must be bounded between 0 and 1. More specifically, the 

model assigns individual boundaries for the pro-env and non-env of each agent. The bounds 

are sampled from a normal distribution with mean values 0.2 (lower bound) and 0.8 (upper 

bound), with SD 0.05.  

Individuals are coloured based on their personal states. This is purely cosmetic, but it aids in 

noticing changes in personal states. If pro-env > non-env, the agent is coloured black. If non-

env > pro-env, the agent is coloured red. 

Links: Individual agents are embedded in a social network which is connected by links. The 

model supports four types of networks: the Klemm-Eguíluz model (highly clustered scale-free 

network), the  Watts–Strogatz model (small-world network), the Barabási–Albert model (scale-

free network with preferential attachment) and the Erdős–Rényi model (random network). All 

network edges (links) are undirected (bidirectional). 

The default network choice is the Klemm-Eguíluz model 17. The Klemm-Eguíluz algorithm 

generates a network based on a finite memory of the nodes (agents), creating a highly clustered 

and scale-free network (see Figures S2–S4). The Klemm-Eguíluz model was chosen since it 

represents two features we know to characterize social systems: Societies have hubs (the 

network degree distribution follows a power law distribution, i.e. it has scale-free properties) 

and societies have highly clustered local communities (social networks have high clustering 



 

 

coefficients) (ibid.). See Klemm and Eguíluz 17 and Caparrini 18 for descriptions of how 

Klemm-Eguíluz model works, as well as Prettejohn et al. section 3.4 in 19 for useful pseudocode. 

We set the default Klemm-Eguíluz model’s parameter m0 (initial number of agents) to 5 and μ 

(probability to connect with low degree nodes) to 0.9. 

Figure S1. Class diagram (UML). 

 

 

 

  



 

 

Figure S2. Network degree distribution. A representative plot of the network degree 

distribution from a single model run with 300 agents. Notice how some agents have 

amounts of links that greatly exceed the mean (black dashed line) and median (red dashed 

line).  

 

Figure S3. Cumulative network degree distribution. 1000 simulations (total of 300,000 

agents) on a logarithmic scale. Notice the scale -free density distribution and relative 

infrequency of agents with above 150 direct links. Mean links are signified by the black 

dashed line and median by the red dashed line.  

 



 

 

Figure S4. Global clustering coefficients . Histogram with 1000 runs with 100 agents. 

Global clustering coefficients are calculated based on triplets of nodes. Triplets are three 

nodes which are connected either by two (open triplet) or three (closed tripled) edges 

(links). The global cluster coefficient is the number of closed triplets in a network 

divided by the total number of triplets . Dashed line is at the mean global clustering 

coefficient, 0.24. 

 

 

Patches (environment): Patches represent the action-opportunities, or affordances, within the 

environment. An affordance is the functional relevance of the environment for an individual. 

The model has two affordances: One represents an opportunity for pro-environmental 

behaviour (represented by a violet patch) and one represents an opportunity for 

environmentally harmful behaviour (sky-blue patch). The latter are from here on referred to as 

non-environmental affordances. The affordances of the environment are therefore binary in this 

model, even though nothing prevents the addition of more kinds of affordances. Affordance-

patches occupy the two-dimensional grid of the model. The grid wraps horizontally and 

vertically (i.e., it is torus-shaped). The total area of the grid is an arbitrary 201x201 patches. 



 

 

Scales: The model can be adapted to represent different spatial and temporal scales. One time-

step can be understood to either represent one instance of behaviour per agent, or a collection 

of behaviours. In the abstract version of the model, the spatial and temporal scales are not 

specifically defined. In empirical validation, the spatial area of the model represents the city 

centre of Copenhagen, with each tick representing one day. 

 

3. Process overview and scheduling 

The submodels of the model are described in more detail and pseudocode in the Submodels 

section. In this section, we describe a brief process overview. 

Setup: The model begins with a setup phase where the patches, agents and links are created. 

Ticks are reset after the setup, so all setup processes occur before the first timestep. 

First, the social network (agents and links) is created. This will create a network with 

individuals specified by the parameter number-of-agents. 

Second, each agent is assigned two personal states, pro-env and non-env. 

Third, affordances are created. Affordances are binary patches-own variables: value 0 signifies 

a non-environmental affordance, and value 1 a pro-environmental affordance. First, all patches 

are assigned with a non-environmental affordance (and coloured sky-blue). Subsequently, the 

proportion of patches designated by the parameter pro-amount are turned into pro-

environmental affordances. Therefore, the parameter pro-amount corresponds to the initial 

proportion of pro-environmental affordances within the total landscape of affordances. 

 



 

 

Go: The ‘Go’ procedure is the heart of the model. 

First, agents behave. If the agent is on a pro-environmental affordance, it will interact with it 

with the probability of P(pro-env). For example, if an agent’s personal state pro-env is 0.5, it 

has a 50% chance of interacting with a pro-environmental affordance. 

Likewise, if the agent is on a non-environmental affordance, it will interact with it with the 

probability of P(non-env). Again, if an agent’s personal state non-env is 0.7, it has a 70% 

chance of interacting with a non-environmental affordance. 

A while-loop ensures that each agent behaves once every turn. Each agent owns a binary value, 

behaved?, which signifies whether it has behaved, or actualized an affordance, during the 

current tick. If behaved? is TRUE, the agent will stop attempting to behave after completing 

the behaviour commands (including steps 1–5 below). 

Once an agent behaves successfully, a sequence of procedures launched in the following order. 

1. If the agent behaved pro-environmentally (i.e., it actualizes a pro-environmental 

affordance), it will increase its current personal state pro-env by the amount of asocial-

learning and decrease its current non-env by the amount of asocial-learning. 

Conversely, if the agent behaved non-environmentally (i.e., it actualizes a non-

environmental affordance), it will increase its current non-env by the amount of asocial-

learning and decrease its current pro-env by the amount of asocial-learning. 

2. If niche-construction is TRUE (niche construction is turned on) and if the agent 

behaved pro-environmentally, with probability construct-pro it will ask one of the eight 

patches in its Moore neighbourhood to turn into a pro-environmental affordance (which 

is then coloured in violet). construct-pro therefore defines the rate of pro-environmental 



 

 

niche construction. The procedure is identical for non-environmental niche construction 

(following non-environmental behaviour), whose rate is defined by construct-non. 

Rates of niche construction are controlled for number-of-agents. This way, adding more 

agents to the simulations does not add to the rate of overall niche construction. This is 

necessary because the area (grid) of the model is held constant. 

3. If networks is TRUE and if the agent behaved pro-environmentally, it will engage in 

social learning with its network neighbours (the agents to which it is directly connected 

to by a link). Following pro-environmental behaviour, the agent will ask its network 

neighbours to increase their current pro-env by the amount specified by parameter 

social-learning, as well as to decrease their current non-env by the amount specified by 

parameter social-learning. Again, the procedure is similar after non-environmental 

behaviour, except this results in an increase of non-env and decrease of pro-env by the 

amount of social-learning. 

4. The agent will bound its personal states pro-env and non-env. If the agent’s personal 

state is above its upper bound or below its lower bound, it will set its personal state to 

its upper and lower bound, respectively. 

5. If mutate? Is TRUE, at each tick, the pro-env and non-env of all agents have a chance 

of mutating. The default probability for mutation (mutate-prob) is 0.005, and the default 

rate for mutation (mutate-rate) is 0.05. The probabilities for increasing or decreasing 

pro-env and non-env values (of all agents) are equal, i.e. mutation is not biased to any 

direction. 

After each behaviour or attempt to behave, agents move in a random forward direction 

between 45 degrees right and 45 degrees left from their current heading. In one tick (time-



 

 

step) agents will continue moving until they have behaved, i.e. until they have successfully 

interacted with an affordance. 

The aforementioned steps are sequential: An agent completes the full set of actions before 

passing on control to the next agent. The order of agents is read in a random order on each 

tick.  

 

4. Design concepts 

Basic principles. 

The model design elaborates on social psychologist Kurt Lewin’s 15 heuristic equation: B = 

f(P, E). Here, behaviour (B) is a function (f) of the person (P) and its environment (E). 

The model adds five dimensions of detail into Lewin’s equation. 

1. The environment affords a variety of opportunities for action, or affordances (E → B). 

2. Behaviour modulates personal states through processes of habituation and individual 

learning (B → P). 

3. Personal states, such as habits and intentions, drive behaviour (P → B). 

4. Behaviour shapes the environment through processes of niche construction (B → E). 

5. Feedback loops 1–4 all occur within a social network where behaviour is transmitted 

via social learning (Bmyself → Pneighbors and Bneighbors → Pmyself). 

These assumptions are elaborated in detail in the manuscript’s section Model Assumptions. 

The basic principles can be summarized as follows: Through processes of individual and social 

learning as well as niche construction, any behaviour at time t will have an effect on the 

behaviour of an agent and other agents at time t+1. The model therefore presents a dynamical 



 

 

systems approach to the emergence of human behaviour, where the unit of study is a tightly 

coupled human-environment system – a dynamical system which evolves over time and can 

behave in nonlinear ways due to positive feedback-loops. 

 

Emergence.  

The model produces a complex and dynamical system which exhibits several kinds of emergent 

behaviour. 

Firstly, the model displays nonlinearities in the development of behavioural cultures (collective 

behaviour habits). The behaviour of the agents in the network can be steady for long periods 

of time, only to be followed by abrupt phase transitions into new states (this is illustrated in 

more detail in the Results section of the manuscript).  

Second, the model illustrates how two different behavioural cultures can emerge from the same 

environment, and even in the same social network. This is a macro-level pattern that is known 

(from studies of cultural evolution) to occur in real-world societies 20. 

Third, the model has several leverage points. For instance, a small change (e.g., 5–10%) in the 

initial composition of affordances in the landscape can have radical effects on the evolution of 

the behavioural cultures. Thus, in a way which is typical to complex emergent systems, the 

model is sensitive to initial conditions, which makes its evolution difficult to predict at certain 

parameter ranges. 

Fourth, whilst the model always starts with a random composition of the affordance landscape, 

this landscape gets more structured over time as individuals construct the niche around them. 

 

 



 

 

Adaptation.  

Through processes of individual and social learning, agents adapt their personal states to their 

behaviour and to their immediate social environment. Moreover, agents construct their 

environment to be more predictable by constructing niches which are in line with past 

behaviour. 

 

Objectives.  

Agents engage in active attempts to behave successfully (actualize an affordance) and to create 

an environment where past behaviour patterns are increasingly more likely. 

 

Learning.  

The model includes two learning processes, individual and social learning. Individual (asocial) 

learning occurs after behaviour and affects only the agent who behaved. Individual learning is 

thus a product of individual behaviour. Social learning occurs in the social network an agent is 

embedded in. 

The rates of individual and social learning depend on the chosen representation of behaviours 

and time-units. Realistic rates of individual and social learning are therefore difficult to specify. 

However, by studying real-world patterns, it might be possible to infer reasonably accurate 

rates of social and individual learning (see section Empirical Validation of the manuscript). 

 

Prediction.  

Agents do not estimate future conditions or consequences of their decisions. 



 

 

Sensing.  

Agents sense the (colour of the) patch they are currently on as well as their network neighbours 

and neighbours’ behaviour. Agents also sense their physical vicinity, i.e. the patches in their 

Moore neighbourhood (the 8 patches surrounding the patch they are currently on). 

 

Interaction.  

After behaving, agents interact with their network neighbours. This involves both influencing 

the network neighbours as well as being influenced by each network neighbour (both defined 

by the rate of social-learning). Niche construction also influences the behaviour of other 

agents, and is thus an indirect form of social interaction. 

 

Stochasticity.  

The following processes rely on random sampling: 

The initial personal states of agents are sampled from a normal distribution (see section 2 of 

ODD protocol above). The initial configuration of affordances on the grid is random (the 

proportion of pro-environmental affordances, however, is fixed by the parameter pro-amount). 

The movement of agents on the grid is a random walk through the landscape of affordances. 

Each instance of behaviour and niche construction makes use of a floating random number 

generator. The model supports the use of a fixed random seed for replicability (if random-seed? 

is TRUE, a random seed can be fixed with the rseed parameter). 

  

 



 

 

Collectives.  

Individuals belong to a social network and construct their niche, as defined above. Individuals 

take part in shaping the collective network and niche which, in turn, shapes their behaviour.  

 

Observation.  

Observation generally involves tracking mean or specific values over time. The most relevant 

variables are the global variables pro-behavior and non-behavior, which track the total amount 

of pro-environmental and non-environmental behaviour during each tick. 

Parameter sweeps are conducted via NetLogo’s native BehaviorSpace tool. 

 

5. Initialization 

The initialization of the model is allowed to vary among simulations. Since many values, such 

as the personal states of agents, are randomly sampled, each model run will differ from the next 

even when run with the same parameter values. 

However, the model supports the use of a fixed random seed for replicability (if random-seed? 

is TRUE, a random seed can be fixed with the rseed parameter). 

The initial state of the model at t = 0 will depend on the parameters initial-pro, initial-non, 

pro-amount and the network parameters (networks, network-type) as defined above. 

In the abstract version of the model, the initial states are arbitrary. The abstract model can be 

used to study the dynamics and sensitivities of the model’s general structure.  



 

 

In empirical validation, the initial states of the model are tuned to reproduce real-world 

patterns, or the cycling and driving habits of people in central Copenhagen. 

 

6. Input data 

The model does not use input from external sources such as data files or other models. 

 

7. Submodels 

In the following, the processes mentioned in Process overview and scheduling (above) are 

described in more detail in pseudocode, flowcharts (UML diagrams) and natural language. 

Pseudocode is written by editing NetLogo code to resemble natural language. Whilst the 

descriptions below are comprehensive, please also refer to the fully annotated model code for 

details. The following section documents the SETUP submodels (Social network, Personal 

states and Affordances) and the GO submodels (Behavior and Mutate). Behavior includes 

descriptions of the processes of individual learning, niche construction and social learning. 

 

SETUP 

Social network 

Since fully a full description of the Klemm-Eguíluz model would require a chapter-length 

analysis, we refer the reader to Caparrini’s Complex Networks Toolbox 18 for a description of 

the Klemm-Eguíluz small-world-scale-free network (we adapted, with permission, Caparrini’s 

code for the present model). A full pseudocode description of the Klemm-Eguíluz model is 

openly accessible in Prettejohn, Berryman and McDonnell’s 19 chapter ‘3.4 Klemm and Eguílez 



 

 

Small-World-Scale-Free Network’. A full mathematical description of the model is also 

available in Klemm-Eguíluz’ original work 17. 

 

Personal states 

Personal states are created in the model setup. In pseudocode, 

to set personal states  

for each turtle in the list of all turtles [  

Set pro-env: sample a random value from a normal distribution with 

mean of initial-pro and a standard deviation of 0.15. 

Set non-env: sample a random value from a normal distribution with 

mean of initial-non and a standard deviation of 0.15. 

Set lower-bound: Set a lower bound for non-env and pro-env from a 

random normal distribution with mean 0.2 and SD 0.05. 

Set upper-bound: Set an upper bound for non-env and pro-env from a 

random normal distribution with mean 0.8 and SD 0.05  

] 

end 

 

Affordances 

Affordances are patches-own variables. Affordances are created with the following procedure 

(pseudocode): 

to create affordances  

let total-patches be total count of patches 

  ask all patches [ 

   set affordance to 0 ;; non-evironmental affordance 



 

 

set color to sky-blue ] 

  ask n-of (total-patches * pro-amount) patches [  

     set affordance to 1 ;; pro-environmental affordance 

set color to violet] 

end 

 

GO 

The go-procedure begins with each agent resetting their global pro-behavior and non-behavior 

variables to 0 (these global variables measure the total pro- and non-environmental behaviours 

of all agents at the end of each tick). Then, agents set their behaved? variable (turtles-own 

variable) to FALSE. The behaved? variable ensures that each agent behaves (either pro- or 

non-environmentally) only once during a tick. After this, agents behave. 

 

Figure S5. Go procedure, activity diagram (UML). 

 

 

Behavior 

This submodel is the heart of the model. It defines how agents interact with the environment 

and other agents. Since the procedure is identical for both pro-environmental and non-

environmental behaviours, only pro-environmental behaviour is described here. To implement 

non-environmental behaviour, simply duplicate the code and replace ‘pro-environmental’ 



 

 

(value 1) patch with ‘non-environmental’ (value 0), ‘violet’ with ‘sky-blue’, and pro-env with 

non-env (and vice versa, non-env with pro-env). The processes of habituation, niche 

construction and social learning are included in this submodel, and are described below in 

pseudocode. 

 

to behave 

  while behaved? is FALSE [ ;; Start of while-loop 

if the patch the agent is currently on is pro-environmental 

and random-floating number in range [0,1] is smaller than  

pro-env [ 

;; Engage in individual learning 

set pro-env to (pro-env + asocial-learning) 

set non-env to (non-env - asocial-learning) 

     set pro-behavior to (pro-behavior + 1) 

set behaved? to TRUE  

;; And still complete the following commands (we are still in the 

while-loop) 

 

;; Engage in niche construction 

if niche-construction is TRUE [ 

if random-floating number in range [0,1] is smaller than 

(construct-pro / number-of-agents) [ 

        ask one-of patches in Moore neighborhood [ 

set affordance to 1 

set color to violet ] 

       ]     

] 



 

 

 

;; Engage in social learning 

if networks is TRUE [ 

      ask link-neighbors [ 

        set pro-env to (pro-env + social-learning) 

        set non-env to (non-env - social-learning) 

   ] 

  ] 

] 

 

;; Set bounds for pro-env and non-env 

if pro-env > upper-bound [set pro-env to upper-bound] 

if non-env < lower-bound [set non-env to lower-bound] 

if non-env > upper-bound  [set non-env to upper-bound] 

if pro-env < lower-bound [set pro-env to lower-bound] 

 

;; Finally, move. 

turn right randomly up to 45 degrees 

turn left randomly up to 45 degrees 

move one step forward 

] ;; End of while-loop, and end the behave procedure 

end 

 

  



 

 

Mutate 

to mutate 

if mutate-on? = TRUE [ 

let mutate-probability 0.005 

let mutate-rate 0.05 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set pro-env to (pro-env + mutate-rate)]] 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set non-env to (non-env - mutate-rate) ]]  

;; ...and so on for all four possible configurations (mutation is 

not biased to any direction.) 

if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set non-env to (non-env + mutate-rate) ]] 

  if random-floating number in range [0,1] is smaller than mutate-

probability [ 

    ask turtles [ set pro-env to (pro-env - mutate-rate) ]] 

] 

end 

 



 

 

Figure S6. The ‘behave’ submodel, activity diagram (UML). 

  



 

 

Sensitivity Analysis 

Local Sensitivity Analysis: OFAT Testing 

We begin by testing our model’s sensitivities based on one-factor-at-a-time (OFAT) sensitivity 

analysis. OFAT sensitivity analysis ‘consists of selecting a base parameter setting (nominal 

set) and varying one parameter at a time while keeping all other parameters fixed’ 21.  It is 

therefore referred to as a local sensitivity analysis method. For local sensitivity testing, we use 

the parameter values as defined by Table S3 (the abstract model run), since its output is 

arguably more intuitive to understand (than the parameter values used for empirical validation), 

and it is much less computationally demanding. For data visualisation, we use raincloud plots 

22, which illustrate the distribution of data points (in this case, the proportion of pro-

environmental behaviour at the final timestep, 2000) and a boxplot with medians and ± 1 

standard deviations. Since the mechanism for initial-pro and initial-non, as well as construct-

pro and construct-non, are identical, only the pro-environmental variants of these parameters 

are analysed. This produces a total of 7 plots, shown below. 

  



 

 

Figure S7. Sensitivity test 1. The model is especially sensitive to the initial proportion 

of pro-environmental affordances. This is, however, expected on the basis of results such 

as Figures 2A and 2B. At extreme values such as when pro-amount is larger than 0.75, 

most agents will behave pro-environmentally.  

 

Figure S8. Sensitivity test 2. The model is particularly robust against changes in the rate 

of individual (asocial) learning. 

 

  



 

 

Figure S9. Sensitivity test 3. Higher rates of pro-environmental niche construction will 

lead to more extreme results in the adoption of pro-environmental behaviour.  This effect 

was also seen and explained in the Results section of the present manuscript. 

 

Figure S10. Sensitivity test 4. The network density (minimum degree of connection, or 

m0 in the Klemm-Eguíluz model) has a notable effect on outcomes in pro -environmental 

behaviours. The reasoning is intuitive: When networks are denser, more social learning 

and transmission occurs, which leads to more polarized end results  as the society of 

agents converges into a uniform behavioural unit or culture (notice how the density 

distribution of degree connection 20 approaches what seems like a bimodal distribution) .  

 

  



 

 

Figure S11. Sensitivity test 5. Importantly, the model is robust against the total number 

of agents. Due to computational constraints, we do not run the model with over 1000 

agents. When the model has over 100 agents, the results are similar. The default value 

for number-of-agents, 300, can thus be justified. 

 

Figure S12. Sensitivity test 6. The effect of initial pro-environmental personal states on 

the outcome of the model is considerable, and similar in logic to the initial composition 

of affordances (Figure S7). Notice, however, that in global sensitivity testing, this effect 

is shown to be less robust when other parameters are allowed to vary.  

 

  



 

 

Figure S13. Sensitivity test 7. Similarly to Figure S10 (network density), the rate of 

social learning has a considerable effect on model outcomes, particularly at extreme 

values (i.e., ten- or twentyfold to the rate used in the Results section) . The model is quite 

robust against more moderate changes in the rate of social learning.  Again, the reasoning 

is intuitive: The more the rate of social learning is increased, the more social 

transmission occurs, which leads to more polarized end results as  the society of agents 

converges into a uniform behavioural unit or culture.  

 

 

Global sensitivity analysis: Latin hypercube sampling 

We use Latin hypercube sampling (LHS) as our method for global sensitivity analysis. LHS 

ensures that each of the model’s input variables have all portions of their distribution 

represented by input values 23. LHS is simply a K-dimensional extension of Latin square 

sampling (ibid.), and is commonly used for global sensitivity testing 24. See e.g. 24 or 23 for 

more details on LHS. We use the R package nlrx 11 to generate our Latin hypercube samples. 

We sample our input values from the ranges specified in Table S1. The values were selected 

on the basis of the OFAT sensitivity tests. We excluded extreme parameter values (which 

would lead to very predictable and extreme model results, such as when pro-amount is close to 

1), but still allow the model to run on a wide range of input values. 

  



 

 

Table S1. Parameter ranges for global sensitivity analysis.  

Model parameter Range 

number-of-agents [100, 1000] 

social-learning [0.0002, 0.0008] 

asocial-learning [0.0002, 0.0008] 

pro-amount [0.33, 0.66] 

initial-pro [0.33, 0.66] 

initial-non [0.33, 0.66] 

construct-non [0, 10] 

construct-pro [0, 10] 

network-param [3, 7] 

mu 0.9 

 

 

Figure S14. Sensitivity test 8. 300 parameter sets are sampled from the ranges specified 

in Table S1. The model is run 5 times on each parameter sample, with a different random 

seed. The lines in this plot illustrate the range of the outcomes of each parameter sample, 

from min value to max value. Overall, the model has a clear tendency of converging to 

a state of either high or low pro-environmental behaviour.  This is unsurprising, given 

the results seen in Figures 2–4.  This effect will be less drastic if the model is run for 

less than 2000 ticks or if the range of parameters such as pro -amount is decreased. 

 

  



 

 

Figure S15. Sensitivity test 9. Even when all other parameters are allowed to vary freely, 

the nonlinear effect of pro-environmental affordances on pro-environmental behaviour 

remains. This figure therefore illustrates that the phase transition effect seen in Figures 

2A and 2B is very robust. 

 

Figure S16. Sensitivity test 10. When other parameters are allowed to vary, initial -pro 

(the mean initial pro-environmental personal state) has a less apparent effect on 

behaviours than seen in Figure S12 (where an OFAT test was run on initial -pro). Notice 

how initial pro-environmental personal states often do not translate into sustained pro-

environmental behaviour (highlighted by the red box). This is most likely because of 

either a lack of pro-environmental affordances, or the interference of a high initial -non 

value (i.e., counteracting personal states). 
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Supplemental Figures 

Figure S17. A screenshot of the spatially explicit NetLogo model. Here, 100 agents 

(circle-shapes) are connected to each other in a Klemm-Eguíluz network. Agents 

coloured in black are more pro-environmentally than non-environmentally disposed, and 

vice versa for agents coloured in red . The network is represented with grey links 

connecting the agents. Notice how some agents are much more connected than others. 

The environment consists of two kinds of patches, pro -environmental affordances 

(violet) and non-environmental affordances (sky-blue). Agents move around the grid in 

a random walk. The torus-shaped world wraps around horizontally and vertically.  

 

 

  



 

 

Supplemental Tables 

Table S2. Parameters. The model’s parameters, descriptions of parameters , and ranges 

of possible parameter values.  

Model parameter Description Possible range 

number-of-agents Total number of agents. [1, 1000] 

social-learning Rate of social transmission of 

behaviour. 

[0, 1] 

asocial-learning Rate of individual learning and 

habituation. 

[0, 1] 

pro-amount Initial proportion of pro-

environmental affordances in 

the landscape of affordances. 

[0, 1] 

initial-pro Defines the initial pro-

environmental personal state, 

pro-env, which is the 

probability of interacting with 

pro-environmental affordances 

when encountered. 

[0, 1] 

initial-non Defines the initial non-

environmental personal state, 

non-env, which is the 

probability of interacting with 

non-environmental affordances 

when encountered. 

[0, 1] 

construct-non Probability of constructing a 

non-environmental affordance. 

[0, number-of-agents] 

construct-pro Probability of constructing a 

pro-environmental affordance. 

[0, number-of-agents] 

network-param m0 in the Klemm-Eguíluz 

model 17. Defines the initial 

complete graph in the network 

generating algorithm. 

[1, number-of-agents] 

mu μ in the Klemm-Eguíluz model 
17. Probability of connecting 

with low degree nodes. Alters 

the clustering coefficient of the 

network. 18  

[0, 1] 

 

 

 

 



 

 

Table S3. Parameter values for the abstract model run.  

Model parameter Value 

number-of-agents 300 

social-learning 0.00007 

asocial-learning 0.00005 

pro-amount [0, 1] 

initial-pro 0.5 

initial-non 0.5 

construct-non 0 or 10 

construct-pro 0 or 10 

network-param 5 

mu 0.9 

 

 

 

Table S4. Parameter values for the Copenhagen simulation.  

Model parameter Value 

number-of-agents 300 

social-learning 0.00007 

asocial-learning 0.00005 

pro-amount 0.4 

initial-pro 0.2 

initial-non 0.8 

construct-non 0 

construct-pro 5 

network-param 5 

mu 0.9 

 


