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Abstract

Agent-based models continue gaining popularity for simulations focusing on the microscopical
description of social and other complex systems. Meanwhile, research on the method itself continues
as novel findings in artificial intelligence excel the abilities to simulate individual decision making.
Nevertheless, in between traditional rule-based ABMs and novel tools a lack for a transparent
introduction of bounded rationality is imminent. Especially in microscopic traffic models a necessity for
agents not entirely abiding by the traffic law can be discovered.

Recently, with Future State Maximization a promising description of intelligent behavior has been
proposed. Agents making decisions according to this theory aim at maximizing the number of states
they can reach in the future. This notion has so far been proven to enable the simulation of animals
as well as humans. In both cases the agents exhibited behavior beneficial to the overall outcome,
thus cooperating. If it is possible to also depict agents who do not necessarily cooperate, this method
could prove to be a good fit in between rule-based and machine-learning-based ABMs.

We create a model of a road section populated with agents depicting cars. These entities are fitted
with a future state maximizing decision making algorithm and face various scenarios. We then
compare the results with common algorithms describing human driving behavior and assess the
applicability of this new method to agent-based models in general.
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Introduction

Agent-based modeling (ABM) is rising in popularity. More powerful computation technologies and an
increase of microscopic simulations of complex, social systems brought forth ABMs ranging from
topics as imminent as pandemics (Rockett et al., 2020) to more abstract use cases such as cardio-
vascular systems (Bora et al., 2019).

While it is hard to clearly define the realm of agent-based modeling, a common understanding is, that
individual, mobile entities independently acting upon a dynamic environment build the foundation of
such a model (Grimm et al., 2005). Methodologically, these models are mostly implemented as rule-
based models. The agents follow certain rules given by the modeler (Epstein, 1999). This sets such
models into stark contrast to equation-based models which rely on differential equations to describe
the model behavior (Van Dyke Parunak et al., 1998). The idea behind rule-based modeling is to
provide an algorithmic description of the attributed behavior (Epstein, 1999; Jager, 2019). In many
cases of social simulation this attributed behavior is targeted at simulating intelligent decision making.
Such intelligent agents are by some considered as the pinnacle of agent-based modeling (Bonabeau,
2002).

Compressing intelligent decisions into a set of rules however, has shown to cause some shortcomings
(Jager, 2019). Every behavior that is to be described requires its own specific rule (Epstein, 1999).
Moreover, the set of rules is also inadvertently biased (Jager, 2019). The intelligent decision of the
agents is not so much simulated as it rather is defined as such. However, recently the idea has
caught on to incorporate more advances algorithms in the agents (Manson et al., 2020). The past
decade has brought about vast advances in the field of artificial intelligence (AI). It is reasonable to
consider findings in this area as a possible solution for the lack of simulated intelligence in the agents.

Machine learning algorithms have gained in popularity in many research areas. As such they have
also been incorporated in agent-based models to achieve artificial intelligence of agents (Jager,
2019). Artificial neural networks prove to be capable of simulating behavior too complicated to be
described in a reasonable set of rules. They can be fitted to existing data, yielding a matching
behavior in the agents themselves (Jager, 2019). However, such algorithms are essentially black
boxes and prone to overfitting (Bilbao and Bilbao, 2017). Artificial neural networks can in principle
exhibit the same result with vastly varying parameters. In some areas it may be favorable to rely on
an algorithm which has a more direct input-output connection. One approach to this is to limit the
number of input-output relations and provide clear meaning to them with Fuzzy Cognitive Maps
(Kosko, 1986). In contrast to artificial neural networks and Fuzzy Cognitive Maps, both essentially
systems of linearly connected rules, another solution could be "one rule to rule them all".

Future State Maximization

The behavior of systems ranging from cosmological (Bousso et al., 2007) to biological and other
domains (Martyushev and Seleznev, 2006) has recently been described using a single, fundamental,
entropy-based formalism. Similar advances in Al research have incorporated this mechanism as an
approach to approximate intelligence in known environments (Cerezo and Ballester, 2018;
Charlesworth and Turner, 2019; Wissner-Gross and Freer, 2013).

The connection to the entropy-based advances in other fields has mostly been established by
Wissner-Gross and Freer (2013). Their Causal Entropic Forcing (CEF) exhibited the first ever
successful accomplishment of the string-pull test (Melis et al., 2006) by an artificial intelligence. This
paper by Wissner-Gross and Freer (2013) sparked more in depth research into the matter. In effect,
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CEF was used to simulate the formation of columns of people in a narrow passage way (Ebmeier,
2017) or the flocking of birds (Charlesworth and Turner, 2019). Hornischer et al. (2019) expanded
their research to a more in depth analysis of interactions within CEF directed entities.

A similar approach to CEF was taken by Cerezo and Ballester (2018) who were more focused on the
computational part in what they introduced as Fractal-Al. Their approach differs from CEF in that it
does not primarily search for a maximum in entropy, but rather maximizes reward by so called
walkers (Cerezo and Ballester, 2018). In physical terms, these walkers can be interpreted as particle
representations of thought processes. Somewhat earlier Klyubin et al. (2005) pioneered the idea of
CEF with their Empowerment prospect. Herein, the agent rather than maximizing the entropy of its
state aims at maximizing its control over said state (Klyubin et al., 2005).

While there are some significant differences in between Causal Entropic Forcing, Fractal-Al and the
Empowerment theorem, they still share a common principle. Charlesworth and Turner (2019)
embrace an umbrella term to cover this general idea as Future State Maximization (FSX). We shall go
on to use this term as an understanding of an agent which aims to enlarge its space of possible
future states. A closer explanation of the principle can be found in the methods section below.

Traffic modeling as boundary object

Agent-based models are often considered where a microscopic description of human interaction is
necessary. With the advent of autonomous vehicles it is paramount to confront their algorithms with
realistic road usage scenarios. However, human driving behavior can only be depicted by including
bounded rationality.

Traffic models range from macroscopic, top-down models to microscopic models of individual cars
(Kotusevski and Hawick, 2009). The latter can be pictured as a form of agent-based models (Hidas,
2002). Commonly the movement of the cars is simulated using algorithms based on the car-following
model by Gipps (1981) (Ciuffo et al., 2012). These models generally share the rule-based approach
with other common agent-based models. Thus, agents mostly adhere to traffic laws, which implies
problems introducing bounded rationality (Jager, 2019).

While bounded rationality shows effects on emissions, these shortcomings do not infringe the overall
outcome vastly on the larger scale of most traffic models (Tang et al., 2015). However, for certain
applications it is paramount to investigate such behavior i.e. shared spaces without clear lanes to
follow, or autonomous car algorithms taking into account human driving behavior.
Microscopic traffic models of road sections, therefore, can act as a good boundary object to assess
the capabilities of Future State Maximization to remedy the outlined shortcomings.

However, a striking resemblance in the FSX models proposed to date is the emergence of cooperative
behavior. Be it by column formation (Ebmeier, 2017), providing aerodynamic benefits (Charlesworth
and Turner, 2019) or successful attempts at a test aimed to examine cooperation of animals (Melis et
al., 2006; Wissner-Gross and Freer, 2013). Realistic agent-based models can only be deployed if
these effects can also break down and bounded rationality can lead to detrimental effects (Jager,
2019). In the case of our microscopic traffic model, cooperation should lead to the agents reaching
their destination as quick as possible. In the event of an obstacle blocking one lane, cooperative
behavior is key for quick and effective merging onto the other, populated lane (Bae et al., 2020).
Thus, our agents need to take advantage of others cooperative behavior (Bae et al., 2020) while also
acting cooperative towards others. In effect, a short travel time without collisions is the collective
objective.



Method

As Future State Maximization embodies a common principle found in multiple applications, no clear
definition of an algorithm exists. No comparison of the various implementations published to date
exists as of the writing of this report. However, all of the published examples exhibit somewhat
intelligently behaving agents.

Cerezo and Ballester (2018) present an intuitive and comprehensive description of an algorithm for
their variant. This was utilized as a guide line for the methodological part of the work at hand.
Formalisms found in papers stemming from the Causal Entropic Forces line of FSX-research focus on
calculation of state entropy (Hornischer et al., 2019). In comparison, the algorithm of Fractal-Al is
more in line with the perception of "maximizing future states" (Cerezo and Ballester, 2018;
Charlesworth and Turner, 2019). It combines the notion of walkers as entities sent into the future
state space with a mechanism for the (re-)distribution of these. Thus, in contrast to causal entropic
forcing (Wissner-Gross and Freer, 2013) it features the ability to introduce a utility function (Cerezo
and Ballester, 2018). What had previously been a method to sample the future state space of the
agent (Hornischer et al., 2019), also referred to as its causal cone (see Figure 1), is put into focus by
(Cerezo and Ballester, 2018).

Walkers are created whenever the agent faces a decision. They initially reside at the very state of the
agent they are spawned from. Consequently, according to Fractal-Al (Cerezo and Ballester, 2018),
each walker draws and performs one random action ag from the agent's action space. The action
space can be either discrete or continuous. Each initial action is stored with the identity of the walker
performing it as a crucial part of the walker's integrity (Cerezo and Ballester, 2018). Note that any
walker now finds itself at a new state s;4+1 = f(st, ao). Note that f is required to be injective.

This state can now be evaluated as featuring the
walker either alive or consumed via an evaluation
function g. As such, g maps the state space to
the binary result of dead or alive and is thus also
required to be injective. Dead walkers are not
abandoned but re-initiated. For each walker that
seizes to be alive a random living walker is
duplicated, vyielding two walkers with identical
initial choice and walker state (Cerezo and
Ballester, 2018). Henceforth, each walker draws
another random action a; and the process
repeats. Similar to CEF, the iterative process ends
at the so-called horizon 7 € Ng where walkers
have ultimately performed action a and reached
their final walker states (Cerezo and Ballester,
2018; Hornischer et al., 2019; Wissner-Gross and
Freer, 2013).

“A to‘l'T

Figure 1: The causal cone of an agent and
This can be followed through in Figure 1 wherewalkers scanning it up to the agent's horizon T.
an Agent at tg spawns 8 walkers. Note that once The agent’s state is depicted as red dot at the tip
walkers (depicted as green strings) hit the edgeof the cone, whereas the walkers are shown as
of the cone and thus cease to exist, a living othergreen strings. At t; a causal slice can be
walker duplicates. observed.
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In effect, even though walkers collide with the boundary in the process, the algorithm ensures that
the amount of walkers stays constant.

As a result, the distribution of the walkers approximates the distribution of future states of the agent
which can be reached within the horizon and are mapped into the survivable realm by g. The
consequent action of the agent spawning these walkers is then the choice with the most walkers
surviving in the discrete action space or the average of all surviving walkers in the continuous case
(Cerezo and Ballester, 2018).

A major advantage of the Fractal-Al algorithm is the possibility of incorporating a utility function
(Cerezo and Ballester, 2018). This is accomplished by skewing the walker distribution such that it
aligns with the distribution of reward as given by the utility function (Cerezo and Ballester, 2018).
Obviously, the effective reward in any future state can only be known where a walker is placed.
Hence, somewhat in contrast to causal entropic forcing, Fractal-Al relies on a sufficient number of
walkers to arrive at an appropriate scanning density. This shall become evident in the sensitivity
analysis found in the results section.

Environment

A notion of state relies on an environment it resides in. The environment utilized to inhabit the car-
like agents is based on an infinite, two-dimensional, Cartesian coordinate system. Within these
coordinates exist areas which can be understood as accessible. Any area outside these renders a
walker interfering with it dead. Other agents are also considered as inaccessible areas. Hence, the
agents are motivated to stay within the bounds of the accessible areas, yet clear of other agents.

As Cazzolla Gatti et al. (2020) argue, any action taken, and thus any decision, sparks an infinite
number of future possibilities. Therefore, it is paramount to distinguish two different ways for the
environment to evolve:

e Actual time-steps (for agents)
e Virtual time-steps (for walkers)

The prior resembles the intuitive case in which every agent executes its decision at time ¢ and
consequently arrives at a new state in ¢4 1 impacted by this decision. However, prior to this
execution, the decision must be found. At this stage the actual development of the environment is
unknown. The virtual time-step consequently reveals an approximation of future time-steps.
Therefore, it is possible to incorporate an agent's beliefs about future development. Within this report
only agents with equal beliefs are considered. This common expectation is that fellow agents follow
their trajectory linearly. However, it would prove trivial to introduce e.g. the belief that others will
slow down if oneself does not for particular agents.

An actual time-step

The movements of the agents are processed sequentially. Every agent is subsequently called to
decide whether to brake or accelerate and where to steer. These decisions are then executed such
that all agents arrive at an agent state s;41.

Every single agent thus spawns a number of walkers which in turn perform virtual time-steps through
the estimated future state space. In contrast to the actual time-step which re-positions agents these



virtual time-steps do not alter the environment of the agents. Nonetheless, the dynamics of the
environment including movement of other agents are estimated within a virtual time-step.

A virtual time-step

In order to find a dynamic view into the future state space, the trajectories of all agents are pursued.
Therefore, we arrive at a linear development of the difference of the two prior states. Thus, virtual
states vs,, can be found through actual states as; and as;_;. For a well defined sum and difference
of states the initial virtual state vsg could be denoted as:

vsg = as; + Aas; (Equation 1)

Where Aas; = as; — as;_1. All further virtual states are then found by continuing these
trajectories, as in:
VS, = VSp—1 +Aasy | n>1 (Equation 2)

These virtual time-steps construct the environment scanned by the walker entities. The future states
a walker experiences may differ from the actual state space the agent ultimately encounters. Hence,
a virtual time-step can be regarded as the expectations the agent has about the future development
of its surroundings.

Agents

The agents, stylized cars, are rectangular with a length [, and a width w,. Their movement can be
forwards or backwards with the limited speeds vy.,q and Vpwq. A minimum absolute speed Vi ir is

required to turn in any direction. However, the vehicle turning angle is limited by d;. The pivot point
for turning is set in the center back of the agent as depicted in Figure 2.
Acceleration and deceleration are idealized as being linear and limited by af,q and apwq. The

movement of the walkers is restricted by the same parameters.

Table 1: Parameters for the car-agent properties.

Parameter Name Value Unit Original value (Gipps, 1981)
Length lq 4.0 m ~ 6.5

Width Wa 1.8 m -

Max. Speed forwards | Vfwd 24.0 m/s ~ 20.0

Max. Speed | Vbwd 3.0 m/s -

backwards

Min. turning speed Umin 1.0 m/s -

Max. turning angle 0y 0.28 rad -

Max. acceleration afwd 3.0 m/s? ~ 1.7

Max. deceleration dbwd 6.0 m/s’ 2% Qfyq
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Figure 2: Two agents and their velocity before and after they have come to a decision. The
orange agent decides to turn left, while the green agent decides to decelerate.

All of these parameters of movement were set to closely resemble the parameters of Gipps (1981)
while also taking into account an average modern car. Their values are listed in Table 1.

As the agents in the model are future state maximizing agents, three additional parameters for the
decision process have to be considered: The horizon 7, the number of walkers [N and the urgency to
reach the objective a. While the parameters of movement will remain constant, these three
parameters remain subject of investigation throughout this report.

Driving behavior

The driving behavior of the agents emerges from the set limits and their decision process. The
decision is composed of two objectives: Survival as given by g and a reward function. The
achievement of both objectives follows a similar approach. In contrast to Cerezo and Ballester (2018),
we decided to refrain from a single reward function encoding survival and utility functionality. This
choice was taken in order to have a simpler mechanism to balance and assess the influence of each
single objective.

Survival is the primary objective. The state variable encoding the survival of a walker is binary: It
equals 1 if the walker is alive and O if it was consumed. After all walkers have taken a step in to the
future state space, those walkers intersecting or going beyond the boundary of the accessible area
are marked as consumed.

Each consumed walker is then replaced by a duplicate of a random surviving walker as laid out in
Algorithm 1.



// Start: Collect all of the N walkers which stayed alive
walkers new := Set()
FOR i := 0 TO N DO BEGIN

IF walkers(i).alive

// Add alive walkers to “walkers new”

THEN walkers new.add(walkers(i))

END
END
// Determine how many walkers were caught dead
missing := walkers.length — walkers new.length

// Fill up the now missing walkers with new walkers
FOR j := 0 TO missing DO BEGIN
// Create a new walker entity
clone := Walker()
// Choose a random walker out of the surviving ones
random walker := random choice(walkers new)
// Copy the state and the initial decision into the new one
clone.state = random walker.state
clone.init decision = random walker.init decision

walkers new.add(clone)
END

Algorithm 1: Ensuring a stable number of walkers by cloning living walkers upon the death of a walker.

Additionally, a reward is introduced to motivate the agents to move. This reward function 7 is defined
as r(d) = é where d is the distance of the walker’s position x; to the position of the agent's goal
EE

d=|xy — z (Equation 3)
To redistribute the walkers according to the reward density, Cerezo and Ballester (2018) then

introduce a quantity called "Virtual Reward" VR,;. This normalized measure of individual reward
enables comparison among walkers (Cerezo and Ballester, 2018).

VR; = — (Equation 4)

where D, is the density of walkers in the vicinity of the state of walker ¢ and R; is the reward. In
order to align the walker density with the reward density the goal is therefore to balance the virtual
reward among all walkers (Cerezo and Ballester, 2018). This is achieved via a randomized
redistribution process.

Firstly, Cerezo and Ballester (2018) approximate D; in order to spare computational demand by
finding the distance to a random other walker:

D, = Dist(w;, w;) with i # j, j randomly chosen € [1,N]  (Equation 5)



Then, normalization functions INorm and Scale are introduced:

1’ p—
Norm(z,o,u) = . K (Equation 6)
| 1+1In(z) forz>1.0 ,
Scale(x) = { o for z < 1.0 (Equation 7)

where p is intended to denote the mean of the distribution x is an element of and o its standard
deviation respectively.
Finally, the virtual reward can now be calculated as:

VR, = Scale(Norm(R;))* * Scale(Norm(D;)) (Equation 8)

Equation 8 introduces an additional parameter « € [0, 2. This parameter is intended to be used to
balance exploitation versus exploration (Cerezo and Ballester, 2018). The idea is that a high «
increases the weight of the reward. Hence, agents will increasingly strive for reward as « increases.
With o« — 0 the entropy of the walkers is emphasized. Hence, such agents explore their environment
disregarding the areas with higher pay-off. However, with a low « the algorithm given by Cerezo and
Ballester (2018) also loses information about the evaluation function g. Thus, the agent performs
undirected exploration and is prone to run into states which are not survivable (Ishii et al., 2002).
With our modification a more efficient, directed exploration (Ishii et al., 2002) can be performed as
information about survival persists.

To accommodate our second objective, these virtual reward values can now be used to distribute the
walkers according to reward density. This mechanism is similar to Algorithm 1. However, in contrast
to the survival objective, a probability p of a walker being substituted is introduced:

0 for VR; > VR,
pi=< 1 for VR; = 0 (Equation 9)
TR for VR; < VR

This probability again relies on a randomly drawn walker j where j # i. A complete lack of virtual
reward immediately schedules the walker to be substituted, whereas a superior virtual reward
ensures its survival. As also outlined in Algorithm 2, in the case of an inferior virtual reward to the
randomly drawn competing walker, a normalized difference in the virtual reward establishes the
probability of the walker ¢ to be substituted.

Figure 3: Five agents approaching an obstacle blocking the right lane in the primary scenario.



// Initialization: Create a set for all of the N walkers to continue scanning
walkers new := Set()
// Traverse over all N walkers
FOR i := 0 TO N DO BEGIN
// Draw a random walker to compare against
random walker := random choice(walkers)

// Get the virtual reward of both the walker at i and the sampled one
VR i := walkers(i).virtual reward
VR r := random walker.virtual reward

// Compare the virtual rewards
IF VRi> VR r

THEN
// If the walker at i has superior reward it will continue
p :=20
ELSE
IF VR i ==
THEN
// If the walker at i has no VR it will be replaced
p =1
ELSE
// In all other cases the probability of replacement
// 1s determined as normalized difference
p:=(VRr—-VRi) / VR 1
END
END

// REPLACEMENT
// Draw a random number, evenly distributed in between 0 and 1
r := rand()
// Compare p to r
IFp<r
THEN
// Add the walker at i to the new set of walkers
walkers new.add(walkers(i))
ELSE
// Create a new walker entity
clone := Walker()
// Copy the state and the initial decision into the new one
clone.state = random walker.state
clone.init decision = random walker.init decision
// Add the clone to the new set of walkers
walkers new.add(clone)
END
END

Algorithm 2: Walker redistribution taking into account a reward function.



Decision making

With the walker redistribution functions defined, the formulation of an agent's thought process is
straight forward. As our model operates in continuous state-space we will focus on the description of
this specific case.

// Start: Initialize N walkers
walkers := Set()
FOR i := 0 TO N DO BEGIN
// Initialize a walker entity
walker := Walker()
// Copy the parent agent’s state to the new walker
walker.state := self.state
// Sample a random action and store it as initial action
walker.init action := DecisionSpace.sample()
// Perform the initial action
walker.perform(walker.init action)
// The walker is now at a new state at t+l
// and added to the set of walkers
walkers.add(walker)
END
// Thought process: Virtual time-steps until horizon T
FOR h := 1 TO T DO BEGIN
// Perform Algorithm 1
// Dead walkers are now clones of living walkers,
// including their initial action
walkers := surviving walkers(walkers)
// Perform Algorithm 2
// Poorly performing walkers are now clones of better performing ones,
// including their initial action
walkers := rewarded walkers(walkers)
FOR 1 := 0 TO N DO BEGIN
// Sample another random action for each walker
// Note that this random action is not stored
walker(i).perform(DecisionSpace.sample())

END
END
// Decision: The final set of walkers dictates the agent’s decision.
// In the continuous case this is the mean of all initial actions.
decision := mean(walkers.init actions)

Algorithm 3: Ensuring a stable number of walkers by cloning living walkers upon the death of a walker.

The agent spawns N walkers which initially are all situated at the agent’s position in state space.
They then each perform a random action which is stored as the initial action. Then they are re-
distributed as given in Algorithm 1 according to their survival. Next the new walker entities are re-
distributed taking into account their virtual reward. Thus, aligning the walker distribution with the
reward distribution (Cerezo and Ballester, 2018) given by the utility function as outlined in Algorithm
2. Consequently, the walkers perform another random action.

This process is repeated until the agent’s horizon 7 is reached. Since in Algorithm 1 and Algorithm 2
upon the cloning of a walker its initial action is also duplicated, the final distribution of initial decisions
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is skewed towards walkers which (a) survived and (b) achieved a higher reward. Ultimately, the
decision of the agent is the mean of all initial decisions of the walkers contained in the final set. A
detailed description of this decision mechanism is given in Algorithm 3.

Scenarios

Three different scenarios where developed to assess the performance of the FSX principle. The basic
scenario is an open road with a width of 6 meters. This width approximately accounts for a two lane
road. A variant of this scenario with a single lane road exists too. The road has no formal end but
loops after 200 meters.

The primary scenario depicted in Figure 3 is built on a similar road with a single object blocking one
lane. While a secondary scenario introduces a second obstacle on the opposite lane in some distance
to the first obstacle. In both cases the road does not loop but end. The goal of the agents is to go
beyond the obstacles as quick as possible. Since the objective is to cooperate, only the time of the
last agent to pass the obstacle course is considered. Simultaneously, the agents also want to avoid
collisions due to Algorithm 1. The overarching objective is thus to collectively pass the obstacles in
short time with as little collisions as possible. A further explanation of how these values interact can
be found in the results section. The scenarios are listed in Table 2.

Table 2: List of scenarios and the properties of their environments.

Scenario Number of lanes Obstacles Road length (m)
Primary scenario 24a3m 1; blocking the right 200

lane at 23 m
Secondary scenario 233m 2; one on the right 200

lane at 23 m, the
other at 48 m
blocking the left lane

Basic scenario 2a3m - infinite

Single lane 143m - infinite

The starting coordinates are the only distinct feature in the setup of the agents. These coordinates
mark the pivot point of the agent as outlined in section “Agents” and depicted in Figure 2. The initial
placement puts 3 meters in between the agents in their driving direction. They all face towards the
same direction which is also the direction their utility function increases.

In scenarios with a road accounting for two lanes the agents are placed in pairs, one in each lane. In
this case the initial lateral distance of their pivot points is 3 meters, accounting for 1.2 meters of
physical distance, agent-to-agent. In the scenarios with obstacles blocking lanes, this forces the
agents to merge onto a populated lane. This can only be achieved though cooperative behavior (Bae
et al., 2020). Thus the achievement of the objectives as outlined above gives a good indication of
cooperativeness.

11



Results

The analysis is carried out two-fold: At first a sensitivity analysis is performed, followed by a pattern-
based evaluation. The sensitivity analysis also serves the objective of finding those parameters where
the FSX agents perform the best. These parameters can then be used for further analysis.

Following Grimm et al. (2005) the model is compared to the well adopted model of Gipps (1981)
using patterns. In fact, Gipps’ (1981) model is itself validated against patterns appearing in real-world
traffic. Those patterns are what we aim to fit our model to as well. The pattern-based analysis builds
the second part of the results section.

Sensitivity Analysis

The sensitivity analysis covers all three parameters introduced through the Future State Maximization
algorithm as given in the methods section. The parameters listed in Table 1 are considered as
constant, as the influence of these is beyond the scope of this report. However, it could be expected
that a general reduction in maximum speed (i.e. a speed limit) reduces the possible risk taken by
agents. Such an effect may be comparable to the increase of the decision sampling rate as shown
below. Ultimately, the parameters taken into consideration are:

e N - The number of walkers
e T - The horizon of future states
e « - Parameter balancing exploitation versus exploration

Additionally, the resolution of the temporal dimension has been doubled to investigate a higher
sample rate of the decision making process. The result of every set of parameters has been
calculated as the mean of a total of thirty simulations. Thus, we account for uncertainty introduced
through the randomized nature of the Monte-Carlo like search algorithm of the walkers (Cerezo and
Ballester, 2018; Hammersley, 2013).

Average time until all passed [s”~-10] %00 Damage [m~2]
1 1
475
10000
5 5
450
9 9
425 8000
gn Sn
< 400 <
KX KX
c c
8 g 6000
c c
2V 375 2V
2 350 2
4000
P4 325 ]
2 300 2 2000
12 % 50 100 12 % 50 100
Walkers Walkers

Figure 4: Average time for completion as well as damage caused without modifications to the
agents. Both plotted over number of walkers N and horizon t.
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The scenario we chose to assess here, was the primary scenario as given in the scenarios section.
Thus, all agents share the same parameters except for their starting positions. To measure the
impact of the parameters on the success of the agents circumventing an obstacle, we collect two
results:

 Time - The time it takes for the last agent to go beyond the 60m mark
 Damage - The total of intersecting area in between agents and non-accessible areas (see
section Environment)

The damage value gives us a rough estimate of how aggressively the agents are driving. Thus, a
lower damage value is preferred. The temporal aspect however, is the primary objective. Faster is
better in this case. We are going to see that both values show some similarities in the location of their
optima.

Horizon and number of walkers

As shown in Figure 4 when comparing the number of walkers /N against the horizon 7, there exists a
rather linear relationship. The quickest ways around the obstacle are found by using a maximum of
walkers and horizon; Thus, scanning the future state space as densely as possible. The damage also
decreases with a rising number of walkers. However, it appears to increase slightly when the horizon
is extended. This could be due to the effective density of walkers at horizon 7 decreasing as the
number of states to be scanned rises exponentially.
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Figure 5: Average time for completion as well as damage caused by agents with dynamic
horizon. Both plotted over number of walkers N and horizon .

This effect could be remedied by changing the algorithm slightly. By not only taking into account
samples where walkers advanced up to 7 the density of walkers could be optimized. This technique
of a "dynamic slice" taken from the causal cone enables the agent to scan the state space more
densely where it is necessary. The change in the result can be observed in Figure 5 and clearly shows
the advance made herein.
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Figure 6: Average time for completion as well as damage caused by agents scanning their future
state space twice as often. Both plotted over number of walkers N and horizon .

Prior to this finding, the one proposed solution was to increase the temporal resolution of the walker
process. Thus, scanning not every second in the future state space but every half of a second. In
effect, the scanning density as well as computational demand are increased. As expected, the results
shown in Figure 6 improve. Especially at a low horizon, the agents profit from the additional temporal
steps in their thought process.

Horizon and the alpha parameter

A non-linear effect could be observed in the first assessments of a graph showing the « value against
the horizon 7. While a low horizon value yields inferior results as expected, the beneficial effect of a
rising horizon is only significant in a certain regime. Moreover, the emergence of cooperation in
between agents appears to rise and fall within the range of parameter c.
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Figure 7: Average time for completion as well as damage caused without modification to the
agents. Both plotted over o and horizon t.

As visible in Figure 7 the range of ideal alpha values in our model appears to be in between 0.3 to
0.4. A very low « renders the agents unwilling to strive for their objective. On the other end, a higher
o leads to detrimental effects of agents unwilling to cooperate with one another. Only by
coordinating their respective advance through the small tunnel the agents can assure a good traffic
flow and in effect low overall time and damage values.

Average Time until all passed [s*-10] Damage [m~2]

1800

1400
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Figure 8: Average time for completion as well as damage caused by agents scanning their future
State space twice as often. Both plotted over o. and horizon .

Again doubling the amount of decision phases per time-step for the agents significantly improves the
overall results. However, it does not lead to a qualitative change in the result as the non-linearity can
still be spotted in Figure 8.

15



Patterns

Gipps (1981) presents two patterns featured by their car-following model: The horseshoe shaped
speed-flow curve and the propagation of disturbances through traffic.

The horseshoe shape of the plotted flow given as vehicles per hour against average speed can also
be observed in real-world traffic (Gipps, 1981). In fact, it appears intuitive that as average speed and
vehicle density rise, the road capacity would induce a limit. With higher density then the speed has to
decrease which in effect reduces the number of vehicles per hour.

Average speed [m [ 5]

100 200 300 400 500 600 700
Flow [Wehicles / h]

Figure 9: Horseshoe shaped Speed-Flow-Curve

For the assessment of this pattern, an open road is required. We therefore use the so called basic
scenario as described in section “Scenarios” and given in Table 2. Using the parameters found to yield
an optimal result at circumventing obstacles in our sensitivity analysis we can observe a similar
pattern in our model shown in Figure 9. In comparison to Gipps’ (1981) model, the absolute values
differ slightly. However, they are within reasonable bounds and might only stem from the three lane
road used by Gipps (1981) where our road only features two lanes of width.

To introduce disturbances into our model, we reduce the width of our road to only accommodate one
car at a time. We then bring the foremost car to a halt and let it accelerate after a short stop and
observe how the other agents react. The pattern observed in Figure 10 is also similar to the one
shown in Gipps (1981), rendering the pattern oriented analysis successful.
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Figure 10: Reaction of the agents to an artificially caused perturbance in the traffic flow.
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Discussion

Using an adaption of Cerezo and Ballester’s (2018) algorithm, Future State Maximization reduces the
amount of parameters to merely three factors: Horizon 7, number of walkers NV and «. Additionally,
with our adaption multiple objectives can be separated allowing for parameterization of single utility
functions. While such undertakings are out of the scope of this work, the three parameters assessed
in our sensitivity analysis show significant, while distinct influence in the agent's behavior.

Influence of the three FSX parameters

The horizon and number of walkers work together to increase the density of future state space
scanning. Our analysis cannot show a significant difference in the influence of horizon versus the
number of walkers. However, in more dynamic environments it would seem intuitive that a high
number of walkers could not share the effect of a far horizon. As such, a better interpretation is that
the horizon adjusts how much an agent anticipates the future, while the number of walkers is the
actual adjustment of the scanning density.

This interpretation is especially true for our first algorithm, as it focuses on the final future state of a
walker. Therefore, the states at the horizon outweigh previous future states. The effect is clearly
visible in the sensitivity analysis as a higher horizon can introduce detrimental effects on the overall
performance of the agents.

This effect is potentially removed by applying a "dynamic horizon" technique where the horizon is
shifted to the last causal slice reached by living walkers smaller or equal to the initial horizon. This
method could in effect also reduce the strong effect of a low number of walkers as it reduces the
effect of unfortunate random walker decisions.

Unfortunately this dynamic horizon was a scanning strategy only found in a very late stage. Hence, it
couldn't be assessed in sufficient detail to include a proper assessment of its effects in this report.

The « parameter shows a significant effect on the performance of the agents. In the case of a high
alpha value the urgency of the agents to reach their goal on the very right of their map outweighs the
strive for survival. In effect, the agents refuse to cooperate and often proceed to consecutively block
one another. The upper bound of the alpha parameter in the sensitivity analysis was chosen to be 2.
This value is in line with the interval given by Cerezo and Ballester (2018). However, it does not
appear clear why a higher value should be disregarded. Nevertheless, it also seems unlikely that in
our model any higher value of o would have lead to an increase of cooperation.

On the lower bound of « an interesting effect on cooperative behavior can be explored. The time the
agents take to arrive at their goal increases as the o value decreases. The damage values also
decrease only showing an increase for the lowest horizon considered.

However, while it is paramount to also assess the mistakes made by the agents, this measure could
profit from improvements. If agents get locked into an unfavorable position the damage value can
increase vastly while a fast agent might not collect much overlap with an opponent before it has
crossed the area. As such a more realistic damage measurement incorporating impact velocity would
be necessary for a closer look into the mistakes made by our agents.
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Patterns

Future State Maximization appears to replicate the patterns found in Gipps (1981) successfully. It is,
however, not clear if these patterns are not mere emergent phenomena found in any traffic system.
So far no clear connections of the patterns pointing to specific human behavior has been found.
Nevertheless, the patterns show some key features predominant in human driving. Especially the
disturbance of the traffic flow shows clear signs of a reaction time. This is also implicit in the
horseshoe pattern, as it slows down traffic flow in scenarios with high car density.

However, so far pattern-oriented modeling (Grimm et al., 2005) promises to give good qualitative
results and it is only for a lack of patterns found to date that the model validation cannot be
established further. Nevertheless, in Ciuffo et al. (2012) some patterns of real-world traffic are
depicted providing input for future investigations into the qualitative aspects of our model.

Bounded-rational intelligence

The low number of parameters in conjunction with the intuitive definition of the degrees of freedom
for our agents show how FSX could be a promising alternative to other artificially intelligent agents as
in Jager (2019) or rule-based ABMs as described by Epstein (1999). The damage values show that
the agents are not perfectly rational but rather act in certain interests. Moreover, the agents appear
to be acting independently as proposed in the definition of an agent by Grimm et al. (2005). So far
only equivalent agents have been considered. The small number of parameters compared to e.g. an
artificial neural network or an accumulation of several rules would make it trivial to define a
heterogeneous population. In addition, the intuitive description of future state expectations also
enables creating agents with specific beliefs. However, the latter could require considerate amounts
of additional work in some cases.

Cooperation of FSX agents

A novel finding we can report is, that FSX agents can in fact stop cooperating. This could be closely
related to the breakdown and respective emergence of structure within the collectivism of CEF agents
as shown in Hornischer et al. (2019). What is novel in our investigations is the introduction of a utility
function as pioneered by Cerezo and Ballester (2018). The separation of objectives we have
conducted within this work enables us to independently steer the influence of both survival
(exploration) and utility (exploitation). We argue that the alpha parameter alone for a single reward
function encoding both survival and utility as previously stated by Cerezo and Ballester (2018) cannot
configure this balance. Reducing alpha in this case also renders the agent incapable of striving for
survival as all information about survival of the walkers gets lost.

With our modification however it has become evident, that for cooperation a balance has to be
struck. Too high urgency to reach an objective yields agents too egoistic to make way for a fellow.
With no agent acting cooperative, merging lanes becomes difficult (Bae et al., 2020) which leads to a
collective delay. On the other end of the spectrum, low urgency leaves the agents indifferent enough
about the objective to get stuck in sub-optimal situations. It seems that a small amount of urgency is
required to collectively strive for the greater good.

Another reason why other researchers such as Charlesworth and Turner (2019) discovered
collaboration of their agents could be due to the sequential evaluation of their agents’ decisions and
high sample rates. As can be seen in Figure 6 and Figure 8 an increased number of decision steps
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improves the result. It effectively, reduces the reaction time to the actions of other agents. Due to
the sequential calculation every agent has complete information about its surroundings. If the
difference in between the time-steps is made small enough, the agents can effectively react to the
smallest of dynamics and appear to be cooperative.

Nevertheless, a more purpose made model would be required to go deeper into cooperation of FSX
agents. A microscopic traffic model as presented within this report can show the breakdown of this
formerly discovered emergence but has only limited capacity of explaining it. Nevertheless, such a
model could be applied in future investigations on the reaction of autonomous driving algorithms to
bounded-rational driving behavior.

Computational demand

The computational demand of our method cannot compete with others. Its computational demand
could render more elaborated investigations time consuming and expensive. It is thus only applicable
in cases of few agent systems, or when reducing the option and/or state space to a low number of
discrete members.

However, the research on this novel method is still in its infancy. It is likely that future research will
decrease the computational demand. The parallel nature of the walker entities enables parallel and
concurrent computing. One such frontier could be found in our “dynamic horizon” which could reduce
the computational demand in certain situations. It is certainly a research topic worth investigating in
the future as it could improve both computational and intelligent performance.

Moreover, the reuse of walker paths especially in discrete choice scenarios seems worthwhile of
investigation. A plethora of research questions arises from this and other current shortcomings in
FSX-ABMs.
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Conclusions

The Future State Maximization principle shows qualities making it applicable to agent-based
modeling. The agents exhibit what could be interpreted as intelligent behavior. Moreover, this
behavior can be adjusted by varying the horizon and the number of walkers an agent spawns.
Furthermore, utilizing the algorithm of Cerezo and Ballester (2018) a utility function can be
introduced. An additional parameter « is available to adjust the influence of this function. We
successfully extended this algorithm to separate survival from utility dynamics.

As the sensitivity analysis shows, these parameters are rather influential. Therefore, they are useful
for fitting the model to data.

An assessment of microscopic traffic modeling of small road sections using FSX agents shows
qualitative similarities to the common car-following model of Gipps (1981). Furthermore, patterns
observed in real-world traffic can also be observed when using FSX agents. However, in contrast to
Gipps’ (1981) model, the behavior of these agents is emergent from their thought process using the
Future State Maximization principle and the (physical) boundaries applying to them.

Bounded rationality is implicit in our model. We can report that the FSX principle is suitable for agent-
based modeling in this regard, as the cooperation can in fact break down due to limited rationale of
the agents.

Therefore, the agents can exhibit behavior which can be utilized for models of lacking traffic
regulations such as shared spaces. Moreover, scenarios where some agents do not totally abide to
the law are plausible by utilizing Future State Maximization for their decision dynamics.

With our sensitivity analysis we could establish some foundation for the understanding of the social
behavior within future state maximizing agents. However, for a more clear insight into the interaction
of individual FSX agents a more purpose made model would be beneficial. Future research could
employ simpler models such as a public-good game to strengthen the insights into cooperation and
its breakdown among such agents.
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