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Abstract
Importance of evaluation of global hydrological models (gHMs) before doing climate
impact assessment was underlined in several studies. The main objective of this study is
to evaluate the performance of six gHMs in simulating observed discharge for a set of 57
large catchments applying common metrics with thresholds for the monthly and seasonal
dynamics and summarize them estimating an aggregated index of model performance for
each model in each basin. One model showed a good performance, and other five showed
a weak or poor performance in most of the basins. In 15 catchments, evaluation results of
all models were poor. The model evaluation was supplemented by climate impact
assessment for a subset of 12 representative catchments using (1) usual ensemble mean
approach and (2) weighted mean approach based on model performance, and the
outcomes were compared. The comparison of impacts in terms of mean monthly and
mean annual discharges using two approaches has shown that in four basins, differences
were negligible or small, and in eight catchments, differences in mean monthly, mean
annual discharge or both were moderate to large. The spreads were notably decreased in
most cases when the second method was applied. It can be concluded that for improving
credibility of projections, the model evaluation and application of the weighted mean
approach could be recommended, especially if the mean monthly (seasonal) impacts are
of interest, whereas the ensemble mean approach could be applied for projecting the mean
annual changes. The calibration of gHMs could improve their performance and, conse-
quently, the credibility of projections.

Keywords Climate change . Global hydrological models . River discharge projections .Model
evaluation .Model performance .Model weighting . Credibility of projections

1 Introduction

The projection of climate change impacts on river discharge is usually done by following a
modelling chain, starting with several scenarios of future radiative forcing (representative
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concentration pathways, RCPs). After that, climate projections generated by general circula-
tion models (GCMs) or regional climate models are collected, and often, statistical bias
correction methods are applied. Then, hydrological impact models are driven by climate
scenarios under certain RCPs to perform impact assessment. Nowadays, it is common to
apply not only ensembles of climate scenarios from several models but also ensembles of
hydrological models (HM) in such studies (e.g. Haddeland et al. 2014; Roudier et al. 2016;
Gosling et al. 2017; Vetter et al. 2017).

Different types of hydrological models are applied for impact assessment depending on the
scale of the study and data availability. The catchment-scale and regional models are usually
calibrated and validated in advance, whereas the global- and continental-scale models are
mostly applied using a multi-model ensemble without calibration or evaluation.

The importance of evaluation of global hydrological models (gHMs) in advance, prior to
climate impact assessment, was underlined in several recent studies: Zhang et al. (2016), Beck
et al. (2017), Hattermann et al. (2017) and Zaherpour et al. (2018), and a number of studies
were devoted specifically to evaluation of gHMs and testing performance of model sets
(Haddeland et al. 2011; Beck et al. 2016; Veldkamp et al. 2018; Zaherpour et al. 2018) or
to cross-comparison of global- and regional-scale models (Zhang et al. 2016; Hattermann et al.
2017; Gosling et al. 2017).

Table 1 presents an overview of papers focused on evaluation of gHMs. They differ
by the number of evaluated models, the number of catchments/gauge stations considered,
the size of catchments, the temporal and spatial resolutions of indicators and the
evaluation metrics applied. In papers published until 2015, mainly the temporally
averaged indicators were analysed, like mean annual runoff and mean monthly runoff
over a 30-year period, but in recent studies, also not aggregated indicators like annual
runoff and monthly runoff get more attention, and different metrics are used for
evaluation.

Usually, the results of model evaluation performed at the catchment scale are spatially
aggregated for presentation of results in the papers, mostly to the global/continental scale
or to climate zones or regime classes. The aggregated information could be useful, if
there are distinct differences in evaluation metrics for climate zones; otherwise, the value
of such assessments is restricted. Quite rarely, the results of model evaluation are shown
for the catchment scale (Hattermann et al. 2017; Zaherpour et al. 2018).

Some studies include also the evaluation of indicators of hydrological extremes, focusing
mostly on the high and low percentiles of runoff (Table 1). Regarding human-induced
influences, most studies do not include them or consider naturalized discharge in small
catchments. The global HMs started including human management in the early 2000s, e.g.
irrigation in WaterGAP (Döll et al. 2003) and reservoirs in H08 (Hanasaki et al. 2006), and
recent papers (Veldkamp et al. 2018; Zaherpour et al. 2018) include human influences
parameterized using global databases.

In the papers by Gudmundsson et al. (2012a, 2012b), it was suggested that a mean or
median of a multi-model ensemble should be presented as main output in climate impact
studies, being the best predictors, as the variations in performance of individual models
and in their projections are large. Since 2012, this approach was applied in numerous
continental- and global-scale studies. However, recently, several authors questioned this
statement and proved an opposite conclusion following from their assessments. For
example, Zaherpour et al. (2018) observed that in some cases, the ensemble mean fails
to perform better than any individual model from an ensemble, and this finding definitely

Climatic Change



Ta
bl
e
1

O
ve
rv
ie
w
of

th
e
gl
ob
al
-s
ca
le
st
ud
ie
s
ev
al
ua
tin

g
m
ul
tip
le
m
od
el
s.
L
SM

—
la
nd

su
rf
ac
e
m
od
el
;m

A
R
—
m
ea
n
an
nu
al
ru
no
ff
;m

M
R
—
m
ea
n
m
on
th
ly
ru
no
ff
;A

R
—
an
nu
al
ru
no
ff
;

M
R
—
m
on
th
ly

ru
no
ff
;
D
R
—
da
ily

ru
no
ff
;
H
F,

L
F—

hi
gh

an
d
lo
w

fl
ow

pe
rc
en
til
es
;
gl
ob
.,
gl
—
gl
ob
al
;
co
nt
.—

co
nt
in
en
ta
l;
cl
.
zo
n.
—
cl
im

at
e
zo
ne
;
re
g.

cl
.,
r.
c.
—
re
gi
m
e
cl
as
s;
re
g.
,

r—
re
gi
on
;
ba
s.
,b

—
ba
si
n,

N
SE

—
N
as
h-
Su

tc
lif
fe

ef
fi
ci
en
cy
;
K
G
E
—
K
lin

g-
G
up
ta
ef
fi
ci
en
cy
;
in
te
gr
.—

in
te
gr
at
ed

in
de
x

In
di
ca
to
rs

Sp
at
ia
l
ag
gr
eg
at
io
n

N
o

M
E
T
R
IC
S

N
of

gH
M
s

N
of

L
SM

N
of

ga
ug
es

N
of

ye
ar
s

G
lo
b.

C
l.

zo
n.

A
gg
r.

B
ia
s

K
G
E

Si
ze

m
A
R

m
M
R

A
R

M
R

D
R

H
F

L
F

C
on
t.

R
eg
.

cl
.

R
eg

B
as
.

B
as
.

N
SE

r, R
2

E
rr
or

In
te
gr
.

V
is
ua
l

H
ad
de
la
nd

et
al
.(
20
11
)

5
6

8
L
ar
ge
,

65
0
T
–4
.6

M
15

Δ
Δ

8
b

Δ

Pr
ud
ho
m
m
e

et
al
.(
20
11
)

3
0

57
9
(E
ur
)

Sm
al
l
<
10
00

T
38

Δ
Δ

Δ
6
r

Δ
Δ

Δ

G
ud
m
un
ds
so
n

et
al
.

(2
01
2a
)

4
5

42
6
(E
ur
)

Sm
al
l,
av
.

25
8
km

2
38

Δ
Δ

Δ
Δ

E
ur

Δ
Δ

Δ

G
ud
m
un
ds
so
n

et
al
.

(2
01
2b
)

4
5

42
6
(E
ur
)

Sm
al
l,
av
.

25
8
km

2
38

Δ
Δ

r.
c.

Δ
Δ

Δ

B
ec
k
et

al
.

(2
01
5)

2
2

>
30
00

Sm
al
l-
m
ed

<
10

T
31

Δ
Δ

Δ
Δ

gl
Δ

Δ
Δ

G
re
ue
ll
et

al
.

(2
01
5)

5
0

46
(E
ur
)

L
ar
ge

>
99
00

22
Δ

Δ
Δ

Δ
Δ

46
Δ

Δ

B
ec
k
et

al
.

(2
01
6)

9
+
1

0
17
87

Sm
al
l-
m
ed

<
10

T
≥
10

Δ
Δ

Δ
11
13

Δ
Δ

Δ
Δ

Z
ha
ng

et
al
.

(2
01
6)

1
1

64
4

M
ed
,>

2
T

31
Δ

Δ
Δ

Δ
Δ

Δ
Δ

B
ec
k
et

al
.

(2
01
7)

6
4

96
6

Sm
al
l-
m
ed

1–
5
T

34
Δ

Δ
Δ

Δ
Δ

Δ
Δ

Δ
Δ

H
at
te
rm

an
n

et
al
.(
20
17
)

9
+
9
re
g.

0
11

L
ar
ge

30
Δ

Δ
11

b
Δ

Δ
Δ

V
el
dk
am

p
et

al
.(
20
18
)

4
1

47
1

M
ed
,l
ar
ge

>
9
T

40
Δ

Δ
Δ

Δ
Δ

Δ

Z
ah
er
po
ur

et
al
.(
20
18
)

5
1

40
L
ar
ge 10
4
T
–4
.6

M
40

Δ
Δ

Δ
Δ

Δ
Δ

40
b

Δ
Δ

Δ
Δ

Δ

T
hi
s
st
ud
y

5
1

57
L
ar
ge 33

T
–4
.6

M
40

Δ
Δ

Δ
Δ

57
b

Δ
Δ

Δ

Climatic Change



challenges the commonly accepted perception about the best performance of the ensem-
ble mean (EM). Interesting discussions on the ensemble mean approach can be found in
Rougier (2016) and Beck et al. (2017).

Recently, a hypothesis that “good performance of hydrological models in the histor-
ical period increases confidence in projected climate impacts, and may decrease uncer-
tainty of projections related to hydrological models” was tested (Krysanova et al. 2018),
and it was proven based on examples from previous impact assessment studies and
analysis of arguments “pro” and “contra” from literature. In this paper, guidelines for
evaluation of catchment-scale and global-scale models (more simplified for gHMs), as
well as criteria for exclusion of poorly performing models from an ensemble in impact
studies, were suggested (see also Coron et al. 2011; Refsgaard et al. 2013; Roudier et al.
2016). It was also underlined that the application of models with weighting coefficients
based on model performance could be reasonable (e.g. see Nohara et al. 2006; Yang
et al. 2014) and may provide more credible results compared with the simple ensemble
mean approach which disregards performance.

Zaherpour et al. (2018) evaluated simulations of a set of six global models participating in
the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP, Warszawski et al. 2013,
https://www.isimip.org/), for 40 large river basins. They applied a ratiometric integrated
criterion, the ideal point error (IPE), which was standardized against a naïve benchmark
model, where the observed discharge was shifted backwards by 1 month. This paper
underlined the importance of understanding the strengths and deficiencies of global models
in reproducing hydrological regime, extremes and interannual variability, influencing their
preparedness for climate impact assessment.

Following recommendations in Krysanova et al. (2018) on model evaluation, and
based on the model setup in Zaherpour et al. (2018), this study aims for an extended
evaluation of gHMs for large river basins supplemented by an impact assessment using
gHM simulations openly available in ISIMIP. The main objective is to extend the study
by Zaherpour et al. (2018) applying another model evaluation approach based on simple
and commonly used metrics to a larger set of river basins in the same eight hydrobelts
(Meybeck et al. 2013) and provide a climate impact assessment taking into account the
model evaluation results. Namely, the aims are:

a) to evaluate six gHMs for 57 river basins in eight hydrobelts in the historical period
applying four metrics for the monthly and long-term mean monthly (seasonal) dynamics
and summarize them estimating an aggregated index (AI) of model performance

b) to estimate weighting coefficients for all models in all basins based on AI, excluding cases
where poor model performance does not allow estimation of meaningful weighting
coefficients

c) to do a climate impact assessment for a selection of river basins using the usual ensemble
mean approach and the weighted mean approach based on model evaluation results, and
compare outcomes of both.

2 Case study catchments

We have taken the same 40 large river basins as in Zaherpour et al. (2018) paper and
added 17 more in order to improve their spatial distribution among eight hydrobelts and
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on six continents. The hydrobelts are strictly limited by catchment boundaries at a 30′
(0.5°) resolution. The classification of land area in hydrobelts takes into account more
geo-hydrological factors compared with the Köppen classification in climate zones,
including runoff, and thus, it could be more suitable for hydrological modelling. In the
study of Zaherpour et al. (2018), two hydrobelts, boreal (BOR) and northern mid-latitude
(NML), were covered by selected basins more densely, but there were only one or two
basins in four other hydrobelts, which did not allow to perform a proper spatial analysis
of results.

The aim to improve spatial distribution was reached by relaxing the size and observed
data availability catchment selection criteria applied in Zaherpour et al. (2018) only
partly. Due to poor availability of observed discharge data in some areas on the globe,
some hydrobelts (e.g. northern dry, NDR) are still sparsely covered. Two hydrobelts,
NDR and SML (southern mid-latitude), include only three basins each. Nevertheless, a
larger number of basins in hydrobelts allows averaging of evaluation results and enables
spatial analysis.

The following criteria were used for selections of the catchments:

– They should be larger than 50,000 km2 to ensure that the catchments are of sufficient size
to accommodate the output resolution of the models.

– They should be independent (i.e. data from only one gauge was used for each catchment).
– Observed monthly discharge should be available for 20 years or longer within the 1971–

2010 period, which was assigned for the model evaluation and be without missing data.

The selected 57 river basins and the corresponding gauge stations are listed in
Table S1 (here and later “S” means that Table or Figure is in the Supplementary)
and depicted in Fig. 1. Some characteristics of hydrobelts and catchments within them
are shown in Table S2. It is obvious that most of these large basins do include
significant human interventions, like reservoirs and water abstraction, which should be
considered in the models.

Fig. 1 Distribution of the 57 case study catchments (see Table S1) across eight hydrobelts. The hydrobelts are
named: BOR, boreal; NML, northern mid-latitude; NDR, northern dry; NST, northern subtropical; EQT,
equatorial; SML, southern mid-latitude; SDR, southern dry; SST, southern subtropical
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3 Data and methods

3.1 Observed hydrological data

The observed monthly discharge data for 57 gauges were obtained from the Global Runoff
Data Centre, GRDC (http://grdc.bafg.de), for 20 years or longer within the 1971–2010 period
with no missing data, which was required for the model evaluation. Only in one case, for the
Yangtze, hydrological data were obtained from the local authority.

3.2 Global hydrological models and model outputs

The ensemble of global models applied in this study includes DBH (Tang et al. 2007),
H08 (Hanasaki et al. 2008), LPJmL (Rost et al. 2008), MATSIRO (Pokhrel et al. 2015),
PCR-GLOBWB (Wada et al. 2014, a short name PCR will be used below) and
WaterGAP2 (Müller Schmied et al. 2016). The LPJmL model is different from others
being originally a dynamic global vegetation model (DGVM), but it has all features of a
hydrological model, and can be classified as a combined DGVM/gHM model. The DBH
and MATSIRO models belong to the class of land surface models (LSMs) and also have
all variables and processes of a hydrological model. All models account for human water
management related to water use, land use and operation of reservoirs and dams.

Only one model of six, WaterGAP2, was calibrated. It was calibrated for 1319 GRDC
stations, covering ~ 54% of the global land area, by adjusting one effective parameter that
determines runoff from soil in the dependence of soil saturation and up to two additional
correction factors to match the long-term mean annual observed river discharge (see details in
Hunger and Döll 2008; Müller Schmied et al. 2014, 2016; Müller Schmied 2017).

All models simulate surface and subsurface runoff, river discharge, snow cover, evapo-
transpiration and other hydrological variables across the land surface at 0.5° × 0.5° spatial
resolution. A short description of processes considered in the models and model characteristics
is available in the references above and in Hattermann et al. (2017).

Simulations for the historical period starting 1861 until 2005 and for the future period from
2006 until 2099 were previously done in the framework of ISIMIP and are openly available
(ISIMIP 2a: historical period and ISIMIP 2b: projections for future at http://esgf-data.dkrz.de).
Human water management interferences were included in all downloaded simulations.

The monthly observed and simulated discharge in cubic metres per second was
converted to the catchment monthly discharge in millimetres per month by using the
area upstream of the gauge according to the DDM30 (Döll and Lehner 2002) river
network. As the global river network at 0.5 ° spatial resolution does not perfectly
coincide with the GRDC river network, an area correction factor was applied to the
GRDC discharge data to account for that (see Table S3).

3.3 Climate forcing data and climate scenarios

Two climate reanalysis data were used as forcing in the historical period 1971–2010: WATCH
Forcing Data methodology applied to ERA-Interim reanalysis data (WFDEI, Weedon et al.
2014) and data from the Global Soil Wetness Project Phase 3 (GSWP3, Kim 2017). They have
been also used in previous studies on model evaluation (Müller Schmied et al. 2016; Huang
et al. 2017; Zaherpour et al. 2018).
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The climate model data originate from the Coupled Model Intercomparison project
(CMIP5, Taylor et al. 2012; https://pcmdi.llnl.gov/mips/cmip5/). Climate scenarios, which
were used to run simulations, are available in ISIMIP from four models: GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR and MIROC5. All climate model outputs in ISIMIP have
been bias-corrected using a trend-preserving method (Frieler et al. 2017).

3.4 Model evaluation approach

We used three common metrics, Nash and Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970),
percent bias (PBIAS, Moriasi et al. 2007) and bias in standard deviation (Δσ) (Gudmundsson et al.
2012b) (see formulas in Supplementary, Section S1), for the evaluation of models, taking into
account the established in scientific literature thresholds for good and weak/satisfactory perfor-
mance. For orientation on thresholds, we considered values suggested byMoriasi et al. (2007, 2015)
for the catchment-scalemodels and relaxed (i.e. made less strict) these thresholds for the global-scale
models. So, for the evaluation of monthly dynamics, we applied the following thresholds:

NSE good: NSE ≥ 0.5 satisfactory/weak: 0.3 ≤NSE < 0.5,
PBIAS (%) good: − 25 ≤ PBIAS ≤ 25 satisfactory/weak: − 35 ≤ PBIAS < − 25 or 25 < PBIAS ≤ 35,

and performance with NSE < 0.3 or |PBIAS| exceeding 35% was evaluated as poor. The
corresponding thresholds in Moriasi et al. (2015) for the monthly dynamics are for NSE: 0.7
and 0.55, and for PBIAS: 10% and 15%, correspondingly.

And for the evaluation of the long-term mean monthly (or seasonal) dynamics, we used the
following:

NSE good: NSE ≥ 0.7 satisfactory/weak: 0.5 ≤NSE< 0.7,
Δσ (%) good: − 25 ≤Δσ ≤ 25 satisfactory/weak: − 35 ≤Δσ < − 25 or 25 <Δσ ≤ 35.

If these criteria were not fulfilled for seasonal dynamics, i.e. NSE was < 0.5 or |Δσ| was
larger than 35, the performance was assessed as poor.

After these performance metrics were estimated for every basin and model for both forcing
datasets, the following scores were assigned to every criterion:

& Good performance: score = 1
& Satisfactory/weak performance: score = 0.5
& Poor performance: score = 0

and finally summed. The total scores (minimum 0 andmaximum 8 for 4 criteria with 2 forcings)
were translated to an aggregated index (AI) dividing by 8, i.e. the maximum possible score. By
that, the performance of each individual model over each catchment was evaluated with an AI
ranging from 0 to 1. A similar model evaluation approach, considering river discharge and snow
cover, was used in Gaedeke et al. (in review) for gHM evaluation in six Arctic basins.

3.5 Impact assessment approach

Only five of six models were used for impact assessment, because discharge projections
from DBH were not available. For the historical period 1971–2000, we used the
simulated “histsoc” (historically varying climate and socio-economic scenarios) time

Climatic Change

https://doi.org/http://creativecommons.org/licenses/by/4.0/


series driven by four GCMs, and for the future periods, 2041–2070 and 2071–2099, the
“2005soc” time series (socio-economic scenarios fixed at 2005 level for future) for
RCP2.6 and RCP6.0 driven by the same four GCMs. The subscript “soc” means that
human influences such as reservoirs and irrigation were considered in the model
simulations.

The climate impact assessment was performed for a selection of catchments applying
two approaches, (1) the commonly used “ensemble mean” (EM) approach and (2)
approach with the weighting coefficients (WCOs) based on models performance, and
the results of both were compared. The basin selection procedure is described in
Section 4.2.

The WCOs for impact assessment in river basins were assigned considering only
models with AI ≥ 0.5 by dividing AI of this model by the sum of all AIs ≥ 0.5. We
assumed that the WCO approach should be applied to basins with acceptable or good
performance of at least one model having AI > 0.5. Therefore, if only one model has
AI = 0.5 and all others have lower AIs for a certain basin, WCO cannot be assigned to
this model, and impact assessment with WCOs cannot be done due to generally poor
models performance in this basin.

4 Results

4.1 Model evaluation

The results of model evaluation in terms of scores from 0 to 8, aggregated indices from 0
to 1 and average AIs per basin and per model are presented in Table 2. The high scores
≥ 6 and AI ≥ 0.75 are marked as bold, and the basins with all AI < 0.5 (scores < 4) are
shaded grey.

4.1.1 Performance per basin

There are 15 basins among 57 with a good or satisfactory model performance: eight
basins with average AI > 0.5 (e.g. Mekong, Iguacu, Yangtze) and seven basins with
average AI between 0.4 and 0.5 (e.g. Yenisei, Mississippi, Amur). These 15 basins
include six large (> 1 M km2) and five rather small (50,000–150,000 km2). On the other
hand, 11 basins shaded grey in Table 2 showed quite poor performance: all models have
scores < 4 (AI < 0.5), and among them, 8 basins have all low scores ≤ 2 (AI ≤ 0.25) (e.g.
Niger, Colorado, Darling).

In addition, the dependency of model performance on the size of drainage basins was
checked. For that, all catchments were distributed into six classes by drainage area (A)
size in thousands square kilometres: A ≤ 100, 100 < A ≤ 200, 200 < A ≤ 400, 400 < A ≤
600, 600 < A ≤ 900 and A > 900. In all classes, one or several basins with poor perfor-
mance (AI < 0.10) were found, and in all classes except one (200 < A ≤ 400), at least one
basin with an acceptable or good performance (AI > 0.5) was found. The highest average
AI in the 3rd class was 0.46 for Tapajos. So, we can conclude based on results in Table 2
that no dependency of model performance on the catchment size was found. However,
this conclusion cannot be generalized, as the sample size was restricted (only five basins
in the 4th class and six in the 5th).
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Table 2 Total scores and aggregated indices for six models in 57 river basins (listing as in Table S1). The high
scores ≥ 6 and AI ≥ 0.75 are marked as bold, and the basins with all AI < 0.5 are shaded grey. Abbreviations:
MATS—MATSIRO, WGAP—WaterGAP2

BASINS TOTAL SCORES AGGREGATED INDICES (AI) AI
DBH H08 LPJML MATS PCR WGAP DBH H08 LPJML MATS PCR WGAP Aver.

Lena 4 2 4 3.5 4.5 6.5 0.50 0.25 0.50 0.44 0.56 0.81 0.51
Amur 0 3.5 5 0.5 5.5 6.5 0.00 0.44 0.63 0.06 0.69 0.81 0.44
Yenisei 5 3 3 3 3 5.5 0.63 0.38 0.38 0.38 0.38 0.69 0.47
Ob 0 1 0 3.5 2 1 0.00 0.13 0.00 0.44 0.25 0.13 0.16
Kolyma 5 4 5 4.5 5 3 0.63 0.50 0.63 0.56 0.63 0.38 0.55
Olenek 3 2.5 5.5 5.5 2 8 0.38 0.31 0.69 0.69 0.25 1.00 0.55
Mackenzie 0 2.5 2.5 7 6 5 0.00 0.31 0.31 0.88 0.75 0.63 0.48
Saskatchewan 0 1 0 2.5 0 2 0.00 0.13 0.00 0.31 0.00 0.25 0.11
Asssniboine 0 0 0 0 0 2.5 0.00 0.00 0.00 0.00 0.00 0.31 0.05
Red 0 1 0 0 2 2 0.00 0.13 0.00 0.00 0.25 0.25 0.10
Winnipeg 0 2 2 2 2 5 0.00 0.25 0.25 0.25 0.25 0.63 0.27
Churchill 0 0 2 0.5 0 4.5 0.00 0.00 0.25 0.06 0.00 0.56 0.15
Albany 0 1.5 1 3 7.5 2 0.00 0.19 0.13 0.38 0.94 0.25 0.31
N Dvina 0 5 3 4 0 5.5 0.00 0.63 0.38 0.50 0.00 0.69 0.36
Yellow 0 0 1 0 0 4 0.00 0.00 0.13 0.00 0.00 0.50 0.10
Columbia 2 3 1.5 0 2 8 0.25 0.38 0.19 0.00 0.25 1.00 0.34
Mississippi 1 8 4 0 1 8 0.13 1.00 0.50 0.00 0.13 1.00 0.46
St. Lawrence 0 2 2 0 2 2 0.00 0.25 0.25 0.00 0.25 0.25 0.17
Fraser 3 2.5 2 0 1.5 5 0.38 0.31 0.25 0.00 0.19 0.63 0.29
Labe 0 0 0 6 2 7 0.00 0.00 0.00 0.75 0.25 0.88 0.31
Rhine 2 2 2 4.5 2.5 3.5 0.25 0.25 0.25 0.56 0.31 0.44 0.34
Danube 0 2 2.5 3.5 0.5 7 0.00 0.25 0.31 0.44 0.06 0.88 0.32
Neva 0 0 2 2 0 2 0.00 0.00 0.25 0.25 0.00 0.25 0.13
Volga 0 1 0 2.5 4 8 0.00 0.13 0.00 0.31 0.50 1.00 0.32
Don 0 0 0 0 0 4 0.00 0.00 0.00 0.00 0.00 0.50 0.08
Yangtze 8 3.5 4 0.5 6.5 8 1.00 0.44 0.50 0.06 0.81 1.00 0.64
Colorado 0 1.5 0 0.5 0 2 0.00 0.19 0.00 0.06 0.00 0.25 0.08

o 0 0 0 0 0 8 0.00 0.00 0.00 0.00 0.00 1.00 0.17
Panuco 0 2 0 0.5 0 7.5 0.00 0.25 0.00 0.06 0.00 0.94 0.21
White Volta 0 0 0 0 0 7.5 0.00 0.00 0.00 0.00 0.00 0.94 0.16
Niger 0 0 0 1 0 2 0.00 0.00 0.00 0.13 0.00 0.25 0.06
Mekong 6.5 5.5 7.5 7.5 8 8 0.81 0.69 0.94 0.94 1.00 1.00 0.90
Usumacinta 2.5 2 4 7 3.5 8 0.31 0.25 0.50 0.88 0.44 1.00 0.56
Congo (Zaire) 0 0.5 1 2.5 2.5 5.5 0.00 0.06 0.13 0.31 0.31 0.69 0.25
Maroni 2 1 1.5 3 5 8 0.25 0.13 0.19 0.38 0.63 1.00 0.43
Amazonas 4 3 2 7.5 4 7 0.50 0.38 0.25 0.94 0.50 0.88 0.57
Tapajos 0.5 0 1 5.5 7.5 7.5 0.06 0.00 0.13 0.69 0.94 0.94 0.46
Xingu 1.5 0 0 2.5 5 8 0.19 0.00 0.00 0.31 0.63 1.00 0.35
Jari 0 0 0 2 0 7.5 0.00 0.00 0.00 0.25 0.00 0.94 0.20

ns 0 0 0.5 8 1 8 0.00 0.00 0.06 1.00 0.13 1.00 0.36
Limpopo 0 0 0 0 0 6.5 0.00 0.00 0.00 0.00 0.00 0.81 0.14
Itapecuru 0 0 0 2 2.5 5.5 0.00 0.00 0.00 0.25 0.31 0.69 0.21
Parnaiba 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.13 0.02
Rio Grande 0 0 0 2 0 2 0.00 0.00 0.00 0.25 0.00 0.25 0.08
Sao Franciso 0 0 0 5 0 8 0.00 0.00 0.00 0.63 0.00 1.00 0.27

nhonha 0 0.5 0 0.5 0 6 0.00 0.06 0.00 0.06 0.00 0.75 0.15
Iguacu 3.5 6 7.5 2.5 5 6.5 0.44 0.75 0.94 0.31 0.63 0.81 0.65
Paraguai 0 0 0 1 0 4 0.00 0.00 0.00 0.13 0.00 0.50 0.10
Burdekin 0 4.5 1.5 1.5 6 7 0.00 0.56 0.19 0.19 0.75 0.88 0.43
Oranje 0 0 0 0 0 5 0.00 0.00 0.00 0.00 0.00 0.63 0.10
Cooper Creek 0 0 0 0 0 4 0.00 0.00 0.00 0.00 0.00 0.50 0.08
Murchison 0 4 0 0 0.5 6 0.00 0.50 0.00 0.00 0.06 0.75 0.22
Gascoyne 0 4.5 0 0 0 7 0.00 0.56 0.00 0.00 0.00 0.88 0.24
Asuburton 0 7 0 0.5 2 6 0.00 0.88 0.00 0.06 0.25 0.75 0.32
Paraiba Do Sul 0 2 2 4 0 5.5 0.00 0.25 0.25 0.50 0.00 0.69 0.28
Fitzroy 0 2 0 0.5 4 6.5 0.00 0.25 0.00 0.06 0.50 0.81 0.27
Darling 0 0 0 2 0 0.5 0.00 0.00 0.00 0.25 0.00 0.06 0.05
Average 0.94 1.74 1.45 2.24 2.07 5.39 0.12 0.22 0.18 0.28 0.26 0.67 0.29
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Spatial analysis of evaluation results is presented in Section S2 and Table S4
(Supplementary).

4.1.2 Performance per model

The best performing model was WaterGAP2, with average AI = 0.67 over all basins, most
probably resulting from calibration of this model. The MATSIRO and PCR models are
following WaterGAP2 in this respect, but their average AIs are more than twice lower: 0.28
and 0.26 (Table 2). The lowest average performance was estimated for the DBH model.
Table 3 presents a summary of models performance, listing in addition to average scores and
average AI the numbers and percentages of basins with poor (AI = 0), acceptable and good (AI
≥ 0.5) and good (AI ≥ 0.75) performance.

In addition, the original metrics for the monthly and seasonal dynamics and two
forcings for 57 catchments are presented as box plots in Figs. S1–S3 (Supplementary).
The median NSE values are well below zero for DBH, LPJmL and H08, and their
average NSE values are even lower. According to PBIAS and bias in SD, the same three
models show significant overestimation of discharge (by 337%, 222% and 81%, on
average) and amplitude of seasonal dynamics (by 424%, 314% and 176%, on average)
in most of the basins, whereas MATSIRO moderately underestimates discharge, by 21%
on average. According to Figs. S1–S3, WaterGAP2 has the best performance, followed
by MATSIRO with a better performance than of the rest models. For some models,
metrics for the average seasonal dynamics are worse than for the monthly dynamics.

4.1.3 Distribution of catchments in four groups

From the perspective of applying WCOs for use in climate impact assessment, the catchments
can be divided into four groups, based upon their performance:

– Group 1: impact assessment with WCOs is not possible. It includes 15 basins (26% of the
total) with “poor” performance: 11 basins where all models have AI < 0.5, and 4 basins
where only one model has AI = 0.5, and all others 0 or 0.13 (e.g. Yellow and Paraguai).

Table 3 Average scores and aggregated indices per model as well as numbers and shares (in %) of basins where
models performed poorly (AI = 0), acceptable (AI ≥ 0.5) and good (AI ≥ 0.75) for the set of 57 river basins

Model DBH H08 LPJML MATSIRO PCR WaterGAP2

Average score 0.94 1.74 1.45 2.24 2.07 5.39
Average AI 0.12 0.22 0.18 0.28 0.26 0.67
N bas. AI = 0 41 22 28 16 24 0
N bas. AI ≥ 0.50 6 9 9 13 15 43
N bas. AI ≥ 0.75 2 3 2 6 6 29
% bas. AI = 0 72% 39% 49% 28% 42% 0%
% bas. AI ≥ 0.50 11% 16% 16% 23% 26% 75%
% bas. AI ≥ 0.75 4% 5% 4% 11% 11% 51%
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– Group 2: impact assessment with WCOs is possible using only one model per basin. This
comprises 16 basins (28%) where only one model has AI > 0.5; in 14 cases, it is
WaterGAP2 and in two – PCR (Albany) or MATSIRO (Rhine).

– Group 3: impact assessment is possible with two “satisfactory” or “good”
performing models. There are 12 basins (21%) in this group, with two models having
AI ≥ 0.5 (e.g. Volga, Fitzroy).

– Group 4: three to five models with AI ≥ 0.5 can be applied for impact assessment with
WCOs. This comprises 14 basins (25%). Among them is one basin, Mekong, where all six
models have AI > 0.6.

Table 4 The estimated weighting coefficients (black, bold) corresponding to AI larger or equal 0.50 (blue, bold)
for five models in 18 basins. Basins shaded yellow were excluded from impact assessment due to low AI; DBH
column is greyed out as no simulated discharge was available for future

Basins
AI WEIGHTING COEFFICIENTS

Impact 
assessment 
with WCOs?

DBH H08 LPJmL MATSIRO PCR WaterGAP2 H08 LPJmL MATSIRO PCR WaterGAP2

Lena 0.50 0.25 0.50 0.44 0.56 0.81 0.27 0.30 0.43 yes

Mackenzie 0.00 0.31 0.31 0.88 0.75 0.63 0.39 0.33 0.28 yes

Saskatchewan 0.00 0.13 0.00 0.31 0.00 0.25 no

Yellow 0.00 0.00 0.13 0.00 0.00 0.50 no

Mississippi 0.13 1.00 0.50 0.00 0.13 1.00 0.40 0.20 0.40 yes

Volga 0.00 0.13 0.00 0.31 0.50 1.00 0.33 0.67 yes

Colorado 0.00 0.19 0.00 0.06 0.00 0.25 no

Niger 0.00 0.00 0.00 0.13 0.00 0.25 no

Amazonas 0.50 0.38 0.25 0.94 0.50 0.88 0.40 0.22 0.38 yes

Paraguai 0.00 0.00 0.00 0.13 0.00 0.50 no

Oranje 0.00 0.00 0.00 0.00 0.00 0.63 1.00 yes

Darling 0.00 0.00 0.00 0.25 0.00 0.06 no

Add. Basins

DBH H08 LPJmL MATSIRO PCR WaterGAP2 H08 LPJmL MATSIRO PCR WaterGAP2

San�ago 0.00 0.00 0.00 0.00 0.00 1.00 1.00 yes

Mekong 0.81 0.69 0.94 0.94 1.00 1.00 0.15 0.205 0.205 0.22 0.22 yes

Congo (Zaire) 0.00 0.06 0.13 0.31 0.31 0.69 1.00 yes

Limpopo 0.00 0.00 0.00 0.00 0.00 0.81 1.00 yes

Sao Francisco 0.00 0.00 0.00 0.63 0.00 1.00 0.38 0.62 yes

Fitzroy 0.00 0.25 0.00 0.06 0.50 0.81 0.38 0.62 yes
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4.2 Selection of basins for impact assessment

The climate impact assessment was done for 12 selected basins. Firstly, 12 basins were
randomly selected from all hydrobelts (Table 4, upper part) before the model evaluation
was done. However, after the model evaluation, we realized that in six basins (Table 4,
shaded yellow), impact assessment with WCOs would be impossible due to poor model
performance (see assumption in Section 3.5). Therefore, these basins were exchanged by
six additional basins (Table 4, lower part), taking into account three additional criteria,
drainage area size, AI values and number of models with AI ≥ 0.5, to have more or less
even distribution of these factors among all selected basins.

The characteristics of the final 12 selected basins are shown in Table 5. They are
located on all continents, and every hydrobelt is represented by one or two basins.
Further, there are catchments of different sizes, from 98,000 km2 up to 4.6 M km2. Their
aggregated indices vary from small (0.1) up to the highest (0.9), and the number of
models which can be used for impact assessment with WCOs varies from one (Limpopo)
up to five (Mekong). In that sense, it is a representative subset of the whole set of 57
catchments.

4.3 Impact assessment: comparison of results based on two methods

The aim of climate impact assessment was to compare projections for 12 selected river
basins (Table 5) for the future periods 2041–2070 and 2071–2100 with simulations for
the reference period 1971–2000 considering the long-term monthly means and annual
means for RCPs 2.6 and 6.0. For the gHM ensemble averaging, two methods were
applied: the usual ensemble mean approach and the weighted mean approach based on
the model evaluation results (see WCOs in Table 4), and results of both were compared.
The results of impact assessment are presented in Figs. 2, 3 and 4 and Fig. S4. Table 6
and Table S5 provide a summary of differences between impacts and uncertainties
estimated using two methods for RCP 6.0 in the far future period.

Table 5 Characteristics of 12 basins chosen for climate impact assessment (abbreviations: Cont.—continent,
HB—hydrobelt, av. AI—average aggregated index, N mod with WCOs—number of models for which WCOs
could be assigned, As—Asia, NA—northern America, Eur—Europe, SA—southern America, Af—Africa,
Aus—Australia)

Basin Cont. HB Dr. area
(km2)

av. AI N mod
with WCOs

Lena As BOR 2,460,000 0.51 3
Mackenzie NA BOR 1,570,000 0.48 3
Mississippi NA NML 2,964,252 0.46 3
Volga Eur NML 1,360,000 0.32 2
Santiago NA NDR 128,943 0.17 1
Mekong As NST 545,000 0.90 5
Amazonas SA EQT 4,640,300 0.57 3
Congo (Zaire) Af EQT 3,475,000 0.25 1
Limpopo Af SST 98,160 0.14 1
Sao Franciso SA SST 200,789 0.27 2
Oranje Af SDR 850,350 0.10 1
Fitzroy Aus SML 135,860 0.27 2
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Figure 2 shows differences in impacts in terms of deviations of monthly means in the
far future period under RCP 6.0 from those in the reference period estimated using the
ensemble mean and the weighted mean approaches, both averaged over GCMs. This
Figure allows to compare directions and magnitudes of changes and seasonal shifts based
on two methods.

4.3.1 Directions of change

Regarding direction of change, results based on two methods can agree fully or partly or
disagree (see Fig. 2). They agree fully for eight basins: on increase in discharge over all
season for Lena, decrease in all months for Mississippi and Amazonas, decrease in the
first half of a year and increase in the second one for Mekong, increase in cold season
and decrease in summer for Mackenzie and Volga and increase in February–March
(April) followed by decrease in other months for Fitzroy and Sao Francisco. They agree
partly in two cases: increase from October to April/June and decrease in June/July to
August for Santiago and increase in all months except November or October to Novem-
ber for Oranje. However, the directions of change differ between two approaches for
Limpopo and Congo, where impacts based on EM are negative in most of the months,
whereas they are mostly positive according to projections based on the WCO method.

Fig. 2 Differences in impacts in terms of deviations of monthly means in the far future period 2071–2099 under
RCP 6.0 from those in the reference period 1971–2000 for 12 river basins estimated using two approaches: (1)
ensemble mean approach (red) and (2) mean based on weighting coefficients (blue). Note different Y scales used
for 12 graphs
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4.3.2 Magnitude of change

We can also analyse how different are the deviations of monthly and annual means in the far
future period under RCP 6.0 from those in the reference period based on two methods (Figs. 2,
3 and 4; Table 6).

As one can see in Fig. 2, impacts based on both methods are practically identical for
Mekong and quite similar for Amazonas. This can be explained by a quite good performance
of all five models for Mekong resulting in almost equal WCOs for all models and the
application of two models with good and one with satisfactory performance for Amazonas.
Note that these two catchments have the highest average AI values in the set of 12 basins.

There are only small monthly differences in impacts between two methods for Sao
Francisco and Mississippi, not exceeding 5–7%, and mean annual differences are even lower:
1 and 3%, respectively.

For Congo and Fitzroy, impacts based on WCOs are higher than those based on EM: by 5–
9% for Congo, and by 6–11% for Fitzroy in almost all months. The mean annual differences
are smaller, counting to ca. 5.5% in both cases.

Fig. 3 Estimated impacts of climate change on mean annual discharge as absolute differences in cubic metres per
second between the future (mid and far) and reference periods for RCP 2.6 and RCP 6.0 using the ensemble
mean approach (five models, red boxes) and mean with weighting coefficients (one to five models, blue boxes)
for the Mackenzie, Mississippi, Santiago, Amazonas, Sao Francisco and Oranje basins
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Projections for two Arctic basins, Mackenzie and Lena, show medium to large differences
in both directions in 4 to 5 months, ranging from − 16 to + 18% for Mackenzie, and from − 7 to
+ 26% for Lena, but small annual differences due to “compensation” of negative and positive
monthly deviances.

Impacts for Volga using two methods are different during winter and spring months, going
up to 40% in March. Also, the mean annual impacts differ notably: by 10%.

And for Santiago, Oranje and Limpopo, differences are large in almost all months, reaching
91–95% for the first two and 205% for Limpopo. The mean annual differences for these basins
are also large: 30, 36 and 51%, correspondingly (Table 6). These three basins have the lowest
average AI values among all 12 catchments.

4.3.3 Spreads in projections

Figures 3 and 4 allow to compare mean annual impacts obtained with both methods as
well as uncertainties represented by projection spreads. The full spreads in both methods
are due to both driving GCMs and impact models, gHMs. In case of the EM approach,
spreads in simulations are due to four GCMs and five gHMs, and in the WCO approach,
they are due to four GCMs and one to five gHMs, and they differ depending on river

Fig. 4 The same as Fig. 3 for the Volga, Lena, Limpopo, Mekong, Congo and Fitzroy basins
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basin and approach used. The differences in spreads between two methods are estimated
in percent (Table S5) and shown as arrows in Table 6.

Comparing percentiles from 25 to 75% represented by boxes in Figs. 3 and 4, we can see
that

– in three cases, spreads are practically equal (Mekong, Mackenzie and Sao Francisco) and
in one case slightly increased (Volga),

– for five basins, spreads based on the WCO method are reduced by 15–31% (Amazonas,
Fitzroy, Lena, Santiago and Oranje) compared with the EM approach,

– in three cases (Mississippi, Congo and Limpopo), spreads of projections based on the
WCO are reduced quite significantly, by 53–82% (Table S5).

Table 6 Differences in impacts in the far future period related to reference period under RCP 6.0 in terms of
deviations of monthly and annual means and spreads (as shown in Figs. 2, 3, and 4) between two approaches: the
weighted mean and the ensemble mean, as well as occurrence of seasonal shifts when the weighted mean
approach is applied. Positive/negative numbers mean that the WCO-based impacts show higher/lower mean
monthly deviations (Fig. 2) or mean annual absolute differences (Figs. 3 and 4) compared with the EM-based
ones, and negative differences in spreads mean that the WCO-based impacts have lower spreads than the EM-
based ones

Basin Differences in mean monthly Diff. in mean annual Seas. shifts? Diff. in spreads

Box:
25–75%

Min/
max

Mekong Negligible, < 1% 0% No ≈≈ ≈≈
Amazonas Small decrease, < 2% Small No ↓ ≈≈

− 1%
Sao Francisco Small decrease (I–IV)

or increase (VI–XII)
Small No ≈≈ ≈≈

IX–X: 5–7% 1%
Mississippi Small increase all months Small No ↓↓↓ ↓↓

VII–IX: 5–7% 3%
Congo (Zaire) Small/medium increase all months Moderate, 5.3% No ↓↓↓ ↓↓↓

I: 6%, V–IX: 5–9%, XII: 7% Change of sign
Fitzroy Small to moderate increase 11 months Moderate No ↓↓ ↓↓

I–IV: 8–11%, VIII–X: 6–10%,
XII: − 5%

5.5%

Mackenzie Medium/large: 5 months, both direct. Small, < 1% Yes ≈≈ ≈≈
I–V: (− 16%, + 18%) (Compensation)

Lena Medium/large: 4 months, both direct. Small, 2.4% Yes ↓↓ ↓
IV: 26%, VII–VIII:

(− 5%, − 7%), XII: 7%
(Compensation)

Volga Large increase: 5 months Moderate No ≈≈ ↓↓
I–IV: 15–40%, XII: 8% 10%

Santiago Large increase 10 months Large Yes ↓ ↓↓
I–VI: 17–91%, IX–XII: 9–13% 30%

Oranje Large increase 11 months Large Yes ↓↓ ↓↓↓
I–X: 14–95%, XII: 16% 36%

Limpopo Large increase 11 months,
decrease 1 month

Large Yes ↓↓↓ ↓↓↓

I: 205%, II–XI: 13–79%,
XII: −21%

51%

Legend: ≈≈ ± (1–10)%, ↓ (− 11, − 20)%, ↓↓ (− 21, − 50)%, ↓↓↓ (− 51, − 82)%
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And comparison of the full uncertainty ranges, from minimum to maximum in Figs. 3 and 4,
shows that there are four possible options: either min/max ranges are practically the same for
both methods (four cases), or they are decreased slightly (by < 20%, one case), moderately (by
21–50%, four cases) or significantly (by 51–82%, three cases), when the WCO method is
applied (Table 6; Table S5).

In addition, Fig. S4 allows comparison of projections of mean monthly impacts and
uncertainty ranges in cubic metres per second for RCP 6.0 in far future against the reference
period based on two approaches for four basins. As one can see, projection spreads are
moderately (Mississippi) or significantly (Mackenzie, Volga and Limpopo) smaller when the
WCO method is applied. The projected peak of discharge in February and seasonal dynamics
for Limpopo using the EM approach are about 4–5 times higher compared with peak and
seasonal dynamics simulated with WCOs. When models with poor performance are excluded
in the second approach, the peak and mean monthly dynamics become much lower, and
dynamics in the reference period is much better comparable with the observed one (the latter
not shown). So, the reduced uncertainty of projections based on WCO results not simply from
the fact that less models are applied, but from using less models with better performance.

Of course, one explanation for the reduction of spreads when the WCO method is used is
clear: the EM method is always based on five models, and in most cases, the WCO method is
applied with less than five models (except for Mekong). However, we can also perceive that
using the EM approach and including also poorly performing models in an ensemble, we
“artificially” increase uncertainty of projections. This can be understood by considering an
example of including in an impact study along with two-three well-performing models one
else model with a significant overestimation of discharge by 200–300% (there are similar cases
in our study) and looking how spreads would increase after adding this model.

5 Discussion

Weak and poor performance of gHMs: what to do? When we see the weak and poor model
evaluation results in many basins (Table 2, Table 3), three questions arise: (1) what are the
reasons behind this, (2) what could be done to improve the models’ performance and (3) what
should modellers do in basins where the performance of all models is bad: still use all models
to estimate an ensemble mean with full uncertainty ranges?

One of the reasons of weak and poor performance is that gHMs are usually not calibrated at
the basin scale. Grasping the general dynamics with a simple and robust structure and a few
parameters has been considered more essential. Besides, there are differences in representation
of processes in the models that could directly influence their performance. A further possible
reason is a poor quality of input data, especially precipitation, in some regions.

What can be done? Since many gHMs have matured recently, it is perhaps time to pay more
attention to model performance, appropriate parameter ranges, sensitivity analysis and cali-
bration of discharge at the monthly time scale. Besides, checking the quality of input data, in
particular precipitation, could be useful. The results of model evaluation in this study and
differences in model performance suggest that the calibration of gHMs can improve their
historical time performance and could lead to increasing credibility of projections for the
future. The successful experience with WaterGAP2, as well as with H08 (Mateo et al. 2014)
andMac-PDM.09 (Gosling and Arnell 2011), is promising for other models. The calibration of
gHMs is recommended, keeping all parameters within appropriate ranges and preserving the
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water balance. Of course, calibration only to the observed discharge is generally not sufficient,
as there is no guarantee that a model that performs well in the historical climate will also
perform well under changed climate conditions in future. Nevertheless, it is the first step to be
done.

However, our model set includes two LSMs and one DGVM, with different concepts
solving water balance linked to vegetation dynamics and carbon cycle, which makes
calibration of such models challenging. This also suggests that the inclusion of other
variables, like evapotranspiration, in addition to discharge in model evaluation and
calibration could be fruitful (Schaphoff et al. 2018), not least to identify model-
structural causes of simulation biases in addition to biases occurring due to the input
data quality, in particular precipitation (Biemans et al. 2009). If a model significantly
overestimates discharge (e.g. see Figs. S2, S3), this means that, most probably, it
significantly underestimates evapotranspiration. Thus, bringing water balance closer to
the observed one, modellers could improve representation of other important processes
as well.

In the basins where performance of all models in the historical period is poor, the
projections should be marked as being highly uncertain, for example, by shading in the maps
(Krysanova et al. 2018).

Arguments for and against model calibration There are no doubts that model calibration
usually improves model’s performance in the historical period. Without calibration, the
performance of gHMs is usually poor, often reaching several hundreds percent bias and
large negative values of NSE (see Figs. S1–S3, Supplementary). Significant overestima-
tion or underestimation of discharge in most cases means that other water flows are
strongly underestimated/overestimated. Besides, we cannot state that gHMs are physi-
cally based models which do not need calibration of parameters.

The arguments for and against model calibration are directly connected with the arguments
pro and contra model performance, which were discussed in detail in Krysanova et al. (2018,
Table 3). Although not shown specifically in the present analysis, arguments in the
Table referred to above, along with examples from this paper and other recent studies
(Donnelly et al. 2016; Roudier et al. 2016; Hattermann et al. 2017), suggest that good
performance of hydrological models in the historical period (after or without calibration)
might increase confidence of projected climate impacts and decrease the spreads in projections
related to hydrological models.

On the other hand, model calibration is of course not a panacea, and if models perform well
without calibration (e.g. MATSIRO, PCR and LPJmL for the Mekong in our study), they
could be applied for impact assessment without calibration.

Model robustness for future climate Regarding calibration of a model in the historical
period and its application under changed future climate conditions mentioned above, this
problem was discussed in several recently published papers (Choi and Beven 2007; Refsgaard
et al. 2013; Thirel et al. 2015; Krysanova et al. 2018). In the latter one, the new guidelines for
model evaluation, including several additional tests to investigate robustness of hydrological
models under changed climate condition, were proposed: (a) differential split-sample test for
multiple gauges, (b) proxy climate test and (c) comparison of observed and simulated trends in
discharge. However, such tests go far beyond the relatively simple and easy calibration to
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river discharge at the basin outlet, which we suggest for gHMs in this paper. Nevertheless, the
further tests may follow.

Uncertainty and projection spread The word “uncertainty” is used to denote the full
uncertainty of hydrological models from several sources and also for uncertainty of
deterministic models applied within the GCM-HM ensemble. If we treat the full uncer-
tainty related to HMs as uncertainty of models applied in a probabilistic mode with
sampling of model parameters, then of course it will be much larger compared with
spreads of deterministic models applied with single parameter sets. Besides, the full
uncertainty can also include variations due to diverse input data and changes in model
structure. However, climate impact assessment is usually done applying hydrological
models in a deterministic mode, with one set of parameters each (assigned or calibrated),
within a multi-GCM-multi-HM ensemble, as was also done in our study. The shares of
total variation or projection spread, often also called uncertainty (e.g. Haddeland et al.
2011; Dankers et al. 2014; Beck et al. 2017; Vetter et al. 2017), related to RCPs, GCMs
and HMs could be quantified and compared. The quantification of uncertainty shares was
not done in this study; the spreads were only compared visually and numerically (Figs. 3
and 4; Table 6; Table S5).

Not only model performance is important However, not only satisfactory model perfor-
mance in historical period is needed for improving impact assessment. The inclusion of
processes that may play role under changing climate conditions (such as CO2 fertiliza-
tion, glaciers, permafrost and groundwater) in the impact models is also of great value.
For example, many gHMs do not consider CO2 fertilization effects (see Milly and Dunne
2016), thus tending to overestimate water scarcity. Therefore, models considering this
aspect, like LPJmL and MATSIRO, would be better suited for climate impact assess-
ments than other models, which do not include such effects (Döll et al. 2016). Another
aspect could be groundwater representation which is still crude in many models. For
example, the study of Pokhrel et al. (2014) demonstrated that water stress in Amazonas
could be heavily overestimated due to lack of groundwater processes in a model.

Human impacts in the models One important criterion for basin selection in this study
was their size: they should be large enough to accommodate the output resolution of
gHMs. This was an important reason to focus on large basins and not on smaller
naturalized headwater parts of them. It is obvious that most of these large basins do
include significant human interventions, like reservoirs and water abstraction, especially
in dry areas, and ignoring them would lead to even weaker model results. For example,
in the paper by Veldkamp et al. (2018), it was shown that the inclusion of human
influences improved the gHM performance. Yes, parameterization of human manage-
ment in the models added another layer of complexity, but it was possible using available
global datasets, though not on the year-to-year basis but as average over the period. The
modellers used state-of-the-art approaches and datasets for their integration. Neverthe-
less, there are of course limitations in the parameterizations (e.g. Döll et al. 2016), and a
community effort is needed to handle them. In conclusion, due to three reasons, (i) there
are hardly large natural basins with good observation data available, (ii) the models
include currently the best available information on handling human impacts and (iii) the
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models show certain improvements when including human impact parameterizations, we
decided to consider the simulation setup including human impacts.

Ensemble mean approach As discussed by other authors before (Beck et al. 2016, 2017;
Zaherpour et al. 2018) and as follows from our study, the EM approach is not the best and
most reliable method for impact assessment using gHMs. It is suitable if all models perform
well, or at least more than a half of them perform well or satisfactory, as the examples of
Mekong and Amazonas show. Using the EM approach for impact assessment after the model
evaluation is much better, because in such a case, the simulated impacts and uncertainties
could be better interpreted. Besides, as follows from our analysis (Section 4.3.2; Table 6), the
EM method is better suitable for analysis of mean annual than mean monthly projections.

There are also other problems above the improving model performance in basins with good
data, for example poor quality and temporal-spatial deficits in observed river discharge data,
parameter estimation for basins with considerable uncertainty in precipitation and parameter
transfer to ungauged basins. The use of remote sensing and satellite observations may provide
promising pathways to solve some of these problems.

6 Summary and conclusions

6.1 Summary of model evaluation

Comparing model evaluation results for six models, we can conclude that performance of
WaterGAP2 was quite good, with acceptable AIs for 75% and good AIs for 51% of all
catchments, and other five models showed a weak or poor performance in most of the
basins. One obvious reason is the calibration of WaterGAP2. Other possible reasons and
ways to solve the problem are discussed in Section 5.

Note that currently, research is ongoing for additional objective functions and calibration of
WaterGAP2 to more than one variable, which will allow to exclude correction to the observed
discharge applied now at some of the stations.

In 15 river basins of 57 (26% of all), all models showed low evaluation results, and in
these basins, impact assessment with the WCO approach is not possible, and the
application of the EM approach is questionable. In 16 basins (28%), only one model
showed acceptable or good evaluation results (AI > 0.5), and, strictly speaking, the
assessment of impacts is possible only with this one model. The third group includes
12 basins (21%), where impact studies could be done with two satisfactory or good
performing models with AI ≥ 0.5. And in the rest 14 basins (25%), three to five models
can be applied for impact assessment with WCOs.

6.2 Summary of comparison of impacts and uncertainties based on two methods

Comparison of climate change impacts using two methods leads to the following
conclusions: from 18 selected river basins: (a) impact assessment with WCOs was not
possible in six of them (~ 33%) due to poor performance of all models, (b) comparison of
impacts in terms of mean monthly and mean annual discharge demonstrated negligible or
small differences between impacts based on two methods in four basins (~ 22%), and
differences in mean monthly discharge, mean annual discharge or both were moderate or
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large in eight cases (~ 44%), whereas the mean annual differences were lower compared
with the mean monthly. However, these results cannot be generalized yet and require
further checking.

Both methods of impact assessment, based on EM and WCOs, provided practically the
same results for Mekong and similar results for Amazonas. Hence, the application of the EM
approach could be justified in river basins, where all or more than a half of models perform
well or satisfactorily.

The comparison of projection spreads derived from two methods and represented by 25–75%
percentile boxes and the full ranges for mean annual changes in far future under RCP 6.0 for 12
investigated basins shows that they are equal or similar in four basins, notably decreased by 15–
50% in five catchments and significantly decreased by 51–82% in three basins when the WCO
method is used (Table 6; Table S5). We can conclude that the reduced uncertainty of projections
based on theWCOmethod comes not simply from the fact that less models are applied, but from
using less models with better performance.

6.3 Conclusions

The following conclusions can be made from the study.

Model evaluation is important. Our results suggest that prior to climate impact assess-
ment, an evaluation of the global or regional hydrological models against observational
time series should be done. Preferably, such evaluation has to be performed at the same
(or finer) temporal scale at which the impacts are later presented and analysed. Also, the
results of previous model evaluations at a suitable scale could be used for the interpre-
tation of impact results.
The improvement of gHM performance, albeit challenging, is needed for making impact
assessment studies more reliable and their results more credible. For that, model
calibration using a few sensitive parameters would be meaningful to be applied for
gHMs. Here, good quality of climate forcing data, which could influence performance
of gHMs, is important.
The application of the WCO approach after model evaluation for climate impact assess-
ment is a more reliable method compared with the EM approach, as this method can
provide impact results that can be transmitted to end-users with higher credibility. The
application of the WCO method could be especially recommended, if the mean monthly
impacts and seasonal changes are of interest. And the EM method is better suitable for
analysis of mean annual than of mean monthly changes. However, a good historical
performance of a model does not solve all the problems, and the inclusion of hydrological
processes which may play a role under warmer climate is indispensable as well.

As follows from our study, the way to improve credibility of projections under climate change
could be outlined as follows:

& Doing model evaluation before impact assessment, and then applying the WCO
method if mean monthly projections are of interest, or the WCO or EM method if
only average annual discharge should be projected. In case of projections for
extremes, the models should be also evaluated for extremes in the historical period.
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The catchments with poor performance of all models and ungauged catchments
should be indicated on the maps with projections as highly uncertain, e.g. by shading.

& Including model calibration in gHMs could improve their performance in the histor-
ical period, increase credibility of projections and decrease uncertainty related to
hydrological models in many catchments.

& To go beyond that, the suggested model evaluation approach based on discharge should be
extended to a more holistic assessment of several variables (discharge, evapotranspiration,
snow cover) to calibrate and evaluate the models.
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