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The global expansion of cropland exerts substantial pressure on natural ecosystems and is expected to 14 
continue with population growth and affluent demand. Yet, earlier studies indicated that crop 15 
production could be more than doubled if attainable crop yields were achieved on present cropland. 16 
Here we show based on crop modelling that closing current yield gaps by spatially optimizing fertilizer 17 
inputs and allocation of 16 major crops across global cropland would allow to reduce the cropland area 18 
required to maintain present production volumes by nearly 50% of its current extent. Enforcing a 19 
scenario abandoning cropland in biodiversity hotspots and uniformly releasing 20% of cropland area for 20 
other landscape elements, still enabled reducing the cropland requirement by almost 40%. As a co-21 
benefit, greenhouse gas emissions from fertilizer and paddy rice, as well as irrigation water 22 
requirements are likely to decrease with reduced area of cultivated land, while global fertilizer input 23 
requirements remain unchanged. Spared cropland would provide space for substantial carbon 24 
sequestration in restored natural vegetation. Only targeted sparing of biodiversity hotspots supports 25 
species with small-range habitats, while biodiversity would hardly profit from a maximum land sparing 26 
approach. 27 

Globally, agricultural activity and the continuous expansion of croplands impose wide-ranging 28 
environmental burdens on natural ecosystems. Intensively managed cropland is characterized by 29 
excessive and imbalanced applications of N and P, whereas low-input agricultural systems result in 30 
nutrient-poor soils and low yields1,2. Globally, freshwater use in agricultural irrigation consumes about 31 
70% of total water withdrawals3, and cropland farming contributes about 5% of global anthropogenic 32 
GHG emissions, mainly through emissions of paddy rice methane (CH4) and soil nitrous oxide (N2O) from 33 
added mineral N fertilizer and manure4. Biodiversity loss is challenging to quantify, but estimated to 34 
exceed safe boundaries, primarily due to habitat loss5. Most recently, the land sparing debate6–9 has 35 
gained new momentum from the Half Earth project10 that aims to return half the area of land under 36 
anthropogenic management to natural land cover to restrict biodiversity losses and abate other 37 
externalities of anthropogenic land use6. The need for this type of strategy is even more urgent, given 38 
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the increasing global demand for agricultural products11,12. Yet, biophysical benchmarks for ambitious 39 
land sparing targets and associated externalities remain virtually unknown. 40 

Earlier studies have suggested that cropland will likely further expand in the future due to population 41 
growth and climate change13, while effective cropland sparing would need to involve measures such as 42 
dietary change to reduce crop demand14–16. In contrast, global nutrient input intensification, crop 43 
switching, and expansion of irrigated land may increase global crop production volumes by up to 150% 44 
for major crops17–21 depending on whether and how these strategies are combined. Intensification has 45 
also been identified in conceptual and semi-quantitative studies as a promising strategy for the 46 
abatement of land conversion, expansion of natural land cover7,8,22, and reduction of environmental 47 
impacts, depending on management specifics23. However, while average yields for major crops have 48 
been increasing globally during the past decades, they have stagnated or decreased in various parts of 49 
the world and the present pace in yield gains is considered insufficient to meet future crop demand24. 50 
Persisting global yield gaps in major crops have been attributed foremost to nutrient deficits and to a 51 
lesser extent to insufficient water supply19. 52 

Estimation of global cropland requirement 53 

In this study, we quantified the potential of land sparing through intensification of nutrient inputs to 54 
meet plant requirements and optimal spatial allocation of 16 major crops to estimate a lower boundary 55 
of cropland requirement for meeting present crop demands (Figure 1). We used the established global 56 
gridded crop model EPIC-IIASA17 to estimate non-nutrient limited crop yields, with and without sufficient 57 
irrigation water supply, depending on land use information to avoid expansion of irrigated land. EPIC-58 
IIASA combines the process-based agronomic model Environmental Policy Integrated Climate25,26 (EPIC) 59 
with a global data infrastructure gridded at 5’ x 5’ resolution. The 5 arcmin grid cells with identical soil 60 
texture and topography classes and located within the same 30’ x 30’ climate grid and administrative 61 
region were aggregated to simulations units. The resulting 120000 simulation units thus vary in size from 62 
5’ x 5’ to 30’ x 30’ or total corresponding surface areas from 69 to 2500 km2 near the equator depending 63 
on input data heterogeneity (Supplementary Figure 19; Supplementary Text 2). Maps of present 64 
cropland were aggregated from 5’ x 5’ source data to the same spatial scale of simulation units to 65 
provide consistent input data on area and crop yields for the cropland allocation model.  66 

Crop distributions were spatially allocated using a linear optimization algorithm under three simple 67 
criteria that comprised minimizing the extent of current global cropland; maintaining 2011-2015 global 68 
production volumes for each crop; and avoiding novel expansion of cropland locally. This was done (I) 69 
allowing the full use of the current cropland in each simulation unit to create a global “maximum land 70 
sparing” (MLS) scenario or (II) with a complete release of annual cropland in biodiversity hotspots and a 71 
forced release of at least 20% of cropland area in each simulation unit to create a “targeted land 72 
sparing” (TLS) scenario. The first serves for providing a benchmark of what extent of land sparing is 73 
technically feasible given present agricultural technologies. The latter provides a benchmark for a global 74 
scenario focused on habitat restoration for threatened species in hotspots combined with the 75 
establishment of uniformly distributed landscape compartments as wildlife habitats27 or buffers for 76 
adverse impacts of high-input agriculture28. Two supplementary scenarios serve for assessing how 77 
constraining crop distributions to their present growing regions (scenario MLSncs) or allowing crops to 78 
cover a maximum of 34% cropland in a simulation unit – indirectly increasing crop diversity locally - 79 
(scenario MLSwcd) affect results in the MLS scenario. As such, these scenarios are hypothetical, leaving 80 
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aside policy- and socio-economic implications, but they can nonetheless inform decision-makers about 81 
the biophysical feasibility of ambitious land sparing targets. While the focus of our analysis is on 82 
cropland sparing potential, we also quantified, based on model results directly or auxiliary datasets, 83 
changes in requirements for N and P fertilizer and irrigation water; selected GHG emissions; carbon (C) 84 
storage in resultant, expanded areas of natural vegetation; and potential increase in natural habitats for 85 
wildlife. Further details are provided in the Methods section. 86 

Global cropland sparing potential and spatial patterns 87 

Intensification and optimal crop reallocation under the MLS scenario decreased the cropland 88 
requirement to nearly 50% of the baseline for all crops and to 46% for the 16 selected crops (Figure 2). 89 
The greatest sparing potential was for typical smallholder crops, such as sorghum and pulses, with >80% 90 
of land released (Supplementary Table 1). Lower land gains (<50%) were estimated on the other hand 91 
for crops for which production tends to be highly intensified, such as maize, rice, soybean, wheat, and 92 
sugar crops. The TLS scenario also reduced cropland area to remaining 62% of the baseline, indicating 93 
that radical reductions in cropland area are not restricted to a narrow set of solutions, and high yields 94 
may be sustained across large regions for most crops. Results were highly comparable for a wider range 95 
of land use and attainable crop yield datasets, showing that our estimates are robust within the limits of 96 
available data (Supplementary Text 1 and Supplementary Text 2).  97 

Contiguous regions of cropland release in the MLS scenario are primarily located in agro-climatically 98 
unfavourable regions, such as the Western USA, Central Asia, and Sahel, but also in productive regions 99 
such as large parts of South Asia and in southern Russia (Figure 3b). Despite local concentrations of 100 
cropland in most productive areas, patterns of total fresh matter production volumes per continent 101 
remained comparable to the baseline with substantial and moderate gains in Africa and Asia at the cost 102 
of Europe and especially America (Supplementary Figure 4). The TLS scenario resulted in a wider 103 
distribution of cropland (Figure 3c), which is mostly driven by implicit cropland release in this scenario 104 
(Supplementary Figure 5). About 20% global annual cropland were released in biodiversity hotspots and 105 
globally uniform a minimum of 20% in the remainder of the cropland area (corresponding to 17% of 106 
global annual cropland). This left only a minor fraction of areas released subject to land use efficiency 107 
gains. These were again mostly located in agro-climatically adverse regions such as desert borders. 108 

Drawbacks of and barriers to cropland sparing and concentration 109 

The release of cropland over large contiguous regions in both scenarios may entail substantial socio-110 
economic implications with respect to livelihoods, as shown also in recent research on global 111 
conservation targets29, and may affect regional food self-sufficiency. Yet, the fact that patterns of 112 
cropland release are largely contrasting among the two scenarios indicates that a mixed approach, 113 
including the sparing of cropland in biodiversity hotspots only to the degree necessary for maintaining 114 
wildlife habitats, could be implemented to balance socio-economic trade-offs with land sparing benefits 115 
among regions. Comprehensive global research on social acceptance for land sparing is lacking and 116 
certainly context-dependent. Conceptual studies suggest a range of policy measures from financial 117 
compensation for abandoned cropland to payments for restored vegetation management and further 118 
knowledge transfer and infrastructure for improved crop management to steer policy implementations 119 
of intensification for cropland sparing8. Notwithstanding, the reconciliation of global targets with local 120 
and regional stakeholder demands will require holistic approaches bridging these scales, which likely 121 



4 
 

poses the greatest challenge in achieving effective global land sparing30,31. And any further 122 
concentration of crop production will increase the already extensive reliance of large parts of the world 123 
on food imports, amplifying the requirement for resilient global trade systems32. 124 

Spatial shifts in crop cultivation areas are a constant process33 and have been subject to disruptive 125 
regime shifts for specific crops and regions in the past34. Both do not necessarily follow patterns of 126 
domestic demand but serve often for income generation and diversification35. However, the adoption of 127 
new crops or farming practices in general requires more information and policy interventions in regions 128 
in which they are not practiced so far. Analysing the spatial occurrence of crops in both scenarios herein 129 
reveals that <20% of resulting cropland area are occupied by crops in simulation units in which they are 130 
presently not grown, and <1% in major Koeppen-Geiger climate regions and countries in which the 131 
respective crops are presently not cultivated (not shown). Constraining the cropland allocation model to 132 
only assign crops in the MLS scenario to simulation units in which they are presently cultivated while 133 
allowing their local acreage to change (supplementary scenario MLSncs) results in 1% lower land sparing 134 
potential (Supplementary Figure 6). This indicates that the free shifting of crops is not a key mechanism 135 
behind our findings and that crops are already cultivated in regions in which they are or can be most 136 
productive. Yet, areas of crops presently cultivated for cultural and historic reasons may be given up in 137 
the model. In this context, it needs to be stressed that our study aims to provide information on the 138 
cropland that is essentially required to meet present demand and should not suggest to abandon 139 
agriculture in places in which it provides important local cultural and social services. 140 

Furthermore, optimizing cropland distribution based on land use efficiency may result in wide-spread 141 
monocropping systems with higher vulnerability to biotic and abiotic stressors, high requirement for 142 
pest control agents, and little provision of on-farm biodiversity. To address the impact of enforcing crop 143 
diversity on cropland sparing potential, we evaluated a supplementary scenario allowing only up to 34% 144 
of each simulation unit to be covered by a specific crop in the MLS scenario (supplementary scenario 145 
MLSwcd). This reduces the cropland sparing potential by 5% relative to the present extent 146 
(Supplementary Figure 6) while resulting in the co-occurrence of 2-3 crops in most simulation units 147 
(Supplementary Figure 8). The concurrence of several crops translates into the feasibility of inter-annual 148 
crop rotations, which are a key measure for integrated crop protection36. Due to the capped area share 149 
of single crops, simulation units with only one or two crops attributed can similarly implement rotating 150 
inter-annual fallows. This supplementary scenario also results in higher crop diversity at the continental 151 
scale, especially in Europe, compared to the other land sparing scenarios (c.f. Supplementary Figure 7 152 
and Supplementary Figure 4). 153 

Associated changes in externalities 154 

Reductions in cropland area, combined with optimal N and P fertilization, may reduce or at least not 155 
exacerbate major agricultural input requirements and externalities globally (Figure 4). We found that 156 
total N and P application would increase by only 6% in the MLS scenario, and decrease by 1-4% in the 157 
TLS scenario. This includes the presently inevitable prevalence of substantial nutrient losses such as 158 
leaching and erosion. Our results confirm that current excessive and imbalanced nutrient supply 159 
outweigh soil nutrient mining2 and that the reduction in area of nutrient-mined soils, which can be 160 
expected to increase the exogenous nutrient demands for closing yield gaps in our scenarios, can be 161 
compensated by reduced applications of N and P tailored to meet crop demands in areas of presently 162 
excessive fertilization (Supplementary Text 3). Yet, locally, foremost N and partly P surpluses may well 163 
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exceed those reported for around the year 2000, depending on which input sources are considered 164 
(Supplementary Figure 11). Especially the MLS scenario results in a shift towards higher local N surpluses 165 
per area whereas the TLS scenario closely resembles past patterns of conservative estimates neglecting 166 
inputs form manure, deposition, and biological fixation. For the TLS scenario, low P surpluses occur 167 
more frequently, in part due to the larger extent of remaining cropland compared to the MLS scenario, 168 
which again exhibits a more frequent occurrence of moderate to high surpluses. Notably, the latter is 169 
also caused by a larger fraction of cropland remaining in tropic regions in which weathered soils with 170 
high P fixation occur more frequently37. 171 

Crop water requirement from irrigation decreased under the MLS scenario by 380 km3 to 65% of the 172 
baseline (approx. 1100 km3), and under the TLS scenario by 218 km3 to 78% of the baseline, precluding 173 
losses within the irrigation system that exceed the actual global crop water requirement38. Water 174 
requirements vary with crop3, climate, and land surface extent39; hence the reduction in cropland area is 175 
a main driver of reduced irrigation volume. Thus, cropland sparing does not necessarily entail expansion 176 
of irrigation infrastructures if yields in rainfed regions are maximized by optimal fertilization and crop 177 
choice. This is consistent with earlier global and regional studies finding nutrient limitations to be a 178 
substantially more important driver for current yield gaps than irrigation19,40. 179 

Greenhouse gas emissions from paddy rice and fertilized soils decreased to 87% and 82% (-0.15 and -180 
0.21 Pg CO2 equiv.) of the baseline in the MLS and TLS scenario, respectively. As N application remains 181 
fairly constant, this is mostly caused by the decrease of CH4 emissions from the reduced cultivation area 182 
for rice. Carbon (C) lost from potential natural vegetation is used as a proxy for C sequestration 183 
potential, if natural vegetation on spared cropland fully recovers. The largest C storage capacity occurs 184 
in tropical ecosystems, the lowest in arid climates41. Accordingly, the proportion of cropland remaining 185 
in the tropics under the MLS scenario (Figure 3b) resulted with 29% avoided loss of C from natural 186 
vegetation on present cropland in a proportionally low sequestration potential. However, this 187 
sequestration potential is equivalent to 20.5 Pg C, underpinning that land sparing for vegetation 188 
restoration may halt further deforestation that is a major contributor to global CO2 emissions. The 189 
amount of C sequestration potential is higher in the TLS scenario, as major biodiversity hotspots are 190 
located in the tropics (Supplementary Figure 16). This increases the C sequestration potential to 24.2 Pg 191 
C.  192 

The habitat suited mammal species with restricted ranges and intolerant to cropland (n=716) in 193 
presently cultivated regions increases substantially in the TLS scenario (+12.8%) but only marginally in 194 
the MLS scenario (+2.6%). When considering all species of terrestrial mammals occurring in present 195 
cropland regions (n=3922), the average gains decrease to 7.6% under the TLS scenario and increase to 196 
4.9% in the MLS scenario (see Supplementary Figure 17 for results on various species groups). The effect 197 
in the TLS scenario is partly attributable to the sparing of cropland specifically for small-range species. 198 
The modest gain in average habitat for all terrestrial mammals in the MLS scenario in turn reflects that 199 
cropland presently covers about 10% of the global ice-free land surface and therefore only a comparably 200 
small fraction of actual and potential natural vegetation. Thus, our results underpin that land sparing is 201 
most effective if pursued in a targeted way and focused on species strongly affected by conversion of 202 
natural vegetation to cropland. 203 

Our assessment of potential biodiversity impacts quantifies changes in suitable habitat area for species 204 
intolerant to cropland, a time-independent indicator free of assumptions on population dynamics and 205 



6 
 

applicable for a wide range of species42,43. Yet, this neglects potential impacts of intensification on 206 
biodiversity in situ on cropland. The bulk of empirical studies on species density-crop yield relationships 207 
found that these follow a negatively convex functional form for species sensitive to cropland with 208 
rapidly decreasing species density already at low yields44. This favours land sparing as a conservation 209 
strategy opposed to land sharing or wildlife-friendly farming. The abundance of species tolerant to 210 
cropland in turn may depend on multiple factors such as crop diversity and field configuration, nutrient 211 
inputs, pesticide applications, small-scale landscape configuration, and species’ sensitivities to these 212 
aspects45. Due to lack of data and granular spatial resolutions, these aspects cannot be addressed herein 213 
and hardly in global studies at present. Indications that substantial land sparing can be achieved with 214 
sustainable intensification in some regions but less so in others is provided in the evaluation of crop 215 
diversity and nutrient budgets above. Yet, local assessments employing detailed species- and 216 
ecosystem-specific knowledge will be required to explicitly quantify such effects. 217 

In summary, both land sparing scenarios entail various co-benefits along agro-environmental 218 
dimensions. Thereby, the targeted land sparing approach not only allows for the implicitly higher habitat 219 
restoration potential, but also lower nutrient requirements and higher C sequestration potential, 220 
although differences between scenarios are often marginal. As all modelling studies, our findings are 221 
subject to a range of uncertainties and limitations, which we consider to render our results conservative 222 
rather than overly optimistic (Supplementary Text 3 and Supplementary Text 4). 223 

Conclusions and wider implications of extensive land sparing 224 

The potential for cropland sparing quantified herein contrasts with earlier agro-economic studies 225 
indicating that further cropland expansion is likely to occur in future decades13,46,47. Noteworthy, these 226 
forward-looking studies account for changes in climate and atmospheric CO2 concentration as well as 227 
socio-economic drivers and constraints, including diffusion rates for improved agricultural technologies, 228 
national agricultural policies, international trade relations, and future increases in demands, which limit 229 
their comparability to ours. Earlier studies exploring combinations of biophysical and socio-economic 230 
options for abating increasing land pressure of agricultural production already identified agro-231 
technologic change as an important element15,16 but presented compound scenarios that do not allow 232 
for quantifying the land sparing potential of optimal crop production and associated externalities 233 
directly. Quantifications of production potentials17–21 in turn do not consider actual crop demands and 234 
none of the mentioned studies covered targeted land sparing for wildlife habitats and other landscape 235 
elements. In this context, our results provide a benchmark of the present potential for cropland sparing 236 
if high land use efficiency was realized and if specific targets are defined for restoring wildlife habitats. 237 

The gap between the present extent of global cropland and the actual cropland requirement quantified 238 
herein indicates that at the global scale land management and associated policies, rather than 239 
biophysical limitations, are the major production-side drivers of adverse environmental change 240 
mediated by the expansion of cropland46. Thus, achieving ambitious land sparing targets in the near 241 
term will require radical acceleration in the dissemination of available agro-technologies as well as 242 
integration across society30 to avoid cropland expansion often caused by sole incentives for 243 
intensification7 while maintaining livelihoods of populations potentially affected by agricultural change. 244 
Globally coordinated efforts48 will be required to balance national interests concerning food security and 245 
agricultural revenues with global environmental targets.246 
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Methods and Data 247 

The study investigated global cropland sparing potential based on crop modelling of attainable yields for 248 
16 major crops, crop-specific land use datasets, and spatial optimization of cropland allocation (Figure 1) 249 
to minimize global cropland extent via maximizing land use efficiency, i.e. assigning the most productive 250 
crops to cropland locally. The considered crops represent 85% of global cropland cultivated with annual 251 
crops and sum up to more than 75% of total cropland area, vegetal calorie supply, and fertilizer 252 
consumption49. With the exceptions of cassava and sugarcane, we excluded perennial crops from our 253 
analyses, due to their low flexibility for crop switching and specific trajectories of yield improvement. 254 
Within the optimization algorithm, current crop-specific area may expand or shrink with the goal of 255 
minimizing global cropland extent, while maintaining defined crop-specific production volumes reported 256 
by FAO for 2011-201549 and without expanding total cropland extent locally. We opted for the most 257 
recent period for which data are available to account for contemporary increases in crop production. 258 
The five-year mean is a compromise between avoiding bias from selecting a single year and 259 
underestimating present production volumes when using a longer historical period. The study design is 260 
further detailed in Supplementary Methods 1 and visualized in Figure 1. 261 

Land sparing scenarios 262 

We evaluated cropland sparing potential for two distinct main scenarios: (i) the “maximum land sparing” 263 
(MLS) potential allowing the entire present cropland in each simulation unit or pixel to remain occupied 264 
after crop reallocation if it is a solution of the optimization, and (ii) a “targeted land sparing” (TLS) 265 
scenario. The latter forces the release of all cropland covered by the considered crops in biodiversity 266 
hotspots and a uniform release of at least 20% of present cropland cover by 16 major crops in each 267 
simulation unit or pixel. The latter fraction is considered to spare a compartment of the landscape for 268 
other, i.e. regenerative, uses. Herein, it is assumed to be covered by natural vegetation in the 269 
quantification of externalities (carbon sequestration and area of habitat), but may in principle also serve 270 
for buffer strips, windbreaks, or other landscape elements. 271 

Two supplementary scenarios based on the MLS scenario (Figure 1E) provide additional information (I) 272 
whether the cultivation of crops in regions in which their cultivation is presently not recorded plays a 273 
major role in the land sparing potential found herein, which is termed “MLS without crop switching” 274 
(MLSncs); and (II) if substantial cropland sparing is still feasible if single crops are allowed to only cover 275 
≤34% of cropland in each simulation unit, indirectly enforcing the occurrence of several crops in most 276 
simulation units and hence fostering crop diversity, which also enables crop rotations. This scenario is 277 
termed “MLS with crop diversity” (MLSwcd). 278 

Land use optimization approaches similar to the main scenarios have been studied earlier, but 279 
addressed global production potentials employing input intensification only19, crop switching only20,21, or 280 
both18, or investigated production potentials for single crops under climate change17. Land sparing 281 
potential of optimized cropland allocation has been addressed by Müller et al.50 among other aspects of 282 
crop production and consumption. Yet, constraints on available land for cropping per pixel were not 283 
considered below the physical pixel area, crop demands were partly computed, and intensification was 284 
not accounted for. 285 

Crop modelling framework 286 
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Crop simulations were performed for 16 major crops (Figure 2) with the well-established global gridded 287 
crop model (GGCM) EPIC-IIASA17, which is based on the field-scale process-based agronomic 288 
Environmental Policy Integrated Climate (EPIC) model25,26 (formerly known as Erosion Productivity 289 
Impact Calculator). EPIC-IIASA has been applied extensively in global impact studies and across regions, 290 
and has been evaluated positively for reproducing both historic absolute yields under business-as-usual 291 
management and inter-annual yield variability51–53. Simulated attainable crop yields were capped at the 292 
95th percentile globally to avoid bias towards extremely high yields in the crop-to-cropland allocation. 293 
Key processes of the core model EPIC are summarized in Folberth et al.54 and briefly described in 294 
Supplementary Methods 3.  295 

EPIC-IIASA is based on a 5 x 5’ grid (equivalent to about 8.3 km x 8.3 km near the equator) for soil 296 
characteristics55 and topography56 that are aggregated, based on classification of key characteristics, to 297 
homogenous response units. These are further intersected using a 30 x 30’ climate grid (about 50 km x 298 
50 km near the equator) and national administrative boundaries to define final simulation units57. 299 
Accordingly, simulation units vary in size from 5’ x 5’ to 30’ x 30’ depending on local heterogeneity. 300 
More detail on the definition of simulation units is provided in Supplementary Methods 2. The EPIC 301 
model was run for each simulation unit, crop, and water management system (rainfed or with sufficient 302 
irrigation) separately, treating it as a representative homogenous field. Climate data were based on the 303 
daily climate database AgMERRA58, specifically developed for agricultural applications, at a spatial 304 
resolution of 30’ x 30’. Crop-specific growing seasons were derived from Sacks et al.59. Supplementary 305 
Methods 2 provide further details on the EPIC-IIASA model. 306 

Data on multi-cropping are lacking at the global scale and are only reflected in reported harvest areas 307 
that partly exceed the physical area of cropland. As our focus was on physical cropland sparing, we 308 
focused our optimization on single cropping of physical cropland, disregarding potential multi-cropping 309 
and rotations. The exception was for rice cultivation: according to SPAM 2005 v3.260, total cropping 310 
intensity is about 115% for the considered crops, with single cropping dominant in most crops, but an 311 
intensity of 150% for rice. Therefore, rice was simulated for two seasons where suggested by calendar 312 
data, to minimize underestimation of rice double cropping. Yields for the two seasons were summed to 313 
treat double-cropped rice as a single crop in the estimation of physical area requirements. For the land 314 
use datasets referring to harvested area (see below), separate rice simulations were performed for a 315 
single season. A brief discussion of the potential impacts of multi-cropping is provided in Supplementary 316 
Text 4. 317 

Evaluation of attainable crop yields 318 

We evaluated simulated attainable yields against two widely used spatially explicit datasets, based on 319 
reported yields and extrapolation of (a) high-input rainfed and irrigated crop yields from SPAM 2005 320 
v3.260 and (b) attainable yields19 based on the M3 dataset19. Evaluations are presented in Supplementary 321 
Text 2 and Supplementary Figures 12 and 14. All three datasets (including the estimates from 322 
biophysical crop modelling) were derived using different methodologies; this limits comparability of 323 
yield distributions. It may be assumed, however, that our comparison allows for the evaluation of crop 324 
model overestimation of yield potentials. It should be noted that the yield category closest to attainable 325 
yields in SPAM reports rainfed, high-input yields, based on moderate to sufficient levels of nutrient 326 
input. Irrigated yields are a single category that may typically be assumed to receive high (unknown) 327 
levels of nutrient inputs. The attainable yields from M3 are based on spatially explicit reported yields c. 328 
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2000 from administrative level censuses and climate bins based on temperature and precipitation. For 329 
each of these climate bins, the upper 95th percentile of reported yields is assumed to represent the 330 
attainable yield. 331 

Cropland allocation model 332 

Spatially explicit cropland optimization was performed at the level of simulation units with the objective 333 
of minimizing global cropland requirement, but maintaining 2011-2015 production volumes for each 334 
crop49 (Figure 1). Reported production as a target accounts for any dietary and other use preferences as 335 
opposed to more aggregated approaches based on recommended supply levels or requirements. 336 

The main cropland dataset selected for the analysis was SPAM 2005 v3.2, because it provides crop-337 
specific physical areas. In contrast to other datasets that typically report either crop-specific harvested 338 
areas or total physical cropland, this dataset allows for the assessment of physical cropland sparing 339 
potential only for cropland cultivated with the crops included in this analysis. Robustness of our results 340 
was evaluated from the optimization of two additional crop-specific harvested area datasets (see 341 
below). 342 

The land use optimization model was programmed in GAMS software (https://gams.com/), where input 343 
data are yield potentials from either the EPIC crop model or inventory data (see below) and current 344 
crop-specific areas at the simulation unit level. Thresholds for uniform cropland release in the TLS 345 
scenario were defined by finding a minimal feasible solution in steps of 85%, 80%, 67%, and 50% for 346 
each attainable crop yield x cropland dataset combination. For the SPAM 2005 physical area dataset, 347 
this threshold was found to be 80% (or 20% of uniformly released land). 348 

The optimization problem is formulated as: 349 

minimize
௦೔ೕೖ

 ∑ 𝑎௜௝𝑠௜௝௞௜, ௝, ௞          (Eq. 1) 350 

s. t.  ∑ 𝑎௜௝𝑠௜௝௞𝑦௜௝௞ ≥ 𝑝௞ ,௜, ௝         (Eq. 2) 351 

∑ 𝑠௜௝௞ ≤  𝛼, 𝑠௜௝௞ ≥ 0.   ௞         (Eq. 3) 352 

 353 

where aij is current area of cropland [ha] occupied by the considered crops in simulation unit i under 354 
water supply type j; sijk is the respective share allocated to crop k to be optimized; yijk is the simulation 355 
unit-, irrigation type-, and crop-specific yield [t ha-1]; pk is current production23 of crop k [t]; α is the 356 
maximum allowed optimized cropland share within the considered simulation unit area, α = 1 for the 357 
maximum land sparing scenario, and in the targeted land sparing scenario α = 0.8 for SPAM 2005 358 
physical area, α = 0.85 for SPAM 2005 harvested area, MIRCA2000, and the M3 dataset. 359 

We performed optimizations for additional datasets and combinations thereof to account for 360 
uncertainties in cropland distribution61 and attainable yields. Crop model estimated attainable yields 361 
were combined with cropland distributions from SPAM 2005 v3.260 or MIRCA200062 that provide 362 
spatially explicit harvested areas for the considered crops, for rainfed and irrigated cultivation systems 363 
separately. We performed the same complementary optimization using a set of statistically derived 364 
attainable yields and corresponding areas from M319,63; this dataset does not distinguish between 365 
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rainfed and irrigated systems, so yields were not combined with the other land use datasets. As none of 366 
the spatial datasets provides the same crop-specific areas as FAOSTAT for the reference period 2011-367 
201523, crop areas from FAOSTAT were used as a basis from which to derive relative cropland area 368 
reduction, after an absolute number of cropland requirement had been obtained in the optimization 369 
routine. Accordingly, cropland areas in all spatial datasets underestimate present cropland, which 370 
increased for the considered crops by about 14% since 2000 (M3 and MIRCA2000 reference), and by 7% 371 
since 2005 (SPAM 2005 reference). Further limitations and uncertainties of the land sparing modelling 372 
and estimation of attainable yields are addressed in Supplementary Text 4. 373 

Definition of biodiversity hotspots 374 

Biodiversity hotspots were defined based on rarity-weighted richness as the sum of number of species 375 
present in a grid cell weighted by their range size (1/Area of Habitat (AOH))64. Higher values occur in grid 376 
cells rich in species with small ranges. These cells have a large global responsibility for species 377 
conservation. Rarity-weighted richness was quantified in absolute terms and in addition normalized per 378 
WWF ecoregion65 and continent to account for regions of (a) high absolute importance for biodiversity, 379 
which are typically concentrated in the tropics, and (b) regional importance for biodiversity within 380 
specific ecoregions42. From both resulting datasets, the 90th percentile was selected to be abandoned for 381 
targeted land sparing in the TLS scenario (Supplementary Figure 16). 382 

Quantification of agricultural externalities 383 

Crop nutrient requirements 384 

N, P, and irrigation water were applied by the EPIC model based on deficits compared with optimal 385 
supply and relative crop stress thresholds (see Supplementary Methods 2). The model considered losses 386 
(leaching, runoff, erosion, immobilization, and gaseous emissions) and limited the number of crop 387 
management operations to a level common to current management practices (annual application of P, 388 
and restricted number of applications for N and water within a given time period) to represent an 389 
optimal management strategy that balances realistic overheads for plant nutrient inputs. Fertilizer 390 
requirements for crops that were not considered in the optimization were derived from the proportions 391 
of crop-specific fertilizer application rates around 200019 to total fertilizer application volumes during 392 
the 2011-2015 reference period, as reported in FAOSTAT49. 393 

Besides exogenous inputs, nutrients used by crop plants are also sourced from soil stocks and 394 
mineralization of organic matter as well in the field as in the crop model. While these represent a 395 
substantial short-term source of nutrients, depletion occurs over time that may lead to the 396 
underestimation of fertilizer requirement. Amounts of N and P required for sustainable nutrient 397 
replenishment in such cases were estimated from a fertilizer requirement of 120% of crop uptake. For 398 
soils with high or very high P immobilization potential66, we ensured the fertilizer requirement was twice 399 
the crop uptake37. For leguminous crops (groundnuts, pulses, and soybean), we assumed that at yields 400 
>2.5 t ha-1, only 80% of N demand is met through fixation67, and added 20% of crop uptake as 401 
supplementary fertilizer. More details on the ex-post accounting for potentially higher nutrient 402 
requirements than estimated by the crop model are provided in Supplementary Methods 3. 403 

Nutrients in plant residues and manure 404 
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N and P embodied in removed crop residues (straw, stalks, stover) or burning of crop residues in the 405 
field were not modelled explicitly. To account for removal of N and P from the field as post-harvest 406 
residues in supplementary evaluations, we estimated crop residue dry matter from reference period 407 
crop production volumes23 and crop harvest indices in the EPIC model, and then calculated volumes of N 408 
and P based on the USDA crop nutrient tool68. National crop-specific residue removal and burning rates 409 
were obtained from a recent global report69 that covers all crops included in this study, with the 410 
exception of sugar beet, groundnut, pulses, millet, and rice. For the first four of these crops, we 411 
approximated values using coefficients of potato for sugar beet, soybean for groundnuts and pulses, and 412 
sorghum for millet. For countries lacking data, we applied a mean based on major UN regions. Data for 413 
rice were obtained from a recent literature review4. For burned residue, we assumed that 80% of N and 414 
40% of P are lost as emissions. Total removal from the field amounted to 19.6 Tg N and 2.2 Tg P, 415 
respectively. Fertilizer requirements were scaled according to a fertilizer:uptake ratio in crop yield, to 416 
account for additional losses due to increased fertilizer application. Present amounts of N and P 417 
contributed by manure cycling to cropland were estimated from the literature as 17.3 Tg and 4.2 Tg, 418 
respectively70,71. The additional or reduced requirements for N and P replenishment with present rates 419 
of residue removal and manure application, as well as uncertainties in the nutrient budgets, are 420 
discussed in Supplementary Text 3. 421 

Irrigation water requirement 422 

Irrigation water requirements estimated by the EPIC model to meet plant water demand do not 423 
consider inefficiencies due to losses during the extraction to field application process. These may be 424 
more than twice the actual plant demand, depending on the irrigation system in place38. For the relative 425 
change in irrigation water requirement for the crops considered, we compare the irrigation requirement 426 
on the total cropland to that in each land sparing scenario. To account for the crops not considered in 427 
the simulations, we scaled crop-specific irrigation water requirements from a study based on the Global 428 
Crop Water Model (GCWM) model that considers all major crops or crop groups3. 429 

Expansion of irrigated land would also provide a means for increasing crop yields72 and accordingly 430 
decreasing land requirement. We do not consider this option here due to its lower flexibility compared 431 
to nutrient input intensification as (a) it requires upfront investment in infrastructure, (b) it is subject to 432 
policy and governance decisions on water resources, (c) it is subject to competition among sectors, and 433 
(d) inter-annual variations in water availability for irrigation affect crops differently in-situ based on 434 
economic considerations among others73. 435 

Greenhouse gas emissions 436 

Greenhouse gas emissions in CO2 equivalents were calculated following the tier 1 methodology of FAO74 437 
for the major cropland emission contributors of paddy rice fields (CH4) and nitrogen fertilizer (N2O), 438 
based on fixed N2O emissions per unit of applied fertilizer and national coefficients of CH4 emissions ha-1 439 
of harvested paddy rice. Other emissions, for example from manure and crop residues, were assumed to 440 
remain constant. Estimates of emissions of N2O for crops not considered in the optimization were based 441 
on N fertilizer requirements, as calculated above. 442 

Carbon in potential natural vegetation 443 
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The potential loss of C from natural vegetation expected to develop on spared cropland has been 444 
investigated by West et al.41 to quantify C losses in food production. Using the publically available 445 
dataset of C stored in potential natural vegetation [t ha-1], we quantified reductions in C loss following 446 
minimization of cropland area compared with the baseline cropland area in the SPAM 2005 v3.2 447 
database for crops considered in the optimization and for other crops, separately. The exact calculation 448 
is provided in Supplementary Methods 4. 449 

Area of habitat 450 

We modeled the Area of Habitat (AOH) for each terrestrial mammal species with range data and habitat 451 
preferences available from the IUCN Red List database (accessed April 2018). The AOH is defined as the 452 
area characterized by abiotic and biotic properties that is habitable by a particular species. Specifically, 453 
we modelled the AOH as the areas that (i) fall within the mapped range and (ii) map to the known 454 
habitat preferences of the species. The species ranges of terrestrial mammals were downloaded from 455 
the IUCN database. We considered only habitat types coded as ‘suitable’ by taxonomic experts within 456 
the IUCN database.  In absence of a map of IUCN habitat classes, and similarly to all previous work 457 
modelling of AOH42,43, we cross-walked the IUCN habitat classes into an existing land-use product to 458 
translate habitat preferences into land-cover and land-use preferences. Accordingly, our assessment 459 
only accounts for biogeographic distributions of species habitats but not for impacts of land use 460 
intensification on wild species on cropland in situ. 461 

As land-cover base layer we used the European Space Agency CCI (ESA-CCI) land-cover map for the year 462 
201575 and re-allocated cropland areas as calculated from the SPAM2005 baseline or the land sparing 463 
scenarios, including annual and perennial crops not considered in the land use model to account for all 464 
cropland. When cropland area was higher than estimated in the ESA-CCI map, the additional area was 465 
allocated to all natural land-cover types (except water and ice) in proportion to their extent in the grid 466 
cell. Similarly, when cropland area was lower than estimated in the ESA-CCI map, the excess cropland 467 
was allocated to all natural land-cover types (except water and ice) in proportion to their extent in the 468 
grid cell. We then summarized the results as distribution of AOH changes in optimized versus baseline 469 
scenarios across all species, species sensitive to cropland areas (those for which cropland is considered 470 
unsuitable according to IUCN habitat preferences), species in the lower quartile of range-size 471 
distribution, and species in the lower quartile of range-size distribution sensitive to cropland areas. The 472 
latter was selected as the main results, outcomes for the other species sub-selections are presented in 473 
Supplementary Figure 17. 474 

Data processing and visualization 475 

Evaluations were performed in R76, and plots were produced using ggplot277 and rasterVis78. The 476 
visualization of simulation units in Supplementary Figure 19 was produced with ESRI ArcGIS 10.7. 477 
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 658 

Figure 1: Schematic of the study design. Attainable crop yields (A) from the EPIC-IIASA global gridded crop model (or 659 
statistically derived yield datasets) are combined with present cropland data for these crops (B) from SPAM200560 (or other 660 
suitable land use datasets) into a linear optimization model (C). This model has the objective to minimize cropland extent via 661 
cropland allocation based on land use efficiency while maintaining present production volumes (D) for two main scenarios (I) 662 
with the only constraint of presently available cropland (MLS scenario) or (II) with imposing a release of cropland in biodiversity 663 
hotspots and a uniform global release of 20% cropland (TLS scenario). Further constraints (E) are introduced for two 664 
supplementary scenarios (see Methods). The optimization results in crop-specific land use datasets (F), which are aggregated to 665 
total remaining cropland including the crops not considered in the optimization (G). Externalities (H) are quantified based on 666 
outputs of the crop model itself (nutrient input and irrigation water requirement) or based on external data and models (carbon 667 
sequestration potential, change in area of habitat, and greenhouse gas emissions). Crop model simulations and cropland 668 
allocation were performed at the level of globally 120000 simulation units aggregated from 5’ x 5’ pixels (about 8.3 km x 8.3 km 669 
near the equator) to a maximum size of 30’ x 30’ (about 50 km x 50 km near the equator) based on physical heterogeneity and 670 
administrative borders. The cropland area in each 5’ x 5’ pixel was subsequently scaled according to the relative change in 671 
cropland extent in the overlying simulation unit (see Supplementary Figure 19) for the estimation of externalities and 672 
visualization. The central cropland allocation scheme is shown for exemplary simulation units in Supplementary Figure 18. 673 

 674 
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 675 

Figure 2: Global extent of annual cropland in the reference period and the two land sparing scenarios.  Bars show cropland of 676 
16 major crops considered in the study and three crop groups not considered in the period 2011-2015 (column one), estimated 677 
area of cropland optimized for maximum land sparing potential (column two), and optimized cropland extent with sparing of at 678 
least 20% of cropland in each simulation unit and completely abandoning biodiversity hotspots (column three). Crops not 679 
considered in the optimization are aggregated into three groups at the base of each bar. Percent values refer to area of total 680 
annual cropland (upper) and simulated crops (lower, in parentheses). Globally, annual crops plus sugarcane extended to about 681 
1100 Mha of cropland during the reference period, of which about 950 Mha were planted with the crops considered in the 682 
optimization (major cereals, grains, pulses, and sugar). The remaining 150 Mha encompassed “Other row crops”, “Fruits and 683 
Vegetables”, and “Non-food/feed crops” shown at the base of each bar (Supplementary Table 1). The baseline physical extent of 684 
cropland for each crop was calculated based on harvested areas reported in FAOSTAT49 for the reference period and cropping 685 
intensity according to the SPAM2005 v3.2 database60. 686 
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 687 

Figure 3: Proportion of each 5’ x 5’ pixel covered by cropland cultivated and cropland fractions released in the two land 688 
sparing scenarios. Cropland proportion in each pixel c. 2005 according to the SPAM2005 v3.2 database60 (a), fraction released 689 
after optimization of cropland requirement for maximum land sparing (b), and fraction released after optimization for targeted 690 
land sparing with complete release of cropland in biodiversity hotspots and uniformly ≥20% of cropland (see Supplementary 691 
Figure 16) (c). Data in (b) and (c) correspond to bars two and three in Figure 2. 692 

 693 
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 694 

Figure 4: Relative changes in key agricultural externalities following optimization of area of cropland for the two scenarios. 695 
Panels show (a) maximum land sparing (bar 2 in Figure 2) and (b) targeted land sparing (bar 3 in Figure 2) compared with the 696 
baseline scenario (100% circle; see bar 1 in Figure 2; status in 2011-2015) for 16 major crops (dark colors) and the remaining 697 
annual crops (light colors; not estimated for biodiversity potential). Proportions of nitrogen (N) and phosphorus (P) fertilizer, and 698 
irrigation water applied to crops during the reference period were extrapolated linearly from crops in c. 2000 reported by 699 
Mueller et al.19, or for irrigation water from Siebert and Doell3. Greenhouse gas emissions comprise methane from rice and 700 
nitrous oxide from fertilizer and assume the other major sources (manure and crop residue) remain unchanged. Carbon (C) lost 701 
from potential natural vegetation is the amount of C stored in potential natural vegetation after cropland sparing relative to 702 
that during the baseline (100% of C in natural vegetation lost in cropland), using data from West et al41. Habitat for small-range 703 
species is the average change in habitat area for terrestrial mammals intolerant to cropland in the lower quartile of range size 704 
distributions of terrestrial mammals in the IUCN Red List of Threatened Species79 after recovery of natural vegetation on 705 
abandoned cropland. Details on the quantification of each externality are provided in the Methods. 706 
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