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FOREWORD

Sharply reduced rates of population and industrial growth
have been projected for many of the developed nations in the
1980s. In economies that rely primarily on market mechanisms
to redirect capital and labor from surplus to deficit areas,
the problems of adjustment may be slow and socially costly.

In the more centralized economies, increasing difficulties in
determining investment allocations and inducing sectoral redis-
tributions of a nearly constant or diminishing labor force may
arise. The socioeconomic problems that flow from such changes
in labor demands and supplies form the contextual background of
the Manpower Analysis Task, which is striving to develop methods
for analyzing and projecting the impacts of international, na-
tional, and regional population dynamics on labor supply, demand,
and productivity in the more-developed nations.

The subtask that focuses on regional and urban labor markets

includes investigations of spatial labor mobility over time.

This study proposes a two-level migration model that is consid-
ered attractive for the analysis of spatial and temporal charac-
teristics of aggregate migration data. The authors focus on the
description of the estimation procedure for their nonlinear
model. The model has been applied to Dutch data on internal
labor migration; this application is described more extensively
in a companion paper (Bartels and Liaw 1981).

Publications in the Manpower Anlaysis Task series are listed
at the end of this paper.

Andrei Rogers
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Human Settlements
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ABSTRACT

This paper provides a practical guide to using a two-level
logistic model to analyze macro migration data. It explains the
estimation method, provides subroutines for carrying out the
estimation through a program in the BMDP package, and uses an
empirical example to show how the parameters are to be estimated

and interpreted.
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ESTIMATION AND INTERPRETATION OF
A NONLINEAR MIGRATION MODEL

1. INTRODUCTION

From various perspectives, social scientists in recent
decades have developed migration models that are more than
mere analogies of models in the physical sciences. Using
information theory, Wilson (1971) derived the constrained
entropy models of spatial interactions, which subsume migration
as a special case. Based on the interdependent notions of
opportunity and competition, Alonso (1976) completed the con-
ceptual refinement of his general migration model. Along the
line of utility maximization theory, Moss (1979) translated a
version of McFadden's logistic model for travel choice (McFadden
1974) into another general model of migration. In a less
rigorous fashion, Grant and Vanderkamp (1976) also develored a
logistic model of migration from the theory of human capital
investment. All these models have one feature in common - they

are all r»onlinear.

Unfortunately, empirical applications of these nonlinear
models to the explanation of migration in terms of socioeconomic
variables have been hindered by the nonexistence or complexity
of a consistent nonlinear statistical theory. In many cases,

ad hoe procedures are used to linearize the model (usually
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through the log-transformations), and then one of the widely
available computer programs for linear least-squares regression
analysis is used for estimation and statistical inference.
Beside the doubt that the linearized model can satisfy the
restrictive assumptions of the standard linear model, these
procedures sometimes lead to the nonsensical result of negative
outmigration rates. Sometimes the nonnegativity property is
preserved by using the log of the odds of migration as the
dependent variable which in turn breaks down when some observed
migration freguencies are zero (Grant and Vanderkamp 1976).
With respect to a model of destination choice, all linear
estimation procedures fail to guarantee that the sum of esti-
mated choice probabilities across all destinations be equal to
one, unless for every origin, one of the destinations is arbi-
trarily suppressed from the data set and is allowed to absorb

all estimation errors,

In this paper, we will focus on the use of a two-level
logistic model of migration, which has an appropriate maximum
likelihood estimation method and a relatively well-developed,
albeit asymptotic, statistical theory. The model is a specific
form of the "production constrained” model of Wilson and Alonso. *
It is also a special case of Moss's migration model with the
assumption that the decision to move preceeds the decision to
choose a destination. 1In fact we believe that the logistic
model is a simple and practical nonlinear model of migration
that will remain popular, at least until.the statistical problems

of the more complicated migration models are solved.

In using a quantitative model of migration, it is important
to find the best estimates of the unknown parameters. But these
estimates would not be very useful, if they could not be used to
evaluate the relative importance of the explanatory variables.
Is it more likely that migration would respond to wage differen-

tials than to unemployment differentials? Would a unit increase

*Ledent (1980) has shown that Wilson's models are actually
equivalent to Alonso's general migration model with various
"inputs".




in housing opportunity affect migration more than a unit increase
in job opportunity does? These are the type of questions that
must be dealt with by an empirically useful statistical methodology.

Without a readily accessible computational algorithm, an
elegant statistical methodology is not worth much to a migration
researcher who has no time to write his own computational program.
Those who have micro migration data (i.e., data with individual
persons or households as the observation units) and want to use
logistic models are relatively fortunate, because there are computer
programs for travel choice problems such as those described in
McFadden (1976) which can be easily adopted. However, many migra-
tion researchers (e.g., Grant and Vanderkamp 1976; Schultz 1977;
and Rempel 1980) who recently used logistic models for maecro data
(i.e., those with geographical areas as the units of observation)
were unable to use the appropriate maximum likelihood estimation
method, presumably because of the lack of a suitable computer
program. Even Da Vanzo who has used the maximum likelihood method
for her micro migration data (Da Vanzo 1976) was not helpful in
saying that "with aggregate data, the politomous logit model can be
estimated by OLS (ordinary least-sguares) once the data are appro-

priately transformed"” (Da Vanzo 1980:16).

This paper is written mainly for migration researchers who
have a set of macro origin-destination migration data to explain.
We will first describe and justify the two-level logistic migration
model - in Section 2. We then provide a digest of the maximum likeli-
hood method of estimation and the relevant statistical theory in
Section 3. The evaluation of the relative importance of explanatory
variables is discussed in Section 4. We then explain in Section 5
the use of a versatile program in the widely available BMDP package
(Dixon and Brown 1977) for carrying out the estimation procedure.
More importantly, in Section 6, an empirical example is used to show
the actual implementation of the model. A short conclusion in

Section 7 completes the paper.



2. THE TWO-LEVEL MODEL OF MIGRATION

Let the probability that a person in region i will migrate tc

region j in period t be M Assuming that migration is the

tij*
result of two successive decisions--first the decision to move out
of the current residence and then the decision to choose a destin-

ation--we write

Miiy = Pei Peij

where Py is the person's probability of migrating out of region

i in period t; and ptij is the person's conditional probability of
choosing region j as his destination, given that he has decided to
move.* It is assumed that within each region; the propensity of
every person to migrate to any other region is governed by equation

(1.

The decomposition of M into the product of pti and p has

been advocated by many migrztion researchers, e.g., Morrisontt3973),
Cordey-Hayes and Gleave (1973), and Moss (1979). Furthermore, our
data on the annual interprovincial migration of Dutch labor force
between 1971 and 1978 suggest that pti
temporal patterns: the former has fluctuated markedly, whereas

the latter has remained quite stable. This suggests that the two

and ptij have different

aspects of migration may be related to different sets of determin-

ants and hence can be analyzed by a two-level model.

By definition, p and ptij must satisfy the constraints

ti

0 < by <1 (2)
0 < Pryy < 1 (3)

*If the user's data is for only one period, then the subscript t
can be dropped. However, in order to have enough degrees of
freedom for the statistical inference about the determinants of
the departure probabilities, the number of origins will then have
to be large. If the data are stratified in terms of relevant
attributes such as age and labor force status, then equation (1)
can be applied to each relatively homogeneous subpopulation.



and

M1 Q)

= b4
Pei; 1 (4)

j=1

where G is the number of origins.
To satisfy these constraints, we adopt the satistically convenient

logistic formulations:

= = (5)
Pii 1+eao+oc1 Xtigt oo e ¥ AR Xg4x '
and
e81 Xtij1 t B Xgiqp *eeer Bk XpigK
] ; e81xti21 + By Xtigot oo+ BrXtigk
2=1 :
where Xpsqr soeer X, g are observable factors controlling the

departure probabilities p are observable

(7 Xy iiar eeser X
t1i tij1 tijkK
determinants of the destination choice probabilities; and D is
the number of all alternative destinations. The fact that the
exponential functions in equations (5) and (6) are linear in the
unknown vectors of parameters o and B makes the tasks of estima-
tion and inference relatively simple. However, these logistic
models are quite flexible in that the explanatory variables

and x may be monotonic or non-monotonic transformations

¥tik tijk
of such variables as housing and job opportunties or dummy
variables representing specific cultural ties or barriers between
regions. We will call equation (5) the departure model and
equation (6) the destination choice model. Since the parameters
and explanatory variables are assumed to be finite, both pti and
ptij are not equal to zero or one. But this does not imply that
the observed relative frequencies cannot assume these extreme

values.



3. THE ESTIMATION METHOD AND RELEVANT STATISTICAL THEORY

The maximum likelihood method is appropriate for the
estimation of unknown parameters of the two-level logistic model
for several reasons. First, it guarantees that the estimated
values of pti and ptij satisfy the constraints (2), (3), and (4).
Second, under relatively mild conditions, the maximum likelihood
estimators are consistent and asymptotically efficient (McFadden
1974). Third, the maximum likelihood method leads to a computa-
tional algorithm that can handle efficiently a relatively large
data set (e.g., we found that it takes a computer less than three
minutes to apply the estimation method to a data set with 880 cases

and 10 explanatory variables).

To make the statistical problem simple, we will consider the
nature of the statistics of the destination choice model to be
conditional to the departure model. 1In other words, the random-
ness of one process is not entered into the investigation of the
other. Since our description of the estimation method is intended
to be brief, the reader is referred to Ginsburg (1972), McFadden
(1974), and Jennrich and Moore (1975) for more detailed

information.

Let Nti
of period t; and let Y

be the population size in region i at the beginning
£i be the number of migrants moving out of
region i during period t, among whom Ytijndgrants choose region j
as the destination. Assuming that the migrants are random
samples from the population, the likelihood functions of models

(5) and (6) are, respectively,

Yis
L. T By g Nes Nei -
- _oti _ >
1 t=1 i=1 1- Ptj_ [1 pti] Yti! (Ntl Ytl)
T G D Yriij
- ! 1
Ly= T T | T Py /Yeiqf| Yes (8)

t=1 i=1 |j




where T is the number of periods, G is the number of origin

regions, and D is the number of all destination regions. Note
that it is not necessary that G and D be equal. Both of these
likelihood functions belong to the regular exponential family.

That is, they can be rewritten in the form:

y(g)' Y+38(8) +h(y)
L=2e" "~ ~ (9)

where Y is a column vector of random variables; 9 is the para-
meter vector (representing o for the departure model and g for the
destination choice model); Yy (8)' is a row vector that depends on
9 but is independent of Yi 6(9) is a scalar function of 9 and is
independent of y; and h(g) is a scalar function of y and is
independent of E. Note that the order of y is TGx 1 for the

-~

departure model and TGD x 1 for the destination choice model.

Let the expectation of Y be u and the convariance matrix of
y be Q. Two remarkable properties of the regular exponential
likelihood function have been derived bv Jennrich and Moore (1975).
First, the vector of first-order partial derivatives are related

to y, u, and A according to

~

56 - 53 Ny - (10)

where W is a generalized inverse of A such that

AWA = A (11)

Second, the information matrix T (9) is related to u and A

~ ~

according to

~
D
i
L4
tE
@
(g

(12)

Q2
D



The significance of the information matrix is that its inverse
is the asymptotic covariance matrix of the maximum likelihood
estimator § of the unknown parameter vector Q. Note that both
equations (10) and (12) are derived without using any approxima-
tion. The true first-order condition for maximization is there-

fore

a [}
S Wiy = W) =0 (13)

which, being nonlinear, does not provide an explicit solution of

>

The solution may be obtained iteratively by the Newton-
Raphson algorithm in the following manner. It is assumed that
the log of the likelihood function can be approximated around

some guessed solution 8, by the second-order Taylor series:

2
_ 3 lnL 1 0° 1nL
8y = 5 = —- '
1n L(~) 1n L(~O) + A‘? 3G + 5 Ag mr A‘? (14)
~ ~0 O
where A? = 9 - 90. To move from one guessed solution to another,

the increment A? is chosen such that 1ln L(9) is maximized.
That 1is,

31nL(8) 31nL  3°1nL 49 = g (15)

550 = 58t 33357 -
~ ~0 ~0 ~0

and hence

o = [2°1nL]™" aing (16
3 30 58" 5 )
~0 0O ~0

Sirce it turns out that for our logistic models, the matrix of

second-order partial derivatives in equation (16) does not depend




on the random vector y and hence is equal to its expectation

~

I(8), we can substitute equations (10) and (12) into equation
(16) to obtain

A9 = [33' W BEJ L W (y - p) (17)
~ 890 ~0 890 860 ~0 % ~0

where the right-hand-side quantities are evaluated at the most
recent guessed value of 6. The iterative procedure is terminated
when AP is sufficiently ;lose to zero. Since setting equation
(17) t; zero implies equation (15), we see that when Ag = 9, the
true first-order condition is indeed satisfied. For the logistic
models, McFadden (1974) has proved that the nonsingularity of
the information matrix guarantees the unicueness of the maximum
likelihood solution §; but the existence of the solution is
relatively difficult to ascertain from inspecting the data.
Usually, small sample size and multicollinear explanatory vari-
ables are the main reasons for failing to find the correct

solution.

It is also true for the logistic models that under relatively
mild conditions, the maximum likelihood estimator 9 is asymptoti-
cally normally distributed, with mean 9 and covariance matrix
5(9)'1 (McFadden 1974). Thus, when the sample size (i.e., TG for
the departure model and TGD for the destination choice model) is
very large, significance tests about individual parameters can be
carried out by considering the "t-ratio" (i.e., the estimator of
a parameter divided by the corresponding standard error) as the
standard normal variate. Just like other nonlinear statistical
models, the logistic models do not have a tractable sampling
" theory for a finite sample size. When sample size is small,
Monte Carlo simulations of some hypothetical migration processes
are necessary before much confidence can be put in any inferential
procedure of testing hypothesis about the unknown parameters.
Simulation results of a couple of very simple logisitc models are
shown in McFadden (1974), indicating that when the sample size is

200, the biases in the expectation of 9 and the corresponding
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variances are less than 5%. However, it may be dangerous to

generalize from such simple examples.

According to the multidimensional generalizations of the
well-known Cramer-Rao inequality, the inverse of the information
matrix is a lower bound of the covariance matrix of a regular
unbiased maximum likelihood estimator of the unknown parameter
vector (Theil 1971:389). This suggests that the estimated
asymptotic standard errors obtained from E(Q)-1 would tend to
understate the values of the actual standard errors of the
estimators of the unknown parameters. We consider it advisable
to correct this tendency by multiplying the asymptotic standard
errors by the square root of the weighted residual mean square

82 before the t-ratios are computed. Note that

2

s° = (y - Y/V (18)

[ =]
4 =

)' W(y -

where the number of degrees of freedom V equals the number of
elements in Y minus the number of elements in §. The motivations
for\this correction are that the results are analogous to the
standard errors in nonlinear least squares problems, and that it
does not affect the nice asymptotic properties, because §
approaches one as the sample size approaches infinity (Jennrich
and Moore 1975). Note that without this correction, a variable
that contributes practically nothing to the reduction in §2 is
sometimes found to have a t-ratio of large magnitude, say, about
4 or 5. However, we cannot deny the possibility that the

correction may occasionally be too much.

To test the model's overall goodness-of-fit, we observe that
for a large sample, the quadratic form §'£(9)§ tends to be chi-
square distributed with the degrees of freedom being the number
of parameters, if the null hypothesis that 9 = 9 is true
(McFadden 1974).%* Since g(g) depends on the 'inknown vectar 8/

*Note that for the departure model, the appropriate null hypothesis
is T 0. In other words, ag should not be

included in the hypothesis. Thus, the first element of 8 and the
first row and column of I(8) are to be deleted in specif¥ing the
quadratic form. Of course; the number of degrees of freedom must
be adjusted correspondingly.
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~ A A

the gquadratic form is first approximated by 9%‘(9)9 and then
compared with a critical chi-square value at, say, o = 0.05. If
the value of the quadratic form is larger than the critical value,
then the null hypothesis is rejected. However, if the sample
size is large, the null hypothese (g = 9) can also be rejected
when one of the elements in é has a t-ratio that is greater in
magnitude than the critical value of the standard normal variate.
Since the program we recommend does not print out the value of
the guadratic form, we will rely only on the t-ratios for statis-~

tical inference.

To convey the goodness-of-fit at the intuitive level, we may
use the coefficient of determination Rz, where R is the simple
correlation coefficient between y and i. There are two other

~

indices discussed in McFadden (19784). One index is

02 = 1 - s?/s? (19)

where §2 is the weighted residual mean square defined in equation
(18), and Si is the weighted residual mean square computed under
the null hypothesis that all parameters are zero. For the des-
tination choice model, the value of p? is similar to that of R2.
For the departure model, pf can, however, assume a misleadingly
large value even when the model fits very poorly. This is
because the expected departure probability under the null
hypothesis is 0.5, which is usually much larger than the observed
departure rates. This drastic contrast results in a very large
Sﬁ, which in turn causes p? to be large. Therefore, for the
departure model we will not use p? as a simple index of the

goodness-of-fit. The other index is

> lnIJ(§)
pz =1 = inL B (20)

A

where L(8) is the value of the likelihood function evaluated at

8, and L(8,) is the value of I evaluated under the above-mentioned

-~

null hypothesis. We will not use pg in our empirical example,
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because it tends to understate substantially the goodness-of-fit.
For example, it is reported in McFadden (1979) that values of

0.2 to 0.4 for pg represent an excellent fit.

4. RELATIVE IMPORTANCE OF EXPLANATORY VARIABLES

There are two distinct types of criteria to evaluate the
relative importance of explanatory variables. The first (intensity)
criterion is the relative average amounts of change in the depen-
dent variable due to a unit change in different explantory vari-
ables. When the explanatory variables are measured in comparable
units, the relative importance is simply reflected by the relative
magnitude of the partial derivatives of the dependent variable with

respect to the explanatory variables. For the departure model, we

have
0P, :
t1
=0, P.:(1 = p..) (21)
thﬂ( k Fti ti
and
- /apti - (22)
%ix/ *®Ripr %
Thus, the relative importance of the kth variable over the Zth

explanatory variable is indicated by the relative magnitudes of the

coefficients oy and ope For the destination choice model, we have

0P, s =
t1]
—3 =B p,...(1 = p...) (23)
axfijk k Ttij t1ij
and
PPrij /fit_n_ B (28)
9% i3k *ijp P
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‘which are similar in form to equations (21) and (22). When the
explanatory variables are not measured in comparable units, it
is common practice to substitute the partial derivatives by
elasticities or "beta weights" (i.e., the estimated values of
the parameters obtained by standardizing all explanatory vari-
ables). The use of beta weights is based on the assumption that
one standard deviation in one variable is comparable to one
standard deviation in another variable; while the use of elastic-
ities is based on the assumption that a 1% increase in one
va}iable is comparable to a 1% increase in another variable.
Note that for all logistic models, the elasticities are not
constant across the observations and are usually evaluated only

at some representative points like the mean.

The second (likelihood) criterion is the relative likelihood
cf some change in the dependent variable caused by changes in
different explanatory variables. For the logistic models, the
probability that the dependent variable will respond to a change
in an explanatory variable is assumed to be positively related to
the magnitude of the t-ratio of the coefficient associated with
the explanatory variable. This assumption is based on the t-
ratio (1) being indeed a t-statistic in the standard linear model
and (2) having a standard normal distribution in the logistic
model. It is worth noting that in the standard linear model, the
magnitude of the t-statistic is monotonically related to (and
hence equivalent to) the partial F-statistic, the magnitude of
partial correlation coefficient and the incremental contribution
in Rz. However, it is important to remember that a large t-ratio
need not indicate that a unit change in the corresponding explan-

atory variable will cause a large change in the dependent value.

It is now clear that the importance of an explanatory variable
must be judged by both intensity and likelihood criteria. Concep-~
tually, the likelihood criterion is relatively straightforward,
because probabilities (i.e., levels of significance according to
the t~statistics or partial F-statistics) are not influenced by the

different choices of the physical units for the explanatory
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variables. The intensity criterion is more troublesome; an
explanatory variable with a relatively large elasticity may or
may not have a relatively large beta weight. When the absolute
truth is beyond reach, conventicns are the second best. Most
sociologists rely on beta weights, whereas most economists favor
elasticitics. 1In geography, beta-weights are in relatively

freguent use.

Finally, in evaluating the relative importance of explanatory
variables, we should keep a complementarity as well as a
competition perspective. The inclusion of an additional explana-
tory variable into the migration model may increase rather than
decrease the importance of an existing explanatory variable. By
adding economic variables into his gravity model of intermetro-
politan migration, Lowry (1966:14-17) managed to increase substan-
tially the importance of the distance variable in terms of elas-
ticity as well as partial correlation. To infer if two explana-
tory variables are mutually complementary or competitive, one
should choose a computer program that allows easy selections of
arbitrary subsets of input variables to be included in the model.

5. ESTIMATION OF THE UNKNOWN PARAMETERS BY BMDP3R

The iterative algorithm described by equation (17) can be
implemented without undue difficulties by the P3R program in a
recent version of the BMDP package (Dixon and Brown 1977). The
program was originally designed to solve nonlinear weighted
least-squares problems, using the Gauss-Newton algorithm (Jennrich
and Ralston 1979). However, it is fortunate that in our departure
and destination choice models, the matrix y is diagonal so that the
Newton-Raphson algorithm for the maximum likelihood method becomes
identical to the Gauss-Newton algorithm for the nonlinear weighted
least-squares problems, except that the former requires the matrix
of weights W to depend on the unknown parameters, whereas the latter
does not. The modification to accommodate this subtle difference
is accomplished by a subroutine that allows the user to specify

. 3
the computational formulas for u, gg. and W. These computational

~
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formulas are shown in Table 1. However, for diagnostic and
interpretational convenience, it is better to measure migration
in proportions rather than in volumes. Therefore, we wiil
measure the dependent variables in proportions and use the
computational formulas in Table 2. Note that the estimated
parameters, the t-ratios, and the weighted residual mean square

are not affected by the different ways of measuring migration.

The subroutine to implement the departure model is shown in
Figure 1. It assumes that the first three columns of the input
data contain respectively the observed departure rates, the
arbitrary initial values of the weights, and the at-risk popula-
tion sizes. All the explanatory variables to be included in the
model then occupy consecutive columns starting from the fourth
one. If the input data were not arranged in this way, we could
use transformation instructions in the file of control statements
to rearrange the variables in the data set. In each iteration,
the subroutine is called to evaluate Pyyr Nti/[pti(1 - pti)],ﬂand

1

pt.(1 - pti)xtik in terms of the most recent estimate of Q.
Without any modification, the subroutine can accommodate a data

set of any size, provided there is enough space in the computer.

The subroutine to implement the destination choice model is
shown in Figure 2. The arrangement of variables in the input
data is assumed to be similar to that of the departure model
(i.e., the observed choice proportions followed by the arbitrary
initial weights, etc.). Futhermore, the observations (cases)
corresponding to all the destinations for each origin and period
must be in neighboring rows. In other words, the rows of the
input data matrix must be nested in the order of time-origin-
destination or origin-time-destination. In each iteration, the
subroutine will be passed twice: the first pass is for computing
the partial sums in equation (6) and Table 2 across all destina-
tions for each t, i, and k; and the second pass is for computing
the estimates of the expected values, weights, and partial deriv-
atives. If the number of parameters is no more than 10, and if
the product of the number of periods and the number of origins
does not exceed 88, then the user only has to make sure that the
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Table 1. Computational formulas for the Newton-Raphson algorithm,
using number of migrants as the dependent variable.

Departure Model

Destination Choice Model

Ranqom v .

Variable ti

3?1’3?8‘1 NeiPey

Weight [Ntipti(1-pti)]'1
g:?i:\ir:t];ive NeiPeg (7P ) Xesy

Yeij

YeiPeiy

-1
[Yi 5Pyl

D
TeiPrig Feige ~ 121 Peil ®ei1x

Table 2. Computational formulas for the Newton-Raphson algorithm,
using proportion of migrants as the dependent variable.

Departure Model

Destination Choice Model

Random

Variable Yei/Neg
Expected
Value pti

. D _
Weight Nti/[.ti(T Pti)]
Partial _ X
Derivative pti(1 pti) tik

Yei3/Yes

o ..
“t1]

Y ../P

tij’ " tij

1.ptilxtilk)

e~—g

X -
Pris Feig .
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subraoutine funnir{f, 0t /s a/N/KE32,NYAr,A22r 13855,

~r

*x1035,102D0

¢ asss3um2d dats setao--

¢ x€1)=oi3s3srvad Zipar*tur? rxtes,.

2 x(Z2)=uzlzihts.

c x{3)=at=-ricsk noculations.

& x(=) and oeycna=zll 2xnlanatory s2riables followad oy
< any 32t2n*islly us=ful 1ndices.

gimansion df(nner),3(rzzr)srx{nvar)
impliicit realx? (a=r,5-2)
sum=p (1)
do 23 j=2,npar
J1=J+c

¢J sum=sum*ta(j)*x {317
xAaum=dexp{(sun)
denom=T.2*xnumn
faxnum/canaom
dgf(1)=¢/danon
do 42 i=2snpar
J1=5+2

s df(3)=f=x (1) /dananm
x(2)=x(3)=dzanzm/f
raturn
ard

Figure 1. The subroutine for BMDP3R to implement the departure
model.

right-hand-~side of the statement nr=10 is made to equal the
actual nurker of destinations. For a larger model, the only
necessary additional change is to replace the subscripts in the
second dimension statement according to the comments in the

subroutine.

One particularly attractive feature of BMDP3R is its ability
to plot the observed and predicted values of the dependent
variable against any variable that may or may not be an explan-
atory variable of the model. By plotting these values against
such variables as time and an index of origin or destination, it
is easy to see the temporal and spatial patterns of the migration
process. Furthermore, the plots can be used to identify outliers
quickly and to improve the structure of the model. Another use-
ful feature of P3R is that various types of transformations are

available. Through these transformations, the user can change



-18-

subroutinzg funplr(*f,d¥f,2sxsnskasz,rvars,ansr,insssy,
*xloss,ic2p)

dimension df{nnar),plnzar),x{nvzr)

dimension gart(1?2

728 ,3um(23)

[ tha subscrivct of "szun" and *tne second suonszcript of
¢ "part" must b2 no 1235 *nan (na. =f cases/no. of
c destinatizns).
¢ the first subscriect of "czrt" must B2 no l2s5s tnan
c Tn2 numaar 27 param2tars.

imglicit re2al=? (a=n,0=2)

nr=12
¢ "nr'" must 2qual the actual numbz2r of destinations.

igrg=1+(kase=1)/nr

ikase=kasz=(igrp=1)*nr

if(ipass.ag.2) gec to 170

if{ikasze.gtell 5o to <72
do 1C j=1,npar

1C part(jrigrpl)==CL )

sum(igrp)=2.3J

teme=J,. 7

do 37 j=1,npoar

J1=3+3

3V}
Q

(V2
(8]
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[}
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o
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tamp=daxn(temp)
sum(igrz)=sunl{izro)rtamnn
do +0 i=1,npar

J1=5+3

47 part(isizrod=par*(i,izro)+x(j1)xtamp
return

100 tamp=l.
do 57 i=1,npar
J1=25+3

ST teamp=tampa+x (31)=a5{3)

f= dexp{tanz)/sunl(i-r>)
x{2)=x(3)/f
do 12C ji=1/,npsr
J1=3+2

120 df(S)=f«(x(j1)=parsii,sizr2)/sun{icra))
raturn
and

Figure 2. The subroutine for BMDP3R to implement the destina-
tion choice model.
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volumes into proportions and vice versa, combine old variables
to form new ones, and rearrange the order of the input variables

for alternative specifications of the model.

6. AN EMPIRICAL EXAMPLE

We have used the two-level migration model to study the
1971-1978 data on annual labor force migration among the eleven
provinces of the Netherlands (Figure 3). Here we present one of
the several specifications that we tried in an attempt to develop
a parsimonious explanatory model (for more details, see Bartels
and Liaw 1981). Briefly a migrant is defined as a member of the
Dutch labor force who had a known occupation and was observed to

have changed the province of residence during a year.

6.1 The Departure Model

Our data and model permit us to investigate simultaneously
the temporal and spatial aspects of the departure probabilities.
We first intend to explain the temporal pattern by changes in
the national housing and job opportunities, because we suspect
that when these opportunities are generally poor, the incentive
to move will be weak. We then assume that the interregional
contrast in departure propensity may depend on regional housing
and job conditions. Perhaps a province with relatively good
housing and job conditions would have a relatively low departure
rate; but we recall that Lowry (1966) has provided a vivid counter
example in the contrast between San Jose, California and Albany,

New York.

The change in national housing opportunity is represented by
the national annual percentage rate of increase in housing stock.
The proxy for the change in national job opportunity is the
inverse of national annual unemployment rate. Regional housing
opportunity is defined as the ratio of regional housing increase
to national housing increase. Similarly, regional job opportunity
is the inverse of the ratio of regional unemployment rate to

national unemployment rate. All these explanatory variables are
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evaluated on a yearly basis. To eliminate persistent regional
biases in the estimated departure probabilities, three regional
dummy variables are used: the first to reflect the fact that
the province of Groningen has a relatively high departure rate
due to the high concentration of its population near the southern
border; the second to reflect the high departure rate of Utrecht
probably due to its small area and its location near the gravity
center of the national population; and the third to reflect the
low departure rate of Overijssel perhaps due to its high concen-
tration of blue collar workers whose mobility is typically low.
The dependent variable (the observed regional departure rate) is
the annual number of regional migrants divided by the size of

regional labor force in the relevant year.

The input data matrix has 88 cases (8 periods times 11 provin-
ces) and 10 variables (departure rate, weight, size of labor
force, and seven explanatory variables). To show temporal and
spatial patterns graphically, we augmented the input matrix by
two more variables: one is the year, the other is the province
index. The matrix is arranged such that the cases are rows, and
the variables are columns. The control statements to analyze this
data matrix are shown in Figure 4. The number of iterations is set
at 10, but usually it takes only five or six iterations to
converge to the optimum solution. For precise meanings of the
control statements, the reader is referred to the BMDP Manual

(Dixon and Brown 1977).

The fit of the model is quite good (R2 = 0.79). The t-ratios
in Table 3 indicate (1) that the temporal fluctuations in the
departure rates are more likely to be caused by changes in
national housing conditions than by changes in national job
opportunities, (2) that the interprovincial contrasts in housing
and job opportunities do not have a clear relationship with the
interregional contrast in departure propensity, and (3) that
there is little doubt that the spatial contrast in mobility level
is related to the underlying factors represented by the three
dummy variables. Ignoring the two most uncertain variables (i.e.,
those with the smallest t-ratios), we see that all the explanatory
variables have coefficients of the "right" signs.
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/problem _ titl2 is ‘daparture model:holland,1971=-72°,
/input variables ara 12.
~format i3 “(12f13.9)°.
cases are £2,.
/varizble  names are dptrtsutsporisk,kincn,iobn,hincg,3okp.
dumgr,dumov,dumutsyear,origin.
/regress _ dependent is dptrt.
parametars arz S. numoer 1s 20.
_iteraticns ar2 1J. <ccnvergence is -1,0.
weignt is wt. halving is J.
. _ .. . . meansquare is 1.,0.
/paramaters initial are 5%0.0,
_Iplot _ _ _ residual. . _ , )
variable=dptrt,hincn,jobn,hincp,jobprdumcer,
. ws.. ... dumovsaumutsyegar,orisgin,
SiZe=45/4C.

Figure 4. The control statements to request BMDP3R to carry out
the maximum likelihood estimation of the departure
model of the Dutch labor force.

Since the explanatory variables are not all measured on
cbmparable units, the relative intensity of the influence of
these variables on the departure propensity will be judged in
terms of elasticity and beta weight (Table 4). The most
influential explanatory variable is unequivocally the national
housing increase. National job opportunity may or may not be
more important than the three dummy variables, depending on
whether elasticity or beta weight is used as the criterion. It
is best to ignore the elasticities and beta weights of the pro-
vincial housing and job opportunity variables, because the
influences of these two variables have been shown by the t-ratios

to be most uncertain.

6.2 The Destination Choice Model

As we have indicated earlier, the spatial pattern of the
destination choice probabilities in the Netherlands appeared to
remain guite stable through the 1970s. This observation suggests
that the important explanatory variables should also be stable in
nature. Two variables with such stability are distance and the
spatial pattern of employment size. Thus, the distance between



Table 3. The estimated values of the parameters and their reliability measures: departure
model of the 1971-78 Dutch labor force.

Explanatory, Variable Estimated Parameter Asymptotic Std. Error t-ratio
National Housing Increase 0.143 0.0017 8.42
National Job Opportunity 0.112 0.0069 1.60
Provincial Housing Increase -0.019 0.0039 -0.48
Provincial Job Opportunity 0.055 0.0038 1.44
Groningen Dummy 0.145 0.0039 3.71
Utrecht Dummy 0.212 0.0038 5.57
Overijssel Dummy -0.131 0.0031 -4.,28
Constant Term -3.332 0.0083 -40.07

_E Z_

*The asymptotic standard errors are multiplied by 8.305 (the square root of the weighted
residual mean square) before they are used to compute the t-ratios. For test of sig-
nificance, these ratios may be compared with z = #1.65 which are the critical values of
the standard normal variate at the significance level of o = 0.10.



Table 4. The indices for evaluating the relative importance of the explanatory variables
in terms of the intensity criterion: departure model of the 1971-78 Dutch

labor force.

Explanatory Variable Partial Derivative® Elasticity* Beta-weight
National Housing Increase 0.0074 0.371 0.083
National Job Opportunity 0.0058 n.033 0.016
Provincial Housing Increase -0.0010 -0.018 -0.004
Provincial Job Opportunity 0.0028 0.051 0.018
Groningen Dummy 0.0075 0.012 0.042
Utrecht Dummy 0.0110 0.018 0.061
Overijssel Dummy -0.0068 -0.011 -0.038
elasticities are evaluated at the mean.

*The partial derivatives and

_nz_



-25—~

origin and destination and the size of employment at the destin-
ation are natural choices as explanatory variables. The former
vis represented by the physical distance between the gravity cen-
ters of two provinces divided by the average distance of all pairs
of provinces; whereas the latter is represented by the ratio of

the destination employment size to the origin employment size.

To check if the destination choice probabilities are influ-
enced systematically by changes in the conditions of housing and
job markets, we use two additional explanatory variables:
"destination housing increase" expressed as the ratio of housing
increase at the destination to housing increase at the origin,
and "destination job opportunity" expressed as the ratio of origin

unemployment rate to destination unemployment rate.

Three dummy variables are also used to account for persistent
biases in the estimated destination choice probabilities. Dum1
is used to accommodate the strong preference of the outmigrants

from Drenthe to Groningen presumably due to a heayy share of

return migrants. Dum2 is used to account for the relatively
strong preference for Gelderland among the outmigrants from the
neighboring Overijssel and Utrect perhaps due to the availability
of the newly created land which is included as part of Gelderland
in our data base. Dum3 is used to account for the lower-than-
expected preference for Zuid Holland among the outmigrants from
the neighboring Zeeland due to the fact that the distance variable
fails to reflect the additional transportation distance between
the two provinces because of the intervening waters. The
dependent variable (the observed destination choice proportions)
is the annual number of migrants who moved from province i to
province j divided by the annual number of total outmigrants from

province 1i.

The input data matrix has 880 cases (8 periods times 11
origins times 10 destinations) and 13 variables (dependent
variable, arbitrary weight, volume of migrants at origin, seven
explanatory variables, year, origin index, and destination index).
The last three variables are for showing temporal and spatial
patterns in the plots. The file of control statements for
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analyzing the data by BMDP3R is shown in Figure 5. It is
essential to set the value of "pass" at 2. For detailed '
explanations, the reader is again referred to the BMDP manual.

The fit of the model is very good (R2 = 0.89 and p$ = 0.90).
From the t-ratios in Table 5, we are gquite certain that the
migrants prefer nearby places with large employment. There is
practically no evidence that destination choice probabilities
are related to interprovincial difference in the housing increase.
The t-ratio of -2.22 associated with the destination job oppor-
tunity suggests that some migrants prefer provinces with rela-
tively poor job opportunity; for this result we do not have a
good explanation, except that the relationship may be spurious
because the provinces with relatively high unemployment tend to
be those with more relatively dttractive types of housing (e.g.,
single family dwelling units) and with better natural environ-
ments. Finally, we are reasonably sure that the destination
choice probabilities are influenced by the underlying factors
represented by the three dummy variables, because the correspond-

ing t-ratios are quite large in magitude.

./problem___ %itla is. ‘destination choice mocal:hollang,19791-72°,
/input ‘ variables are 13.
cieieie oo _. format is "(13f10.20)°.
cases 3are 330,

/variable_“mnames”are_rfreq/wt,totmig,dist,emplcy,hincp,jcbp,
dum31,dums3565,cdum®8,y2arsorigins,dest.
_/regress_ _ dependent is rfreg. . . _
parameters ar2 7. number is 20,
e . ... welignt 1s.wt. . . 1iteraticns are 10.
halving is J. converzence is =-1.
... . ... . _..3eansquare_is 1.  pass. is 2..
/parameters initial are 7x0.0.
/plot . residual.

variable=rfreg,distsennloyshincprjobp,dur1,
L dum4545,dumP8,y2ar,orizinscast.
siza2=43,4C.

/end

Figure 5. The control statements to request BMDP3R to carry out
the maximum likelihood estimation of the destination
choice model of the Dutch labor force.
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The relative intensity of the response of the destination
choice probability to the explanatory variables is shown in
Table 6. Again, since the variables are not méasured in compar-
able units, their relative importance will be judged in terms of
elasticity and beta weight. Clearly, distance is by far the
most important variable. The second important variable is the
destination employment size. In terms of elasticity, the three
dummy variables are less important than destination job oppor-
tunity; in terms of beta-weight, however, the opposite is true.
The elasticity and beta weight of destination housing increase

are practically zero.

From the methodological point of view, the most significant
finding of our empirical example is that the departure probabil-
ities are most strongly influenced by an unstable national
variable (housing increase), whereas the destination choice
probabilities are determined mainly by very stable regional
variables (distance and destination employment size). It is
through the use of the two-level logistic model that this kind

of interesting contrast is revealed.

7. CONCLUSION

We have argued that the two-level logistic model is a useful
and practical migration model that can be used to analyze macro
as well as micro migration data. Since the applications of
logistic models to macro data are often found to be rather
unsatisfactory from the statistical point of view, we have made
the model immediately useable for macro data. To increase the
probability of other migration researchers using the same
kind of model, we have (1) explained an appropriate estimation
method that can be implemented by a program in the BMDP package,
and (2) provided an empirical example to show the implementation
of the estimation method and the interpretation of the statistical
outputf

We realize that in some situations the logistic model may be
too simplistic or restrictive. However, it seems rather senseless



Table 6. The indices for evaluating the

relative importance of the explanatory variables,

according to the intensity criterion: destination choice model of the 1971-78

Dutch labor force.

Explanatory Variable Partial Derivative® Elasticity* Beta-weight
Distance -0.2011 -2.012 -1.027
Destination Employment Size 0.0310 0.555 0.702
Destination Housing Increase -0.0001 -0.001 -0.000
Destination Job Opportunity -0.0060 ~-0.067 -0.035
Dum 1 0.1010 0.009 0.107
Dum 2 0.0530 0.010 0.079
Dum 3 -0.1414 -0.013 -0.149

*The partial derivatives and elasticities

are evaluated at the mean.

-6Z_
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to combine a complex model with a primitive estimation model.
Without an adequate statistical theory, a complex model of

migration may produce results that are easily misinterpreted.
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