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PREFACE

Interest in human settlement systems and policies has been
a central part of urban-related work at IIASA since its inception.
From 1975 through 1978 this interest was manifested in the work
of the Migration and Settlement Task, which was formally concluded
in November 1978. Since then, attention has turned to dissemina-
tion of the Task's results and to the conclusion of its compara-
tive study, which is carrying out a comparative guantitative
assessment of recent migration patterns and spatial population
dynamics in all of IIASA's 17 NMO countries.

This paper is part of the Task's dissemination effort and
is the third of several to focus on the age patterns of migra-
tion exhibited in the data bank assembled for the comparative
study. It begins with a comparative analysis of over 500 ob-
served migration schedules and then develops, on the basis of
this analysis, a family of hypothetical "synthetic" schedules
for use in instances where migration data are unavailable or
inaccurate.

Reports, summarizing previous work on migration and settle-
ment at IIASA, are listed at the back of this paper. They
should be consulted for further details regarding the data base
that underlies this study. A technical appendix listing the
parameters and variables of over 600 model migration schedules
is available on request.

Andrel Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper draws on the fundamental regularity exhibited
by age profiles of migration all over the world to develop a
system of hypothetical "synthetic" model migration schedules

that can be used to carry out multiregional population analyses
in countries that lack adequate migration data.
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MODEL SCHEDULES IN MULTISTATE DEMOGRAPHIC
ANALYSIS: THE CASE OF MIGRATION

1. INTRODUCTION

The age-specific fertility and mortality schedules of most
human populations exhibit remarkably persistent regularities;
consequently demographers have found it possible to summarize
and codify such reqularities by means of hypothetical schedules
called model schedules. Although the development of model fer-
tility and mortality schedules has received considerable atten-
tion, the construction of model migration schedules has not,
even though the techniques that have been successfully applied
to treat tiie former can readily be extended to deal with the
latter. The same may be said of model schedules of labor force

entry and exit, and of marriage, divorce, and remarriage.*

In this paper we consider the notion of model multistate
schedules, focusing in particular on the development of a family
of model migration schedules for use in situations where the
available migration data are inadequate or inaccurate. We begin
by examining regularities in age profile that are exhibited by
empirical schedules of migration rates. Expressing this regu-

larity in a mathematical form called a model migration schedule,

*There are a few notable exceptions, however, such as the
paper on model divorce schedules by Krishnan and Kayani (1973).
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we go on to examine the patterns of variation that occur in a
large data bank of such schedules. Drawing on this comparative
analysis, we then outline two alternative approaches for gen-
erating families of hypothetical "synthetic" model migration
schedules and conclude that further work is needed if such ap-
proaches are to be of practical use in migration studies car-

ried out in Third World population settings.



2. MIGRATION AGE PATTERNS

Migration measurement can usefully apply concepts borrowed
from both mortality and fertility analysis, modifying them
where necessary to take into account aspects that are peculiar
to spatial mobility. From mortality analysis, migration studies
can borrow the notion of the life table, extending it to include
increments as well as decrements, in order to reflect the mutual
interaction of several regional cohorts (Rogers, 1973a, b, and
1975; Rogers and Ledent, 1976). From fertility analysis, migra-
tion studies can borrow well-developed techniques for graduating
age~specific schedules (Rogers, Raquillet, and Castro, 1978).
Fundamental to both "borrowings" is a workable definition of the

migration rate.

2.1 Migration Rates and Migration Rate Schedules

During the course of a year, or some such fixed interval of
time, a number of individuals living in a particular community
change their regular place of residence. Let us call such per-
sons mobiles to distinguish them from those individuals who have
not changed their place of residence, i.e., the non-mobiles.
Some of the mobiles will have moved to a new community of resi-
‘dence; otherswill simply have transferred their household to
another residence within the same community. The former may
be called movers, the latter, relocators. A few in each cate-

gory will have died before the end of the unit time interval.

Assessing the situation with respect to the start and the
end of the unit time interval, we may divide movers who sur-
vived to the end of the interval into two groups: those living
in the same community of residence as at the start of the inter-
val and those living elsewhere. The first group of movers will
be referred to as surviving returnees, the second will be called
surviving migrants. An analogous division may be made of movers
who died before the end of the interval to define nonsurviving

returnees and nonsurviving migrants.



A move, then is an event: a separation from a community.
A mover 1s an individual who has made a move at least once
during a given interval of time. A migrant (i.e., a surviving
or nonsurviving migrant), on the other hand, is an individual
who at the end of a given time interval no longer inhabits the
same community of residence as at the start of the interval.
(The act of separation from one state is linked with an addi-
tion to another state.) Thus paradoxically, a multiple mover
may be a nonmigrant by our definition; that is, if a particular
mover returns to the initial place of residence before the end
of the unit time interval, no "migration" is said to have taken

place.*

The simplest and most common measure of migration is the
crude migration rate, defined as the ratio of the number of
migrants, leaving a particular population located in space and
time, to the average number of persons (more exactly, the num-

ber of person-years) exposed to the risk of becoming migrants.**

Because migration is highly age selective, with a large
fraction of migrants being the young, our understanding of mi-
gration patterns and dynamics is aided by computing migration
rates for each single year of age. Summing these rates over
all ages of life gives the gross migraproduction rate (GMR), the
migration analog of fertility's gross reproduction rate.

Figure 2.1 indicates that age-specific annual rates of resi-
dential mobility among whites and blacks in the U.S. during
1966-1971 exhibited a common profile. Mobility rates among
infants and young children mirrored the relatively high rates
of their parents, young adults in their late twenties. The

mobility of adolescents was lower but exceeded that of young

*We define migration to be the transition between states
experienced by a migrant.
**Because data on nonsurviving migrants are generally un-
available, the numerator in this ratio generally excludes
them.
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teens, with the latter showing a local 7ow point around age
fifteen. Thereafter mobility rates increased, attaining a %igh
peak at about age twenty two and then declining monotonically
with age to the ages of retirement. The mobility levels of

both whites and blacks were roughly similar, with whites show-
ing a gross migraproduction rate of about 14 moves and blacks
one of approximately 15 over a lifetime undisturbed by mortality
before the end of the mobile ages.

Although it has been frequently asserted that migration
is strongly sex selective, with males being more mobile than
females, recent research indicates that sex selectivity is
much less pronounced than age selectivity and that it is less
uniform across time and space. Nevertheless, because most
models and studies of population dynamics distinguish between

the sexes, most migration measures do also.

Figure 2,2 illustrates the age profiles of male and female
migration schedules in four different countries at about the
same point in time between roughly comparable areal units:
communes in the Netherlands and Sweden, voivodships in Poland,
and counties in the U.S. The migration levels for all but
Poland are similar, varying between 3.5 and 5.3 moves per life-
time; and the levels for males and females are roughly the same.
The age profiles, however, show a distinct, and consistent,
difference. The high peak of the female schedule always pre-
cedes that of the male schedule by an amount that appears to
approximate the difference between the average ages at marriage

of the two sexes.
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Under normal statistical conditions, point-to-point move-
ments are aggregated into streams between one civil division
and another; consequently, the level of interregional migra-
tion depends on the size of the areal unit selected. Thus, if
the areal unit chosen is a minor civil division such as a
county or a commune, a greater proportion of residential loca-
tion will be included as migration than if the areal unit

chosen is a major civil division such as a state or a province.

Figure 2.3 presents the age profiles of female mobility
and migration schedules as measured by different sizes of areal
units: 1) all moves from one residence to another, 2) changes
of residence within county boundaries, 3) migration between
counties, and 4) migration between states. The respective four
gross migraproduction rates (GMRs) are 14.3, 9.3, 5.0, and 2.5,
respectively. The four age profiles appear to be remarkably
similar, indicating that the regularity in age pattern persists

across areal delineations of different size.

Finally, migration occurs over time as well as across space;
therefore, studies of its patterns must trace its occurrence
with respect to a time interval, as well as over a system of
geographical areas. In general, the longer the time interval,
the larger will be the number of return movers and nonsurviving
migrants and, hence, the more the count on migrants will under-
state the number of inter-area movers (and, of course, also of
moves). Philip Rees, for example, after examining the ratios
of one-year to five-year migrants between the Standard Regions
of Great Britain, found that

the number of migrants recorded over five years in an

interregional flow varies from four times to two times

the number of migrants recorded over one year.
(Rees, 1977, p.247).
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2.2 Model Migration Rate Schedules

It appears that the most prominent regularity found in
empirical schedules of age-specific migration rates is the se-
lectivity of migration with respect to age. Young adults in
their early twenties generally show the highest migration rates
and young teenagers the lowest. The migration rates of children
mirror those of their parents; hence the migration rates of in-
fants exceed those of adolescents. Finally, migration streams
directed toward regions with warmer climates and into or out of
large cities with relatively high levels of social services and
cultural amenities often exhibit a "retirement peak" at ages in

the mid-sixties or beyond.

Figure 2.4 illustrates a typical observed age-specific mi-
gration schedule (the jagged outline) and its graduation by a
model schedule (the superimposed smooth outline) defined as the

sum of four components:

1) a single negative exponential curve of the pre-lagbor

force ages, with its rate of descent, o,

2) a left-skewed unimodal curve of the labor force ages
positioned at M, on the age axis and exhibiting rates

of ascent, X and descent, o

2' 2°
3) an almost bell-shaped curve of the post-labor force
ages positioned at My on the age axis and exhibiting

rates of ascent, A3, and descent, 0

4) a constant curve, c, the inclusion of which improves
the quality of fit provided by the mathematical ex-

pression of the schedule

The decomposition described above suggests the following

simple sum of four curves (Rogers, Raguillet, and Castro, 1978) :*

*Both the labor force and the post-labor force components
in equation (1) are described by the "double exponential" curve
formulated by Coale and McNeil (1972) for their studies of nup-
tiality and fertility.
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The "full" model schedule in equation (1) has eleven parameters:
aqr Qyp Ans My, Oo Az, aj, Myr Qg A3, and c. The profile.of
the full model schedule is defined by seven of the eleven param-
eters: Myr My Qo Az, Uy, Qg and A3. Its level is determined
by the remaining four parameters: Ay, Ay, ag, and c¢. A change
in the value of the gross migraproduction rate of a particular
model schedule alters proportionally the values of the latter
but does not affect the former. However, as we shall see in the
next section, certaih aspects of the profile also depend on the
allocation of the schedule's level among the labor, pre-labor,
and post-labor force age components, and on the share of the
total level accounted for by the constant term, c. Finally,
migration schedules without a retirement peak may be represented
by a "reduced" model with seven parameters, because in such in-

stances the third component of equation (1) is omitted.

Table 2.1 sets out illustrative values of the basic and derived
measures presented in Figure 2.4. The data refer to 1974 migration
scheduyles for an eight-region disaggregation of Sweden (Andersson
Holmberg, 1980).The method chosen for fitting the model schedule
to the data is a functional-minimization procedure known as
the modified Levenberg-Marquardt algorithm. * Minimum chi-
square estimators are used instead of least squares estimators.
The differences between the two parametric estimates tend to be
small, and because the former give more weight to age groups
with smaller rates of migration, we use minimum chi-square esti-

mators in the remainder of the paper.

To assess the quality of fit that the model schedule pro-
vides when it is applied to observed data, we calculate the

"mean absolute error as a percentage of the observed mean":

1
E =1 . 100 . (2)

*See Appendix A and Brown and Dennis (1972), Levenberg (1944),
and Marquardt (1963).

and
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Table 2.1 Parameters and variables defining observed model
migration schedules: Swedish regions, 1974.

Parameters " East.i;ddle— South i&ddle- *
and Stockholm Sweden Sweden South
Variables M F M F M F M F
GMR* 1.45 1.43 1.44 1.48 1.33 1.41 0.87 0.84
a; .033 .041 .035 .039 .032 .033 .025 .021
oy .097 .091 .088 .108 .096 .106 117 .104
a, .059 .067 .079 .096 .091 .112 .066 .067
Hy 20.80 19.32 20.27 18.52 19.92 18.49 21.17 19.88
oy .077 .094 .090 .109 .104 .127 .115 .129
AZ .374 .369 .406 .491 .404 .560 .269 .442
a, .000 .000
Hy 76.55 85.01
oy .776 .369
A3 .145 .072
c .003 .003 .003 .004 .003 .004 .002 .002
n 31.02 29.54 29.17 28.38 28.29 27.96 28.26 28.14

% (0~-14) 25.61 25.95 22.81 22.59 21.40 20.67 22.76 21.93
%(15-64) 64.49 65.10 70.38 69.48 72.47 71.73 70.73 70.76

%(65+) 9.90 8.94 6.81 7.94 6.13 7.60 6.51 7.31
61c 13.56 13.06 12.14 9.79 12.26 8.90 13.27 9.93
12 .716 .604 .446 .403 .350 .293 .377 .312
632 .003 .003

812 1.26 .977 .981 .993 .921 .883 1.02 .809
o, 4.86 3.94 4,52 4.49 3.88 4.40 2.34 3.43

g, .187 .196

x, 16.39 14.81 15.92 14,80 15.41 15.07 14.52 15.6l1

X, 24.68 22.70 23.78 21.46 23.12 21.06 24.16 22.58

X, 64.80 61.47

X 8.29 7.89 7.86 6.66 7.71 5.99 9.64 6.97

A 27.87 25.49 29.99 27.32 29.93 27.27 29.90 27.87

B .029 .030 .040 .022 .044 .059 .026 .032

*The GMR, its percentage distribution across the three major age cate-
gories (i.e., 0-14, 15-64, 65+), and the mean age, n, all are calculated
with a model schedule spanning an age range of 95 years.
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Table 2.1 Parameters and variables defining observed model
migration schedules: Swedish regions, 1974 (cont.)
6. 7. 8.
Parameters North Middle- Lower North- Upper North-
and West Sweden Sweden Sweden
Variables M M F M F M F
GMR 0.80 0.82 1.22 1.33 1.33 1.46 1.03 1.24
al .021 .022 .031 .027 .034 .031 .024 .023
al .090 .106 .104 .102 .123 .119 .135 .128
a, . 046 .055 .084 .116 .109 .141 .079 .116
Uz 20.36 19.36 19.75 18.18 19.62 17.93 19.47 17.62
az .091 .114 .103 .139 .118 .148 .114 .143
Xz .41§ .442 .437 .561 .427 .701 . 449 .711
C .001 .002 .002 .004 .003 .004 .003 .004
n 28.49 28.39 28.09 28.17 28.24 27.93 29.91 28.99
%(0-14) 23.54 23.18 21.52 19.40 19.84 18.26 18.29 16.40
%(15~64) 70.34 69.03 72.51 72.45 73.61 73.65 73.46 74.56
% (65+) 6.12 7.79 5.97 8.15 6.55 8.09 8.25 9.04
61c 14.42 10.11 13.34 7.27 11.38 7.41 8.29 5.84
12 .457 .395 . 369 .237 .310 .219 .305 .198
812 .979 .926 1.00 .730 1.04 .801 1.19 .890
02 4.55 3.87 4.23 4.03 3.63 4.74 3.95 4.95
Xy l6.11 15.23 15. 56 14.71 15.19 15.07 15.21 14.77
Xy 23,80 22.30 22.93 20.60 22.56 20.12 22.47 19.85
X 7.69 7.07 7.37 5.89 7.37 5.05 7.26 5.08
A 29.57 27.42 29.92 27.01 30.15 26.94 31.61 28.30
B .023 .027 .042 .059 .053 .077 .040 .063
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This measure indicates that the fit of the model to the Swedish
data 1s reasonably good, the eight indices of goodness-of-fit
being 6.87, 6.41, 12.35, 11.01, 9.31, 10.77, 11.74, and 14.82,
for males and 7.30, 7.23, 10.71, 8.78, 9.31, 11.61, 11.38,

and 13.28 for females. Figure 2.5 illustrates graohically

this goodness-of -fit of the model schedule to the observed re-

gional migration data for Swedish females.

Model migration schedules of the form specified in equation
(1) may be classified into famtlies according to the ranges of
values taken on by their principal parameters. For example, we
may order schedules according to their migration levels as
defined by the values of the four level parameters in equation
(1), i.e., aj, ays ay, and c¢ (or by their associated gross migra-
production rates). Alternatively, we may distinguish schedules
with a retirement peak from those without one, or we may refer to
schedules with relatively low or high values for the rate of
ascent kz or the mean age n. In many applications, it is also
meaningful to characterize migration schedules in terms of several
of the fundamental measures illustrated in Figure 2.4, such as the

low point, X the high peak, Xy, and the retirement peak, X_.

'
Associated wfth the first pair of points is the labor force ghift,
X, which is defined to be the difference in years between the

ages of the high peak and the low point, i.e., X = Xp - xg. The
increase in the migration rate of individuals aged X, over those

aged x, will be called the jump, B.

2
The close correspondence between the migration rates of
children and those of their parents suggests another important
shift in observed migration schedules. 1If, for each point x
on the post-high-peak part of the migration curve, we obtain
(where it exists) by interpolation the age, x - Ax say, with
the identical rate of migration on the pre-low-point part of
the migration curve, then the average of the values of Ax’
calculated incrementally for the number of years between zero

and the low-point x9, will be defined to be the observed

parental shift, A.
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An observed (graduated) age-specific migration schedule
may be described in a number of useful ways. For example,
references may be made to the heights at particular ages, to
locations of important peaks or troughs, to slopes along the
schedule's age profile, to ratios between particular heights or

slopes, to areas under parts of the curve, and to both horizontal
and vertical distances between important heights and locations.

The various descriptive measures characterizing an age-specific
model migration schedule may be conveniently grouped into the

following categories and sub-categories:

Bastc measures (the 11 fundamental parameters and their ratios)

heights : a4s 8y, a3, C
locations: Mo u3

A A

17 Ggr Agr B3r A4
ratios  : 8, = ay/c. b5 = aj/ay, 83, = aj/a,,

slopes : a a

Big = @1/0ps Oy = Ay/0y, 03 = A /0y

Derived measures (properties of the model schedule)
areas : GMR, %(0-184), %(15-64), %(65+)

locations: n, Xor Xpos Xr

distances: X, A, B

A convenient approach for characterizing an observed model
migration schedule [i.e., an empirical schedule graduated by
.equation (1)1 is to begin with the central labor force curve and
then to "add-on" the pre-~labor and post-labor force components
and the constant component. This approach is represented graph-
ically in Figure 2.6.

One can imagine describing a decomposition of the model mi-
gration schedule along the vertical and horizontal dimensions,
e.g., allocating a fraction of its level to the constant compon-
ent and then dividing the remainder among the other three (or
two) components. The ratio 61c = a1/c measures the former al-
location, and 612 = a1/a2 and 632 = a3/a2 reflect the latter

division.
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The heights of the labor force and pre-labor force components
are reflected in the parameters a, and aj respectively, therefore
the ratio a2/a1 indicates the degree of "labor dominance", and its
reciprocal, 612 = a1/a2, the index of child dependency, measures
the level at which children migrate with their parents. Thus
the lower the value of 612, the lower is the degree of child
dependency exhibited by a migration schedule and, correspondingly,
the greater is its labor dominance. This suggests a dichotomous
classification of migration schedules into child dependent and

labor dominant categories.

An analogous argument applies to the post-labor force curve,
and 63, = a3/a2 suggests itself as the appropriate index. However
it will be sufficient for our purposes to rely simply on the value
taken on by the parameter A3, with positive values pointing out
the presence of a retirement peak and a zero value indicating
its absence. High-values of A3 will be interpreted as identifying

retirement dominance.

Labor dominance reflects the relative migration levels of
those in the working ages relative to those of children and
pensioners. Labor asymmetry refers to the shape of the skewed
bell-shaped curve describing the profile of labor-force-age mi-
gration. Imagine that a perpendicular line, connecting the high
peak with the base of the bell-shaped curve (i.e., the jump, B),
divides the base into two segments X and Y as, for example, in

the schematic diagram:
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Clearly, the ratio Y/X is an indicator of the degree of asymmetry
of the curve. A more convenient index, using only two parameters
of the model schedule 1is the ratio 0, = Az/az, the index of Llabor
asymmetry, 1ts movement is highly correlated with that of Y/X,

because of the approximate relation:

>

Q
i
|
el
> |w
oo
< |
1l
=<

R
N

where v denotes proportionality. Thus 0, may be used to classify

migration schedules according to their degree of labor asymmetry.

Again, an analogous argument applies to the post-labor force
curve, and 63 = A3/a3 may be defined to be the Zndex of retirement

asymmetry.

When "adding-on" a pre-labor force curve of a given level.
to thé labor force component, it is also important to indicate
something of its shape. For example, if the migration rates of
children mirror those of their parents, then @, should be approx-
imately equal to a,, and Bip = a1/a2, the <ndex of parental-

shift regularity, should be close to unity.

The Swedish regional migration patterns described in
Figure 2.5 and in Table 2.1 may be characterized in terms of
the various basic and derived measures defined above. We be-
gin with the observation that the outmigration levels in all
of the regions are similar, ranging from a low of 0.80 for males
in Region 5 to a high of 1.48 for females in Region 2. This sim-
ilarity permits a reasonably accurate visual assessment and char-

acterization of the profiles in Figures 2.5.

Large differences in gross migraproduction rates give rise
to slopes and vertical relationships among schedules that are
non-comparable when examined visually. Recourse then must be
made to a standardization of the areas under the migration curves,

for example, a general re-scaling to a GMR of unity. ©Note that
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this difficulty does not arise in the numerical data in Table 2.1
because, as we pointed out earlier, the principal slope and lo-
cation parameters and ratios used to characterize the schedules
are not affected by changes in levels. Only heights, areas, and

vertical distances, such as the jump, are level-dependent measures.

Among the eight regions examined, only the first two exhibit
a definite retirement peak, the male peak being the more dominant
one in each case. The index of child dependency is highest in
Region 1 and lowest in Region 8, distinguishing the latter re-
gion's labor dominant profile from Stockholm's child dependent
outmigration pattern. The index of labor asymmetry varies from
a low of 2.34, in the case of males in Region 4 to a high of
4.95 for the female outmigration profile of Region 8. Finally,
with the possible exception of males in Region 1 and females in
Region 6, the migration rates of children in Sweden do indeed
seem to mirror those of their parents. The index of parental-
shift regularity is 1.26 in the former case and .730 in the

latter; for most of the other schedules it is close to unity.
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3. A COMPARATIVE ANALYSIS

The preceding section demonstrated that age-specific rates
of migration exhibit a fundamental age profile that can be ex-
pressed in mathematical form called a model migration schedule,
which is defined by a total of 11 parameters. In this section
we seek to establish the ranges of values typically assumed by
each of these parameters and their associated derived variables.
This exercise is made possible by the availability of a rela-
tively large data base collected by the Comparative Migration
and Settlement Study, recently concluded at the International
Institute for Applied Systems Analysis (IIASA) in Laxenburg,
Austria (Rogers, 1976a, 1976b, 1978; Rogers and Willekens, 1978,
and Willekens and Rogers, 1978). The migration data for each
country included in this study are set out in the individual

national reports.

3.1 Data Preparation, Parameter Estimation, and Summary Statistics

The age-specific migration rates that were used to demon-
strate the fits of the model migration schedule in the last sec-
tion were single-year rates. Such data are very scarce at the
regional level and, in our comparative analysis, are available
only for Sweden. All other region-specific migration data are
reported for five-year age groups only and, therefore, must be
interpolated to provide the necessary input data by single years
of age. 1In all such instances the region-specific migration
schedules were first scaled to a gross migraproduction rate of
unity (GMR = 1) before being subjected to a cubic spline inter-

pclation (McNeil, Trussell, and Turner, 1977).

Starting with a migration schedule with a GMR of unity and
rates by single years of age, the nonlinear parameter estimation
algorithm ultimately yields a set of estimates for the model
schedule's parameters.* Table 2.1 in Section 2 presented the
results that were obtained using the data for Sweden. Since
these data were available for single years of age, the influence

of the interpolation procedure could be assessed. Table 3.1

*See Appendix A for details.
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contrasts the estimates for female schedules in Table 2.1 with
those obtained when the same data are first aggregated to five
year age groups and then disaggregated to single years of age
by a cubic spline interpolation. A comparison of the parameter
estimates indicates that the interpolation procedure gives

generally satisfactory results.

Table 3.1 refers to results for rates of migration from each
of eight regions to the rest of Sweden. If these rates are
disaggregated by region of destination, then 82 = 64 inter-
regional schedules need to be examined for each sex, complicating

comparisons across several nations. To resolve this difficulty we

shall associate a "typical” schedule with each collection of
national rates by calculating the mean of each parameter and
derived variable. Table 3.2 illustrates the results for the
Swedish data.

To avoid the influence of unrepresentative "outlier" observa-
tions in the computation of averages defining the typical national
schedule, it was decided to delete approximately 10 percent of the
"extreme" schedules. Specifically, the parameters and derived
variables were ordered from low value to high value; the lowest
5 percent and the highest 5 percent were defined to be extreme
values. Schedules with the largest number of low and high extreme
values were discarded, in seguence, until only about 90 percent of

the original number of schedules remained. This reduced set then
served as the population of schedules for the calculation of var-

ious summary statistics. Table 3.3 illustrates the average pa-
rameter values obtained with the Swedish data. Since the median,
mode, standard deviation-to-mean ratio, and lower and upper bounds
are also of interest, they are included as part of the more de-

tailed computer outputs reproduced in Appendix B.
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Table 3.2 Mean vglues of parameters defining the full set of observed model
migration schedules: Sweden, 8 regions*, 1974 observed data by single years
of age until 84 years and over.

Sweden

Males

Females

Without retirement

With retirement

Without retirement With retirement

Parameters peak (52 schedules) peak (11 schedules) peak (58 schedules) peak (5 schedules)
a, N.029 0.025 0.027 0.023
o, 0.126 0.080 0.114 0.087
a, 0.066 0.050 0.078 0.051
u, 21.09 21.52 19.13 19.20
a, 0.113 0.096 0.133 0.101
A, 0.459 0.439 0.525 0.377
c 0.003 0.002 0.003 0.003
a, 0.0012 0.0017
M3 75.45 72.07

0 g 6.797 0.688
A3 0.294 0.192

*Region 1 (Stockholm) is a single-commune region and hence there exists no "intraregional"”

schedule for it, leaving (8)2 - 1

= 63 schedules.

_92_
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The comparison, in Table 3.1, of estimates obtained using
one-year and five-year age intervals for the same Swedish data
indicated that the interpolation procedure gave satisfactory re-
sults. However, 1t also suggested that the parametef XZ was con-
sistently underestimated with five-year data. To confirm this,
the results of Table 3.3 were replicated with the Swedish data
base, using an aggregation with five-year age intervals. The re-

sults, set out in Table 3.4, show once again that A, is always

2
underestimated by the interpolation procedure. Although the de-
gree of underestimation is not large, this tendéncy should be

noted and kept in mind.

It is also important to note the erratic behavior of the
retirement peak, apparently due to its extreme sensitivity to
the loss of information arising out of the aggregation. Thus,
although we shall continue to present results relating to the
post-labor force ages, they will not be a part of our search

for families of schedules.

3.2 National Contrasts

Tables 3.3 and 3.4 of the preceding subsection summarized
average parameter values for 57 male and 57 female Swedish model
migration schedules. 1In this subsection we shall expand our
analysis to include a much larger data base, adding to the 114
Swedish model schedules, another 164 schedules from the United
Kingdom (Table 3.5); 114 from Japan and 20 from the Netherlands
(Table 3.6); 58 from the USSR, 8 from the USA, and 32 from Hun-
gary (Table 3.7).* Summary statistics for these 510 schedules
are set out in Appendix B; of those, 206 are male schedules,

206 are female schedules, and 98 are for the combination of

both sexes (males plus females) .*

*This total does not include the 56 schedules excluded as
"extreme" schedules. During the process of fitting the model
schedule to these more than 500 interregional migration schedules
a frequently encountered problem was the occurrence of a negative
value for the constant c. In all such instances the initial
value of ¢ was set equal to the lowest observed migration rate
and the nonlinear estimation procedure was started once again.



Table 3.3 Mean values of parameters defining the reduced set of Observed model
migration schedules: Sweden, 8 regions, 1974, observed data by single years of age
until 84 years and over. *

Sweden
Males Females
Without retirement With retirement Without retirement With retirement
Parameters peak (48 schedules) peak (9 schedules) peak (54 schedules) peak (3 schedules)
a, 0.029 0.026 _ 0.026 0.024
a, 0.124 0.085 0.108 0,093
a, 0.067 0.051 0.076 0.055
U, 20.50 21.25 19.09 18.87
a, 0.104 0.093 0.127 0.106
Ay 0.448 0.416 0.537 0.424
c 0.003 0.002 0.003 0.003
a, 0.0006 0.0001
Hq 76.71 74.78
05 0.8u47 0.938
A3 0.158 0.170

_82_

*Region 1 (Stockholm) is a single-commune region and hence there exists no intraregional
schedule for it, leaving (8)2 - 1 = 63 schedules, of which 6 were deleted.



Table 3.4 Mean values of parameters defining the reduced set of observed model migration

schedules: Sweden, 8 regions,

80 years and over.*¥

1974, observed data by five years of age until

Sweden

Males

Females

Without retirement

With retirement

Without retirement

With retirement

Parameters peak (49 schedules) peak (8 schedules) peak (54 schedules) peak (3 schedules)
a, 0.028 0.026 0.026 0.026
04 0.115 0.088 0.108 0.077
a, 0.068 0.052 0.080 0.044
My 20.61 20.26 19.52 19.18
0, 0.105 0.084 0.133 0.089
Ay 0.396 0.390 0.374 0.341
c 0.002 0.001 0.002 0.002
aj 0.0017 0.0036
Mg 77.47 77.72
05 0.603 0.375
AB 0.148 0.134

*Region 1 (Stockholm) is a single-commune region and hence there exists no intraregional

schedule for it, leaving (8)2 - 1

= 63 schedules, of which 6 were deleted.

_62_
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A significant number of schedules exhibited a pattern of
migration in the post-labor force ages that differed from that
of the 11-parameter model migration schedule defined in equation (1).
Instead of a retirement peak, the age profile took on the form
of an "upward slope". In such instances the following 9-parameter

modification of the basic model migration was introduced

M({x) = a1 e %1%
=X, (x=u,)
-az(x—uz)-e 2 2
+ a., e
2
0LX
+ aj e 3
+ c , X =0,1, 2,..., 2z (3)

The right half of Table 3.6, for example, sets out the mean
parameter estimates of this modified form of the model migration
schedule for the Netherlands.

Tables 3.3 through 3.7 present a wealth of information about
national patterns of migration by age. The parameters, set out in
columns, define a wide range of model migration schedules.

Four refer only to migration level: ajs @yr agy and c¢. Their
values are for a GMR of unity; to obtain corresponding values
for other levels of migration, these four numbers need to be
multiplied by the desired level of GMR. For example, the ob-
served GMR for female migration out of the Stockholm region in
1974 was 1.43. Multiplying a, = 0.029 by 1.43 gives 0.041, the

1

appropriate value of a, with which to generate the migration

1
schedule having a GMR of 1.43.

The remaining model schedule parameters refer to migration
age profile: Qqr Hpr Goy Az, U3r O3s and A3. Their values re-
main constant for all levels of the GMR. Taken together, they
define the age profile of migration from one region to another.

Schedules without a retirement peak yield only the four profile
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parameters: a,, Hor Qo and Az, and schedules with a retirement

slope have an additional profile parameter, g

A detailed analysis of the parameters defining the various
classes of schedules is beyond the scope of this report, never-
theless a few basic contrasts among national average age profiles

may be usefully highlighted.

Let us begin with an examination of the labor force compo-
nent defined by the four parameters asys Hor Ogy and Az. The
national average values for these parameters generally lie with-

in the following ranges:

0.05 < a, < 0.10
17<p2< 22
0.10 < o, < 0.20
0.25 < Az < 0.60

In all but two instances, the female values for ay, Gy, and
AZ are larger than those for males. The reverse is the case for
Moo with two exceptions, the most important of which is exhibited
by Japan's females who consistently show a high peak that is

older than that of males.

The two parameters defining the pre-labor force component,
a, and 0y generally lie within the ranges of 0.01 to 0.03 and
0.08 to 0.12, respectively. The exceptions are the Soviet Union
and Hungary, which exhibit unusually high values for ay - Unlike
the case of the labor force component, consistent sex differen-

tials are difficult to identify.

Average national migration age profiles, like most aggre-
gations, hide more than they reveal. Some insight into the ranges
of variations that are averaged out may be found by consulting the
lower and upper bounds and standard-deviation-to-mean ratios
listed in Appendix B for each set of national schedules. Addi-
tional details are available in the technical appendix to this

report*. Finally, Table 3.8, illustrates how parameters vary in

*The technical appendix entitled "638 Model Migration Sche-
dules: A Technical Appendix" is available on request.
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several unaveraged national schedules, by way of example. The
model schedules presented there describe migration flows out of
and into the capital regions of each of six countries: Finland,
Hungary, Japan, the Netherlands, Sweden, and the United Kingdom.
The former schedules describe capital outflow profiles, the lat-
ter define capital inflow profiles. All are illustrated in

Figure 3.1.

The most apparent difference between the age profiles of
the capital outflow and inflow migration schedules is the domi-
nance of young labor force migrants in the latter, that is, pro-
portionately more migrants in the young labor force ages appear
in capital inflow schedules. 1Indicating this labor dominance
are the larger values of the product azxz in the inflow sche-
dules and of the ratio 512 = a1/a2 in the outflow schedules.

A second profile attribute is the degree of asymmetry in
the labor force component of the migration schedule, i.e., the
ratio of the rate of ascent A2’ to the rate of descent P de-
fined as c, in Section 2. 1In all but the Japanese case, the
labor force curve of the capital outflow profile is more asym-
metric than that of the corresponding inflow profile. We refer

to this characteristic as labor asymmetry.

Examining the observed rates of descent of the labor and
pre-labor force curves, 0y and Oy respectively, we find, for
example, that they are close to being equal in the outflow sche-
dules of Helsinki and Stockholm and are highly unequal in the
cases of Budapest, Tokyo, and Amsterdam. In four of the six
capital inflow profiles a, > a,. Profiles with significantly
different values for a, and a,, are said to be irregular.

In conclusion, the empirical migration data of six in-
dustrialized nations suggest the following hypothesis. The
migration profile of a typtcal capital inflow schedule <s, in
general, more labor dominant and more labor symmetric than the
migration profile of the corresponding capital outflow schedule,
No comparable hypothesis can be made regarding its anticipated

degree of irregularity.



Table 3.5 Mean values of parameters defining the reduced set of observed
model migration schedules:

United Kingdom,

10 regions, 1970.%

United Kingdom

Males

Females

Without retirement

With retirement

Without retirement

With retirement

Parameters peak (59 schedules) peak (23 schedules) peak (61 schedules) peak (21 schedules)
a, 0.021 0.016 0.021 0.018
ay 0.099 0.080 0.097 0.089
a, 0.059 0.053 0.063 0.0u48
¥y 22.00 20.42 21.35 21.56
a, 0.127 0.120 0.151 0.153
Ay 0.259 0.301 0.327 0.333
c 0.003 0.004 0.003 0.004
ag 0.007 0.002
M3 71.11 71.84
0g 0.692 0.583
A3 0.309 0.403

*No intraregional migration data were available; hence (10)2

and 8 were deleted.

10 = 90 schedules were

analyzed

_EE_



Table 3.6 Mean values of parameters defining the reduced set of observed model
migration schedules: Japan, 8 regions, 1970 and the Netherlands, 12 regions, 1974.%

Japan Netherlands
Males Females Males Females
Without retirement Without retirement With retirement With retirement

Parameters peak (57 schedules) peak (57 schedules) slope (10 schedules) slope (10 schedules)

a, 0.014 0.021 0.013 0.012
a, 0.095 0.117 0.080 0.098
a, 0.075 0.085 0.063 0.084
Hy 17.63 21.32 20.86 20.10

o, 0.102 0.152 0.130 0.174
A2 0.480 0.350 0.287 0.307

c 0.002 0.004 0.003 0.004
a, 0.00001 0.00004
aq 0.077 0.071

*Region 1 in Japan (Hokkaido),is a single-prefecture region and hence there exists no intraregional
schedule for it, leaving (8)° - 1 = 63 schedules, of which 6 were deleted. The only migration
schedules available for the Netherlands were the migration rates out of each region without regard
to destination; hence only 12 schedules were used, of which 2 were deleted.

_ng_



Table 3.7 Mean values of parameters defining the reduced set of obseryed model migration
schedules; USSR, 8 regions, 1974, USA, U4 regions, 1970-<71, and Hungary, 6 regions,

1974, *
USSR USA Hungary
Total (Males plus Females) Total (Males plus Females) Total(Males plus Females) Total (Males plus Females)
Without retirement peak With retirement peak Without retirement slope With retirement slope
(58 schedules) (8 schedules) (7 schedules) (25 schedules)
al 0.005 0.021 Q.010 0.015
al 0.302 0.075 0.245 0.193
a2 0.126 0.060 0.090 0.099
u2 19.14 20.14 17.22 18.74
a2 0.176 0.118 0.130 0.159
X2 0.310 0.569 0.415 0.274
c 0.004 0.002 0.004 0.003
a3 0.002 0.00032
81.80
Hq 1
a3 0.430 0.033
A 0.119
3

*Intraregional migration was included in the USSR and Hungarian data but not in the USA data; hence there were

2 .
(8)2 = 64 schedules for the USSR, of which 6 were deleted, (6)° = 36 schedules for Hungary, of which 4 were deleted,
and (4)2 - 4 = 12 schedules for the USA, of which 2 were deleted because they lacked a retirement peak and another

2 were deleted because of their extreme values.

_SS_
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Table 3.8

Parameters defining observed total

(males plus females) model migration schedules

for capital-region flows: Finland, 1974, Hungary, 1974, 1970, Netherlands,
1974, Sweden, 1974, United Kingdom, 1970.
Finland Hungary Japan

Parameters From Helsinki To Helsinki From Budapest To Budapest From Tokyo To Tokyo
a1 0.037 0.024 0.015 0.008 0.019 0.008
a1 0.127 0.170 0.239 0.262 0.157 0.149
a2 0.081 0.130 0.082 0.094 0.064 0.096
uz 21.42 22.13 17.10 17.69 20.70 15.74
a2 0.124 0.198 0.130 0.152 0.111 0.134
AZ 0.231 0.231 0.355 0.305 0.204 0.577
C 0.000 0.003 0.003 0.003 0.003 0.002
a3 0.00027 0.00001 0.00005 0.00002 0.00131
u3 99,32
a3 0.204 0.072 0.059 0.061 0.000
A 0.042

_6€_



Table 3.8 Parameters defining observed total (males plus females) model migration schedules

for capital-region flows: Finland, 1974; Hungary, 1974; Japan, 1970; Netherlands,
1974; Sweden, 1974; United Kingdom, 1970 (continued).

Netherlands Sweden United Kingdom
Parameters From Amsterdam To Amsterdam From Stockholm To Stockholm From London To London
a, 0.015 0.012 0.028 0.018 0.015 0.014
a1 0.085 0.108 0.098 0.102 0.090 0.072
a2 0.050 0.093 0.046 0.093 0.048 0.067
u2 21.62 19.66 20.48 19.20 19.65 18.81
a2 0.141 0.150 0.095 0.134 . 0.111 0.123
Xz' 0.284 0.288 0.322 0.323 0.327 0.320
(o] 0.002 0.003 0.003 0.002 0.005 0.004
a3 0.00229 0.00002 0.00004 0.00003 0.00003
u3 80.32 73.19 81.13
a3 0.012 0.066 0.616 1.359 0.676

X3 0.105 0.255 0.112

._01-’_
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3.3 Families of Schedules

Three sets of model migration schedules have been defined
in this paper: the 1l1-parameter schedule with a retirement peak,
the alternative 9-parameter schedule with a retirement slope, and
the simple 7-parameter schedule with neither peak nor slope.

Thus we have at least three broad families of schedules.

Additional dimensions for classifying schedules into families
are suggested by the above comparative analysis of national migra-
tion age profiles and the basic measures and derived variables
defined in Section 2. These dimensions reflect different loca-
tions on the horizontal and vertical axes of the schedule, as
well as different ratios of slopes and heights.

Of the 528 model migration schedules studied in this Section,
416 are sex-specific and, of these, only 336 exhibit neither a
retirement peak nor a retirement slope. Because the parameter
estimates describing the age profile of post-labor force migra-
tion are unreliable, we shall restrict our search for families
0of schedules to these 164 male and 172 female model schedules,

summary statistics for which are set out in Tables 3.9 and 3.10.

An examination of the parametric values exhibited by the 336
migration schedules summarized in Tables 3.9 and 3.10 suggests
that a large fraction of the variation exhibited by these sche-
dules is a consequence of changes in the values of the following

four parameters and derived variables: Hor 612, 0o and 812.

Migration schedules may be early or late peaking, depending
on the location of H, On the horizontal (age) axis. Although
this parameter generally takes on a value close to 20, roughly
3 out of 4 observations fall within the range of 17 to 25. We
shall call those below age 19 as early peaking schedules and

those above 22 as late peaking schedules.

The ratio of the two basic vertical parameters, a, and a2,
is a measure of the relative importance of the migration of chil-
dren in a model migration schedule. The index of child depen-

dency, 6 = a1/a2, tends to exhibit mean value of about a third

12
with B0 percent of the values falling between one-fifth and
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four-fifths. Schedules with an index of one-fifth or less will
be said to be labor dominant; those above two-fifths will be
called child dependent.

Migration schedules with labor force components that take
the form of a relatively symmetrical bell-shape will be said to
be labor symmetrical. These schedules will tend to exhibit an
index of labor asymmetry, 0, = Az/az, that is less than 2.

Labor asymmetric schedules, on the other hand, will usually
assume values for 9, of 5 or more. The average migration sche-
dule will tend to show a oz-value of about 4, with approximately

5 out of 6 schedules exhibiting a o,within the range of 1 to 8.

2

Finally, the index of parental-shift regularity in many
schedules is close tounity, with approximately 70 percent of
the values lying between one-third and four-thirds. Values
of 812 = a1/a2 that are lower than four-fifths or higher than

six~fifths will be called <rregular.

Thus we may image a 3 by 4 cross-classification of migra-

tion schedules that defines a dozen "average families."

Measures
Peaking Dominance Symmetry Regularity

Schedule Hy=20 §1,=1/3 0,= Bqo=1
Retirement + + + +
Peak
Retirement + + + +

Slope
Reduced + + + +
Form

Introducing a low and a high value for each parameter gives
rise to 16 additional families for each of the three classes of
schedules. Thus we may conceive of a minimum set of 60 families,
equally divided among schedules with a retirement peak, schedules
with a retirement slope, and schedules with neither a retirement

peak nor a retirement slope.
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To complement the above discussion with a few visual illus-
trations, we present in Figure 3.2A six labor dominant profiles,

with & fixed at 22. The tallest three exhibit a steep rate of

1c
descent 0, = .3; the shortest three show a much more moderate
slope of a, = .06. Within each family of three curves, one finds

variations in My and in the rate of ascent, Xz. Increasing the
former shifts the curve to the right along the horizontal axis;
increasing the latter parameter raises the relative height of the

high peak.

The six schedules in Figure 3.2B depict the corresponding
two families of child dependent profiles. The results are gen-
erally similar to those in Figure 3.2A, with the exception that
the relative importance of migration in the pre-labor force age
groups is increased considerably. The principal effects of the

change in 6§ are: (1) a raising of the intercept a; +c¢ along

12
the vertical axis, and (2) a simultaneous reduction in the height
of the labor force component in order to maintain a constant area

of unity under each curve.

FPinally, the dozen schedules in Figures 3.2C and 3.2D de-
scribe similar families of migration curves, but in these pro-
files the relative contribution of the constant component to the
unit GMR has been increased significantly (i.e., 61c = 2.6). It
is important to note that such "pure" measures of profile as X
X X, and A remain unaffected by this change, whereas "impure"
profile measures, such as the mean age of migration, n, now take

on a different set of values.
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3.4 Sensitivity Analysis

The preceding subsections have focused on a comparison of
the fundamental parameters defining the model migration age pro-
files of a number of nations. The comparison yielded ranges of
values within which each parameter may be expected to fall and
suggested a classification of schedules into families. We now
turn to an analytic examination of how changes in several of the
more important parameters become manifested in the age profile
of the model schedule. For analytical convenience we begin by
focusing on the properties of the double exponential curve that

describes the labor force component:

_az(x-uz)-e Xz(x Uz)
f,(x) = a, e (4)
We begin by observing that if oy is set equal to Az in the
above expression, then the labor force component assumes the
shape of a well-known extreme value distribution used in the
study of flood flows (Gumbel, 194171; Kimball, 1946). In such a
case the function fz(x) is symmetrical around its mean Xy =,
and reaches its maximum, Y at that point. To analyze the more
general case where 0y # Az, we may derive analytical expressions
for both of these variables by differentiating equation (4) with
respect to x, setting the result equal to zero, and then solving

to find

a
- 1 2

an expression that does not involve a,y and

ig _fg_
A

a A2
2 2
Yh T %2\, © ' (6)

an expression that does not involve My

Note that if Az > ayy which is almost always the case, then

And observe that if a, = Az, then the above two equations

X 2

n > Mo
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simplify to

h T W2
and

_ 22

Y T &

Since u2 affects Xp only as a displacement, we may focus
on the variation of X, as a function of a, and AZ. A plot of
X, against Y for a fixed Az, shows that increases in an lead
to decreases in X} - Analogously, increases in Az, for a fixed
S PY produce increases in Xy but at a rate that decreases rapidly

as the latter variable approaches its asymptote.

The behavior of Yy is independent of M, and varies propor-

tionately with a Hence its variation also depends fundamen-

2

tally only on the two variables o, and A,. A plot of Yn against

2 2

Y for a fixed A gives rise to a U-shaped curve that reaches

2/
its minimum at a, = Xz. Increasing Az widens the shape of the
U.

The introduction of the pre-labor force component into the
profile generally moves Xy to a slightly younger age and raises

-0.X
Yp by about a, e h, usually a negligible quantity. The addi-

tion of the constant term c, of course, affects only Yh raising
it by the amount of the constant. Thus the migration rate at

age x, may be expressed as

h

. —ag Xy
M(xh) T a; e + Yp + c

A variable that interrelates the pre-labor and labor force
components 1s the parental shift, A. To simplify our analysis
of its dependence on the fundamental parameters, it is convenient
to assume that a, and a, are approximately equal. In such in-
stances, for ages immediately following the high peak Xp s the
labor force component of the model migration schedule is closely

approximated by the function
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—az(xz-uz)

a e

2

Recalling that the pre-labor force curve is given by

—d2X1
a1 e

when a, = a,, We may equate the two functions to solve for the

difference in ages that we have called the parental shift:

1 1
+ s in T . (7)

u
1 2 2 12

This equation shows that the parental shift will increase
with increasing values of My and will decrease with increasing
values of a, and 612. Table 3.11 compares the values of this
analytically defined "theoretical" parental shift with the cor-
responding observed parental shifts presented earlier in Table 2.1
for Swedish males and females. The two definitions appear to pro-
duce similar numerical values, but the analytical definition has

the advantage of being simpler to calculate and analyze.

Consider the rural-to-urban migration age profile defined
by the parameters in Table 3.12. 1In this profile the values of

a, and A, are almost equal making it a suitable illustration of

2 2
several points raised in the above discussion.

First, calculating Xy with equation (5) gives

_ O .237Y _
Xh = 21.10 -.77-0— in (ﬁ) = 21.58

as against the x, = 21.59 set out in Table 3.11. Deriving Yh

h
with equation (6) gives

y, = 0.187 (0.878)0'878 e 0-878 _ 0.069
where a2/>\2 = 0.237/0.270 = 0.878. Thus M(21.59) is approxi-
mately equal to Yo *+ © = 0.069 + 0.004 = 0.073. The value given

by the model migration schedule equation is also 0.073.



REGIONS OF SWEDEN

1. 2, 3. y, 5. 6. 7. 8.

The Parental Shift East South North Upper Upper
Stockholm Middle- Middle- South West Middle- North- North-

Sweden Sweden Sweden Sweden Sweden

Observed,a males 27,87 29,86 29.91 29,89 29.57 29.92 30.15 31.61
Theoretical,b males 26.67 28,97 29.63 29.74 28.84 29.43 29.74 30.59
Observed,a females 25.47 27.21 27.26 27.87 27.42 27.09 26.94 28.36
Theoretical,b females 24,49 26,33 27.51 28.21 27.19 27.69 27.53 28.59

Table 3.11

Observed and theoretical values of the parental shift:

(a

Source:

Table 2.1;

Swedish regions, 1974,

bSource: Rogers, Raquillet, and Castro [1978], p. U497.)

_Lg_
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Since o, # PYRL cannot adequately test the accuracy of
equation (7) as an estimator of A. Nevertheless, it can be used
to help account for the unusually large value of the parental
shift. Substituting in the values for Moy Qg and 612 into

equation (7), we find

_ 1 1
A = 21.10 + W In (W)
_ 4.51 _
= 21.10 + 537 = 40.13 .

And although this is an underestimate of 45.13, it does suggest
that the principal cause for the unusually high value of A is

the unusually low value of § Had this latter parameter the

12°
value found for Stockholm's males, for example, the parental

shift would exhibit the much lower value of 22.52.
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Table 3.12 Parameters and variables defining observed
urban/rural model migration schedules for
urban/rural flows: USSR, 1974,

Variables USSR
and Total (Males plus Females)
Parameters Urban to Rural Rural to Urban
GMR 0.74 3.41
a, 0.005 0.002
04 0.313 0.431
a, 0.127 0.187
Mo 19.26 21.10
0y 0.177 0.237
Ay 0.286 0.270
c 0.005 0.004
n 33.66 31.24
%(0-14) 8.63 5.59
%15-64) 78.30 84.60
% (65+) 13.07 9.81
61c 0.977 0.548
612 0.038 0.011
812 1.77 1.82
9, 1.61 1.14
X, 11.09 11.38
Xy 20.94 21.59
X 9.85 10.21
A 42.30 45.13

B 0.045 0.063
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4., SYNTHETIC MODEL MIGRATION SCHEDULES: I. THE CORRELATIONAL
PERSPECTIVE

A cynthetic model schedule is a collection of age-specific
rates that is based on patterns observed in various populations
other than the one being studied and some incomplete data on the
latter. The justification for such an approach is that age pro-
files of fertility, mortality, and migration vary within predeter-
mined limits for most human populations. Birth,.death, and migra-
tion rates for one age group are highly correlated with the corre-
sponding rates for other age groups, and expressions of such inter-
relationships form the basis of model schedule construction. The
use of these regularities to develop synthetic (hypothetical)
schedules that are deemed to be close approximations of the unob-
served schedules of populations lacking accurate vital and mobil-
ity registration statistics has been a rapidly growing area of

contemporary demographic research.

4.1 Introduction: Alternative Perspectives

The earliest efforts in the development of model schedules
were based on only one parameter and hence had very little flex-
ibility (United Nations, 1955). Demographers soon discovered
that variations in the mortality and fertility regimes of dif-
ferent populations required more complex formulations. In
mortality studies greater flexibility was introduced by provid-
ing families of schedules (Coale and Demeny, 1966) or by enlarg-
ing the number of parameters used to describe the age pattern
(Brass, 1975). The latter strategy was also adopted in the
creation of improved model fertility schedules and was augmented
by the use of analytical descriptions of age profiles (Coale and
Trussell, 1974).

Since the age patterns of migration normally exhibit a greater
degree of variability across regions than do mortality and fertil-
ity schedules, it is to be expected that the development of an
adequate set of model migration schedules will require a greater
number both of families and of parameters. Although many alter-

native methods could be devised to summarize regqgularities in the
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form of families of model schedules defined by several parameters,

three have received the widest popularity and dissemination:

1. the regression approach of the Coale-Demeny model life
tables (Coale and Demeny 1966 )

2. the logit system of Brass (Brass, 1971), and

3. the double-exponential graduation of Coale, McNeil and
Trussell (Coale, 1977, Coale and McNeil, 1972, and Coale

and Trussell, 1974)

The regression approach embodies a correlational perspective
that associates rates at different ages to an index of level,
where the particular associations may differ from one "family" of
schedules to another. For example, in the Coale-Demeny model life
tables the index of level is the expectation of remaining life at
age 10, and a different set of regression equations is established

for each of four "regions" of the world.*

Brass's logit system reflects a relational perspective in
which rates at different ages are given by a standard schedule
where shape and level may be suitably modified to be appropriate

for a particular population.

The Coale-Trussell model fertility schedules are relational in

perspective (they use a Swedish standard first-marriage schedule),

but they also introduce an analytic description of the age profile
by adopting a double exponential curve that defines the shape of

the age-specific first-marriage function.

In this section and the next we mix the above three approaches
to define two alternative perspectives for creating syhthetic
model migration schedules to be used in situations where only
inadequate or defective data on internal (origin-destination)
migration flows are available. Both perspectives rely on the
analytic (double plus single exponential) graduation defined by
the basic model migration schedule set out in Section 1 of this
paper; they differ in the method by which a synthetic schedule

is identified as being appropriate for a particular population.

*Each of the four regions (North, South, East, and West) defines a
collection of similar mortality schedules that are more uniform in
pattern than the totality of observed life tables.
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The first, the regression approach, associates variations in the
parameters and derived variables of the model schedule to each
other and then to age-specific migration rates. The second, the
logit approach, embodies different relationships between the model
schedule parameters in several standard schedules and then asso-
ciates the logits of the migration rates in the standard to those

of the population in question.

4.2 The Correlational Perspective: The Regression Migration System

A straightforward way of obtaining a synthetic model migration
schedule from limited observed data is to associate such data to
the basic model schedule's parameters by means of regression
equations. For example, given estimates of the migration rates of
infants and young adults, M(0 - 4) and M(20 - 24) say, we may use
equations of the form

b
Q, = by [M(0 - 4)] T m(20 - 24)1°2

to estimate the set of parameters Qi that define the model schedule.

However, the comparative analysis in Section 3 showed that the

parameters of the fitted model schedules were not independent of

each other. For example, higher than average values of ), were

2

associated with lower than average values of a The incorporation

1.
of such dependencies into the regression approach would surely
improve the accuracy and consistency of the estimation procedure.
An examination of empirical associations among model schedule

parameters and variables, therefore, is a necessary first step.

Regularities in the covariations of the model schedule's
parameters suggest a strategy of model schedule construction
that builds on regression equations embodying these covaria-
tions. For example, if a, increases linearly with increas-

ing values of Gy then the linear regression equation
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may adequately capture this pattern of covariation. For Swedish

females this equation is estimated to be

a, = —.006-+0.645a2

The correlation coefficient is 0.92, and the t-statistic of the

regression coefficient associated with a, is 17.51.

Table 4.1 presents regression equations, such as the one above,
fitted to Swedish data on males and on females. The particular
choice of variables and parameters included there is, of course,
only one of many possible alternatives, and it reflects a partic-
ular sequence of steps by which a complete model schedule with unit
GMR can be inferred on the basis of estimates for: 612, xz, and
Xp Given values for these three variables, one can proceed to
estimate Hor AZ’ Py and 812. Since 0, = A2/a2 we obtain, at the
same time, an estimate for Oy which we then can use to find a,.
With a,
nitional equation 612 = a1/a2, and a, may be found with the simi-

established,a1 may be estimated by drawing on the defi-

lar equation 812 = a1/a2. An initial estimate of ¢ is obtained
by setting c = a1/61c, where 61c is estimated by regressing it

on 612, and a;, a and c are scaled to give a GMR equal to unity.

27

Conceptually, this approach to model schedule construction
begins with the labor force component and then appends to it the
pre-labor force part of the curve. The value given for 612
reflects the relative weights of these two components, with low
values defining a labor dominant curve and high values pointing to
a family dominated curve. (The behavior of the post-labor force

curve is here assumed to be treated exogenously.)

We begin the calculations with My to establish the location of
the curve on the age axis; 1is it an early or late peaking curve?
Next, we turn to the determination of its two slope parameters Az
and a, by determining whether or not it is a labor symmetric curve.
Values of 0, between 1 and 2 generally characterize a labor sym-

metric curve; higher values describe an asymmetric age profile.
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Table 4.1 The Swedish regression equations: males and females.

. .. ) Multiple
Regression Coefficients of Independent Variables* .
Correlation
Depgndent Inter- 612 a, Xy X, Coefficient
Variables cept r
MALES
M, -5.037  -2.886 0,134 1.052
(~4.85) (2.25) (13.06) 0.90
02 32.884 9.351 1,193 -2.164
(4. 36) (5.55) (-7.45) 0.82
812 5.211 2.000 -0.186 -0,085
(8.00) (-7.44) (=2,52) 0.83
Az 2,239 0.172 0.104 -0.,148
(1.40) (8.43) (-8.90) 0.87
a2 0.007 N.576
(11.19) 0.86
61c 9,725 ~-0.631
(-0.13) 0.02
FEMALES
u2 -1.080 -2.527 0.086 0.914
(-6.71) (1.57)  (15.71) 0.92
02 8,054 8.019 1.592 ~1.423
(7.20) (9.88) (~-8,28) 0.88
812 2.407 1.594 -0.147 0.005
(6.81) (-4.33) (0.14) 0.77
Xz 1.759 0.192 0.155 -0,.169
(2.38) (13.27) (-=13.52) 0.93
a2 -0.006 0.645
(17.51) 0.92
Glc 5.959 11.553
(1.93) 0.26

*Values in parentheses are t-statistics.
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The regression of a, on a, produces the fourth parameter needed to
define the labor force component. With values for Py Az, aye and

a, the construction procedure turns to the estimation of the pre-

2
labor force curve, which is defined by the two parameters o, and

a,. Its relative share of the total unit area under the model

1
migration schedule is set by the value give to 612.

Exhibit 4.1 demonstrates the sequence of calculations with the
Stockholm model migration schedule for females. Figure 4.1

illustrates the resulting fit.*

4.3 The Basic Regression Equations

The collection of regression equations set out in Exhibit 4.1
may be defined to represent the "child dependency" set, inasmuch
as their central independent variable 612 is the index of child
dependency. It is, of course, also possible to replace this
independent variable with others, such as 0, Or 812, for example,
to create a "labor asymmetry" or a "parental regularity" set,
respectively. Table 4.2 presents regression coefficients for all
three variants, obtained using the age-specific interregional
migration schedules (scaled to unit GMR) of Sweden, the United
Kingdom, and Japan. Deleting schedules with a retirement peak,

leaves a total of 163 for males and 172 for females.

Tests of the 3 variants of the basic regressions using the
data on Sweden, the United Kingdom, and Japan produced relatively
satisfactory results, with the goodness-of-fit index E generally
lying in the range between 5 and 35. Of the three variants, the
child dependency set gave the best fits in about a half of the
female schedules tested, whereas the parental regularity set was

overwhelmingly the best fitting variant for the male schedules.

4.4 Using the Basic Regression Equations

To use the basic regression equations presented in Table 4.2,
one first needs to obtain estimates of 612, X and Xy - Values
for these three variables may be selected to reflect informed
guesses, historical data, or empirical regularities between such

model schedule variables and observed migration data.

*The retirement peak is introduced exogenously by setting
its parameters equal to those of the "observed" model migration
schedule.



-60-

A, INPUTS
8. = 0.604 X, = 14.81 X, = 22.70

B. OUTPUTS

B.l Labor force cocmponent

=
It

- - + 0.9
1.080 2.527 612 + 0,086 xl 0.914 xh

19.42

] = 8,054 + 8.019 512 + 1.592 xg = 1.423 xh

= 4.17

12 = 1.759 + 0.132 612 + 0.155 X, - 0.169 x,
= 0.334
= = 0.080

uz 12/02

a, =- 0.006 + 0,645 a,
= 0.046

B.2 Pre-labor force component

a, = a, 612 = 0.028

812 = 2.407 + 1.594 612 - 0.147 x, + 0.005 x.
= 1.31

a, = a, 8, =0.104

B.3 Constant component

6)c = 5-959 +11.553 6,
= 12.94
c = a)/§ =0.028/12.937 = 0.002
C. GOODNESS OF FIT*
E = 8.5

Exhibit 4.1 The calculation sequence with the Swedish regressions:
Stockholm females, GMR = 1

* The goodness-of-fit index E is the mean absolute error expressed as a percent-
age of the observed mean. It is defined in egquation (2) of Section 2.
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Table 4.2 A basic set of regression equations.
A, MALES
Regression Coefficients of Independent Variables*
612 Multiple
5= Correlation
Dependent Inter=- £ o . x Coefficient
Variables cept Blz¥ 2 £ h r
Child Dependency Set (512)
02 16.42682 5.59390 0.89435 -1.17441 0.72
(5.23) (9.54) (-11.14)
312 1.,90489 1.33191 -0.02651 -0.04019
(3.60) (-0.82) (-1.10) 0.28
AZ 1.30848 0.15118 0.07617 -0.08963
(3.16) (18.15) (-19.00) 0.88
Labor Asymmetry Set (02)
512 -1.14777 0.02610 -0.01384 0.07039
(5.23) (-1.74) (9.01) 0,64
812 -1.42236 0.18826 -0.19178 0.19388
(8.70) (-5.57) (5.72) 0.57
AZ —————————— same equation as in the child dependency set-—--—-—-~----
Parental Regularity Set (812)
512 -0.88605 0.05634 0.01179 0.04530
(3.60) (1.78) (6.85) 0.60
02 10.38013 1.70652 0.97656 -2,95133
(8.70) (11.77) (-11.47) 0.78
AZ 1.16111 0.02563 0.07816 -0.08316
(2.58) (18.58) (-19.77) 0.87
Equations Common to All Sets (612)
U2 -3.26006 3.27947 -0,.67070 1.39248
(2.77) (-6.46) (11.93) 0.77
a2 0.03398 0.29713
(7.46) 0,51
Glc 9.41424 13,83372 0,05
(0.63)

*Values in parentheses are t-statistics.
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Table 4.2 A basic set of regression equations (continued).
B. FEMALES
Regression Coefficients of Independent Variables*
le Multiple
o. Correlation
2 . .

Dependent Inter- o o . x Coefficient
Variables cept 12 2 L h r
Child Dependency Set (612)
02 10.96834 6.05257 0.63402 -N.84512

(9.85) (11.47) (-16.16) 0.82
812 1.82060 1.42203 -0.04282 -0,03911

(9.04) (-3.02) (-2,92) 0.58
Xz 1.19343 0.12937 0.07635 -0,08650

(2.98) (19.57) (-23.45) 0.920
Labor Asymmetry Set (02)
612 -1.03192 0,06046 -0.02597 0.06933

(9.85) (=3.66) (10.81) 0.72
By 0.28708  0.09485 -0.08643 0.06544

(5.35) (-4.22) (3.53) 0.39
Xz ----------- same equation as in the child dependency set=—-——w-—--

Parental Regularity Set (812)

612

Equations Common to All Sets (612)

-0.81011

5.92233

1.09905

0.22998
(9.04)

1.53566
(5.35)

0.01926
(1.08)

¥

CSlc

-7.69222

0.03850

0.18996

-2.14239
(-2.37)

26.42951

(3.85)

0.24908

(6.79)

n.02297
(4.12)

0.77520
(12.34)

0.07916
(20.28)

-0.52726
(-6.49)

0.02835
(5.60)

-0.67378

(-11.80)

-0.08282
(-23.33)

1.63218
(21.25)

0.86

*Values in parentheses are t-statistics.
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For example, suppose that a fertility survey has produced a
crude estimate of the ratio of infant to parent migration rates:
M = M(0-4)/M(20-24), say. A linear regression of 612 on this M-ratio

gives, for Swedish females,

F612 = -0,05562 + 0.79321 M

and a correlation coefficient of 0.92. Enlarging the data set to
also include the United Kingdom and Japan reduces the correlation

coefficient to 0.66, and gives

F612 = 0.10311 + 0.40811T M .

Estimating the corresponding equation for males yields

M612 = =0.02066 + 0.68602 M
and a correlation coefficient of 0.80. And repeating the above
two regression calculations using data for single years of age

(that is, M = M(0-1)/M(20-21)) gives

0.18224 + 0.20346 M (r 0.60)

O >
I

and

= 0.09318 + 0.35022 M (r 0.74)

o>
t

The correlation coefficients indicate that the fits for the
five-year age groups are somewhat better for both males and females,
and such data are generally more readily available. Moreover,
tests of both pairs of regressions with data for Sweden, the
United Kingdom, and Japan consistently show that the two pairs

produce virtually identical age profiles for fixed values of X,
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and Xy - Consequently we shall restrict our attention to the

five~year age interval regression equations.

Figure 4.2 illustrates examples of the guality of fit provi-
ded by the synthetic schedules to the observed model migration
data. Two sets of synthetic schedules are shown: those with the
observed index of child dependency (612) and those with the esti-

mated index (8§ calculated using the five-year age group re-

12)’
gressions.

4.5 Applications

A closer examination of the basic set of regression equations
reveals several weaknesses. The equation for estimating 812 in
the child dependency set has a low coefficient of multiple corre-
lation, r=0.28. It would seem prudent to simply set 812 equal to
a fixed value, say unity. A similar justification may be made for

setting ¢ equal to 0.003 say.

The male and female regression equations to calculate a, are
similar enough to lead one to combine them to define the unisexual

equation

a, = 0.04 + 0.27 az

and )\, remain

The regression equations for calculating Hor g9 2

as set out in Table 4.2.

Simplification of the M-ratio regression also is possible.

Forcing the regression through the origin gives

0.549 M

rS12

and

0.654 M

o>
il
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Exhibit 4.2 presents the calculation sequence that uses
the above equations to produce the synthetic model migration
schedule for Philippine males illustrated in Figure 4.3. The
result is not very satisfactory and suggests that further re-
search on the development of a basic set of regressions appro-

priate to Third World countries is needed.
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A. INPUTS

M(0-4) _ 0.051
M(20-24) 0.132

5 M(0-4)

12 = alm = 0.654 (0.386) = 0,
X, = 13.50
X, = 23.00

B. OUTPUTS

B.1l Labor force component

B.3

C.

Exhibit

U, = =3.260 + 3.279 612 - 0.671 x

2 2

Q
(]

16.427 + 5.594 612 + 0.894 xy

A = 1,308 + 0.151 512 + 0.076 x

A

2
Qz = 02 = 0.104

3

a, = 0.04 + 0.27 a2 = 0.068

Pre~labor force component

a, = a2612 = 0.017
812= 1
a, = 02812 = az = 0.104

Constant component

c = 0.003

GOODNESS OF FIT

E = 35.10

252

+ 1.392 xh = 20.525
- 1.174 X, = 2.906

- 0.090 xh = 0.302

= 0.386 (from del Mar Pernia 1977, p. 114)

4.2 The calculation sequence with the simplified

version of the basic
males.

regressions:

Philippine
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5. SYNTHETIC MODEL MIGRATION SCHEDULES: II. THE RELATIONAL
PERSPECTIVE

Two alternative perspectives for identifying an appropri-
ate synthetic model migration schedule for a regional population
with inadequate data were outlined at the beginning of the pre-
ceding section. Both ultimately depend on the availability of
some limited data to obtain the appropriate model schedule, for
example, at least two age-specific rates such as M(0-4) and
M(20~-24) and informed guesses regarding the values of a few key

variables, such as the low and high points of the schedule.

Although the appropriate alternative will always depend on
the particular situation at hand, it seems reasonable to expect
that the relational logit system may turn out to be the more
suitable approach in some particular instances. Therefore, we
shall continue our discussion of synthetic schedules, in this
section, by focusing on the development of a logit migration

system.

5.1 1Introduction: The Logit Approach

Among the most popular methods for estimating mortality from
inadequate or defective data, is the so-called "logit system"
developed by William Brass about twenty years ago and now widely
applied by demographers all over the world.* The logit approach
to model schedules is founded on the assumption that different
mortality schedules can be related to each other by a linear
transformation of the logits of their respective survivorship
probabilities. That is, given an observed series of survivorship
probabilities £ (x) for ages x = 1,2,...,0, it is possible to
associate these with a "standard" series ls(x) by means of the

linear relationship

logit [1-2(x)] = Y + P logit [1-24x)]

*Brass (1971), Brass and Coale (1968), Carrier and Hobcraft
(1971), Hill and Trussell (1977), and Zaba (1979).
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where

Nl—=

logit [y(x)] =

ln [Tf¥§%%y] = Y(x) ,say, 0<y(x)<1,

or

Y(x) = vy + oYs(x)
The inverse of this function is

1

1_'_eZY(x)

2(x) =

The principal results of this mathematical transformation
of the nonlinear 2 (x) function is a more nearly linear function
in x, with a range of minus and plus infinity rather than unity

and zero.

Given a standard schedule, such as the set of standard
logits, Ys(x), proposed by Brass, a life table can be created
by selecting appropriate values for y and p. In the Brass system
Yy reflects the level of mortality and p defines the relationship
between child and adult mortality. The closer y is to zero and p
to unity, the more like the standard is the synthetically created

life table.

5.2 The Relational Perspvective: The Logit Migration System

As before, let uM(x) denote the age-specific migration rates
of a schedule scaled to a unit gross migraproduction rate (GMR),
and let uMs(x) denote the corresponding standard schedule.

Taking logits of both sets of rates gives the logit migration

system

uY(x) =y +p Y (x)
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and

1
=2y +o Y, (x)T

M(x)
u 1+

where, for example,

l.lMS (x)

1-_ M (x) ’

logit [M_(x)] = Y_(x) = % 1n
u s

u's 0<uMS(x)<1

The selection of a particular migration schedule as a stand-
ard reflects the belief that it is broadly representative of the
age pattern of migration in the multiregional population system
under consideration. To illustrate a number of calculations
carried out with several sets of multiregional data, we shall
adopt the national age profile as the standard in each case and
strive to estimate regional outmigration age profiles by relating

them to the national one. Specifically, given an m by m table of

interregional migration flows for any age x, we divide each origin-
destination-specific flow Oij(x) by the population in the origin
region Ki(x) to define the age-specific migration rate Mij(x).
For the corresponding national rate, we define
L2 0;y(x)
M.(x) = —3——— for all i # j .

K. (x)
i 1

Scaling all schedules to unit GMR gives

M. . (x) M, . (x)

= lJ — lJ 3 3
s T Mo T emT ¢ L1#FI
< i3 ij
and
M (%) Mu(x)
M) =TTy T aMR. -

X



-73-

Figure 5.7a 1illustrates the national migration rate schedule
of Swedish males and females in 1974, scaled to unit GMR. The
rates are for single years of age and describe transfers across
the regional boundaries of the eight-region system adopted in the

comparative study.

Figure 5.1bgraphs the age pattern of the logit values, Ys(x),
of the national migration rates.* Regressing the set of 85
age-specific outmigration rates from Stockholm to the rest of the

nation, on these two standard schedules of logits, gives

uY(x) = -0.4871 + 0.7664 Ys(x)

for males, and

Gy (x) = -0.3317 + 0.8362 Yg(x)

for females.

Alternatively, fitting the model migration schedule to the
national standard with GMR set equal to unity, taking logits of
these standard rates, and regressing Stockholm's model schedule
outmigration rates (with GMR also equal to unity) on the standard

logits, gives

uY(x)

-0.4978 + 0.7612 Ys(x)

for males, and

uY(x) -0.3358 + 0.8345 Ys(x)

for females. The differences are minor for most of the Swedish
data and so are their consequences for the fits of the synthetic

Stockholm model schedules to the observed data and its graduated
expression. Figure 5.2 illustrates both pairs of fits for Stockholm.

*Oour standard schedules shall always have a unit GMR; hence the

left subscript on uYs(x) will be dropped henceforth.
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Henceforth we shall deal only with graduated fits inasmuch as all
of our non-Swedish data are for five-year age intervals and there-
fore need to be graduated first in order to provide single-year

profiles by means of interpolation.

Figure 5.3 presents male national standards for Sweden, the

United Kingdom, Japan, and the Netherlands. The differences in
age profile are marked. Only the Swedish and the U.K. standards
exhibit a retirement peak. Japan's profile is described without
one because the age distribution of migrants given by the census
data ends with the open interval of 65 years and over. The data

for the Netherlands, on the other hand, show a definite upward

slope at the post-labor force ages and therefore have been gradu

ated with the 9-parameter model schedule with an "upward slope".

Regressing the logits of the age-specific outmigration rates
of each region on those of its national standard (the GMRs of
both first being scaled to unity) gives the estimated values for
Y and p that are set out in Table 5.1. Reversing the procedure
and combining selected values of y and p with a national standard
of logit values, produces the GMRs set out in Table 5.2. The latter
toable identifies the following important regularity: whenever
Y = 2(p-1) then the GMR of the synthetic model schedule is

approximately unity. Regressions of the form

fitted to our data for Sweden, the U.K., Japan, and the Netherlands,
consistently produce estimates for dO and d1 that are approximately

equal to 2 in magnitude and that differ only in sign, i.e.,

d0 = =2 and d1 = +2

Thus

Yy = =2+ 2p = 2(p-1)
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Table 5.1. Estimated logit model parameters.
a. Sweden Y P
Males Females Males Females
1. Stockholm -0.4978 -0.3358 0.7612 0.8345
2. East Middle -0.1719 -0.0943 0.9214 0.9588
3. South Middle -0.0341 -0.0129 0.9939 1.0053
4. South ~0.0669 -0.0005 0.9773 1.0090
5. West -0.0724 -0.0787 0.9697 0.9665
6. North Middle -0.0130 -0.0738 1.0051 0.9801
7. Lower North -0.0706 -0.0693 0.9852 0.9901
8. Upper North -0.2946 -0.2004 0.8768 0.9278
b. United Kingdom Y p
Males Females Males Females
1. North» 0.0604 0.0259 1.0326 1.0154
2. Yorkshire 0.1464 0.2303 1.0699 1.1097
3. North West -0.2577 -0.0480 0.8826 0.9789
4. East Middle 0.2730 0.1774 1.1276 1.0828
5. West Middle 0.1768 0.1300 1.0816 1.0614
6. East Anglia 0.0838 0.1966 1.0389 1.0918
7. South East -0.3324 ~-0.2959 0.8449 0.8626
8. South West 0.3395 0.1247 1.1625 1.0588
9. Wales 0.1416 -0.0144 1.0717 0.9976
10. Scotland 0.5269 0.8599 1.2512 1.4074
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Table 5.1. Estimated logit model parameters (continued).
c. Japan Y P
Males Females Males Females
1. Hokkaido -0.1075 -0.4254 0.9519 0.7931
2. Tohoku -0.6740 0.0975 0.7008 1.0747
3. Kanto -0.5251 -0.7071 0.7581 0.6753
4. Chubu 0.2507 0.0984 1.1351 1.0509
5. Kinki 0.1971 -0.3372 1.0916 0.8418
6. Chugoku 0.3687 0.2055 1.1973 1.1066
7. Shikoku -0.0356 0.1680 1.0098 1.1009
8. Kyushu -0.2333 0.3389 0.9009 1.1738
d. Netherlands Y o}
Males Females Males Females
l. Groningen 0.1434 0.1136 1.0705 1.0550
2. Friesland 0.0222 -0.1122 1.0160 0.9507
3. Drenthe 0.1835 -0.0103 1.0920 0.9982
4. Overijssel 0.2430 0.29202 1.1445 1.1403
5. Gelderland 0.1714 0.1103 1.0945 1.0541
6. Utrecht -0.0493 0.1539 1.0000 1.0762
7. Noord-Holland -0.1172 -0.2586 0.9549 0.8778
8. Zuid-Holland -0.1746 -0.2075 0.9292 0.9014
9. Zeeland 0.3046 -0.0224 1.1537 0.9907
10. Noord-Brabant 0.2353 0.0135 1.1427 1.0092
11. Limburg 0.2923 0.1657 1.1679 1.0830
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We have noted before that when vy = 0 and ¢ = 1, the synthetic
model schedule is identical to the standard. Moreover since the
GMR of the standard is always unity, values of y and p that satis-
fy the equality vy = 2(p - 1) guarantee a GMR of unity for the syn-
thetic schedule. What are the effects of other combinations of

values for these two parameters?

Figure ‘5.4 illustrates how the Swedish male standard sche-
dule is transformed when Yy and p are assigned particular pairs of
values. Figure 5.4a shows that fixing y = 0 and increasing p
from 0.75 to 1.25 lowers the schedule, giving migration rates
that are smaller in value than those of the standard. On the
other hand, fixing p = 0.75, and increasing y from -1 to 0 raises
the schedule, according to Figure 5.4b. Finally, fixing the
GMR = 1 by selecting values of Yy and p that satisfy the equality
Yy = 2(p - 1) shows that as vy and p both increase, so does the
degree of labor dominance exhibited by the synthetic schedule.
For example, moving from a synthetic schedule with y = -0.5 and
p = 0.75 to one with v = 0.5 and p = 1.25 does not alter the
area under the curve (GMR = 1) but it does increase its labor

dominance (Figure 5.4c).

Figure 5.5 compares the behavior of the Swedish male standard
with those of the U.K., Japan, and the Netherlands, as y and p are
assigned values of -0.5, 0, +0.5 and 0.75, 1.0, 1.25, respectively.
In all cases, increases in Yy and p values lead to more labor domi-
nant profiles. Note that, whereas the Swedish curve shows three
points of intersection, the Japanese profile exhibits only two.
This suggests that it might be useful to distinguish families of
standard schedules according to the number and locations along the

age axis of such intersection points.

5.3 The Basic Standard Schedule

The comparative analysis of national and interregional
migration patterns carried out in Section 3 identified at least
three distinct families of age profiles. First, there was the
11-parameter basic model migration schedule with a retirement peak

that described adequately a number of interregional flows, for
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example, the age profiles of outmigrants leaving capital regions
such as Stockholm and London. The elimination of the retirement
peak gave rise to the 7-parameter reduced form of this basic
schedule, a form that was used to describe a large number of
labor dominant profiles and the age patterns of migration sched-
ules with a single open-ended age interval for the post-labor
force population, for example, Japan's migration schedules.
Finally, the existence of a monotonically rising tail in migration
schedules such as those exhibited by the Dutch data led to the
definition of a third profile: the 9-parameter upward-sloping
model migration schedule. These three fundamental age profiles

define our three families of model migration schedules.

Within each family of schedules, a number of key parameters
or variables may be put forward in order to further classify
different categories of migration profiles. For example, in
Section 3 we identified the special importance of the following

aspects of shape and location along the age axis:
1. PEAKING: early peaking vs. late peaking (uz)
2. DOMINANCE: child dominance vs. labor dominarnce (612)
3. SYMMETRY: labor symmetry vs. labor asymmetry (02)

4. REGULARITY: parental regularity vs. parental irregularity (%2)

These fundamental families and 4 key parameters give rise to

a large variety of standard schedules. For example, even if the

4 key parameters are restricted to only dichotomous values, one
already needs 2u = 16 standard schedules. If, in addition, the
sexes are to be differentiated, then 32 standard schedules are a
minimum. A large number of standard schedules would make the logit
approach a less desirable alternative. Hence we shall examine the
feasibility of adopting only a single standard for each sex and
assume that the shape of the post-labor force part of the schedule

may be determined exogenously.*

*In tests of our logit migration system, therefore, we shall always
set the post-labor force retirement peak or upward slope egual to
observed model schedule values.
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Table 5.3 presents the median parameter values of the 164
male and 172 female model schedules that have no retirement peak,
among the interregional schedules calculated for Sweden, the
United Kingdom, and Japan. This data base is precisely the same
one that was used in Section 4 to develop the basic regression

equations set out in Table 4.2.

5.4 Using the Basic Standard Schedule

Given a standard schedule and a few observed rates, such as
M(0 ~ 4) and M(20 - 24), for example, how can one find estimates
for vy and p, and with those estimates go on to obtain the entire

synthetic schedule?

First, taking logits of the two observed migration rates
gives Y(0 -4) and Y (20 - 24) and associating these two logits with

the pair of corresponding logits for the standard gives

Y(O-4)

-1
Y + o YS(O )

Y (20 - 24)

Y + p YS(ZO-ZU)

Solving these two equations in two unknowns gives crude estimates
for vy and p, and applying them to the standard schedule's full
set of logits results in a set of logits for the synthetic
schedule. From these one can obtain the migration rates, as
shown in subsection 5.2. However, tests of such a procedure
with the migration data for Sweden, the United Kingdom, Japan,
and the Netherlands indicate that the method is very erratic
in the quality of the fits that it produces and, therefore,
more refined procedures are necessary. Such procedures (for
the case of mortality) are described in the literature on the
Brass logit system (for example, in Brass 1975 and Carrier
and Goh, 1972).
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Table 5.3 The basic standard median migration schedule.

A. MALES
612 = 0.33571 M, = 19.67385
o, = 3.42123 a, = 0,01992 a, = 0.06471
= o, = 0.10390 =
812 1.02442 1 a, 0.1n618
§ = 6.79034 c = 0.00263 A= 0.37244
1c 2
B, FEMALES
§. = =
15 = 0.32367 M, 19.88280
02 = 2.89784 a = 0.02209 a, = 0.06935
812 = 0.84944 a, = 0.,10883 @, = 0.13434
8§, = 5,95881 c = 0,00350 A. = 0.37870

1c 2




~-87-~

A reasonable first approximation to an improved estimation
method is suggested by the regression approach in Section 4.
Imagine a regression of p on the M-ratio, M(0 - 4)/M(20 - 24).
Starting with the basic standard median migration schedule and
varying p within the range of observed values, one may obtain
a corresponding set of M-ratios. Associating p and the M-ratio
in this way, one may EroceedAfurther and use the relational

equation to estimate y from p:
Y = 2(p - 1)

Using the basic median standard, for example, gives the

following regression equation:

pp = 2.690 - 3.062 M

for females, and

Py = 2.510 - 2.983 M

for males.

A further simplification can be made by forcing the re-
gression line to pass through the origin, as in Section 4.
Since the resulting regression coefficient has a negative sign
and the intercept exhibits roughly the same absolute value, but

with a positive sign, the regression equations take on the form

Pp = 2.226 (1 - M)

for females, and

Py = 2.101 (1 - M)
for males.

Given a standard schedule and estimates for y and p, one

can proceed to compute the associated synthetic model migration
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schedule. Figure 5.6 illustrates representative examples of
the quality of fit obtained using this procedure. Two syn-
thetic schedules are illustrated with each observed model mi-
gration schedule: those calculated with the interpolated 85
single-year of age observations and the resulting least-squares
estimates of y and p, and those computed using the above regres-

sion equations of p on the M-ratio.

5.5 Applications

The male and female median standard schedules set out in
Table 5.3 are similar, and a simplified logit system could use
their average parameter values to define a unisexual standard.
A rough rounding of these averages would simplify matters even
more. In applying the logit migration system to data on the
Philippines, we shall adopt both of the above simplifications
and use the simplified basic standard migration schedule pre-

sented in Table 5.4.

The simplified basic schedule in Table 5.4 together with
estimates of ; obtained with the pair of M-ratio regressions
set out earlier produced the synthetic schedules for the Philip-
pines illustrated in Figure 5.7. As in Section 4, the results
are unsatisfactory and underscore the need to define a more

appropriate standard for Third World countries.

Table 5.4 The simplified basic standard migration schedule.

612 = 1/3 My = 20

0, = 4 a, = 0.02 a, = 0.06
812 = 1 a, = 0.10 a, = 0.10
61c = 6 C = 0.003 AZ = 0.40

The values of Ay, @y, and ¢ are initial values only and need to

be scaled proportionately to ensure a unit GMR.
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Figure 5.7 A synthetic model migration schedule for
Philippine males: the relational approach.
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6. CONCLUSION

This paper began with the observation that empirical regu-
larities characterize observed multistate schedules in ways that
are no less important than the corresponding well-established
regularities in observed fertility or mortality schedules. Sec-
tion 2 was devoted to defining mathematically such regularities
in observed migration schedules in order to exploit the nota-
tional, computational, and analytical advantages that such a
formulation provides. Section 3 reported on the results of an
examination of over 500 migration schedules that underscored the
broad generality of the model migration schedule proposed and
helped to identify a number of families of such schedules.

Regularities in age profiles lead naturally to the develop-
ment of hypothetical or synthetic model migration schedules that
might be suitable for studies of populations with inadequate or
defective data. Drawing on techniques used in the corresponding
literature in fertility and mortality, Sections 4 and 5 outlined
two alternative perspectives for inferring migration patterns in

the absence of accurate migration data.

Of what use, then, is the model migration schedule defined
in this study? What are some of its concrete practical applica-

tions?

The model migration schedule may be used to graduate ob-
served data, thereby smoothing out irregularities and ascribing
to the data summary measures that can be used for comparative
analysis. It may be used to interpolate to single years of age,
observed migration schedules that are reported for wider age
intervals. Assessments of the relZability of empirical migra-
tion data and indications of appropriate strategies for their
correction are aided by the availability of standard families
of migration schedules. Finally, such schedules also may be

used to help resolve problems caused by missing data.

The analysis of national migration age patterns reported
in this study seeks to demonstrate the utility of examining the
regularities in age profile exhibited by empirical schedules of

interregional migration. Although, data limitations have re-
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stricted some of the findings to conjectures, a modest start has
been made. It is hoped that the results reported here will in-
duce others to devote more attention to this topic,.
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APPENDIX A

NONLINEAR PARAMETER ESTIMATION IN MODEL MIGRATION SCHEDULES

This appendix will attempt to briefly illustrate the mathe-
matical programming procedure used to estimate the parameters of
the model migration schedule. The nanlinear estimation problem
may be defined as the search for the "best" parameter values for

the function:

—a,X
M(x) = a, e
“A, (x=u.)
-a, (x-u,)-e 2 2
+ a. e 2 2
2
“A,(x~u,)
-a. (x-u,)-e 3 3
+ a, e 3 3
3
+c ; (A1)

best in the sense that a pre-defined objective function is mini-

mized when the parameters take on these values.

This problem is the classical one of nonlinear parameter
estimation in unconstrained optimization. All of the-available
methods start with a set of given initial conditions, or initial
guesses of the parameter values, from which they begin a search
for better estimates following specific convergence criteria.
The iterative sequence ends after a finite number of iterations,
and the solution is accepted as giving the "best" estimates for
the parameters.

The problem of selecting a "good" method has been usefully
summarized by Bard (1974, p.84) as follows:

..no single method has emerged which is best for
the solution of all nonlinear programming problems.
One cannot even hope that a "best" method will ever
be found, since problems vary so much in size and
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nature. For parameter estimation problems we must
seek methods which are particularly suitable to the
special nature of these problems which may be char-
acterized as follows:

1. A relatively small number of unknowns,
rarely exceeding a dozen or so.

2. A highly nonlinear (though continuous
and differentiable) objective function,
whose computation is often very time
consuming.

3. A relatively small number (sometimes
zero) of inequality constraints. Those
are usually of a very simple nature,
e.g., upper and lower bounds.

4. No equality constraints, except in the
case of exact structural models (where,
incidentally, the number of unknowns is
large). ... '

For computational convenience, we have chosen the Marquardt
method (Levenberg, 1944; Marquardt, 1963). This method seeks out
a parameter vector P* that minimizes the following objective

function:

2
6®) = 11£pl 1. (22)

where f, is the residual vector and || e |2 represents the known
Euclidean vector norm. For the case of a model schedule with a
retirement peak, vector P has the following elements:

T _
P - [ a1l a1l azl azl UZI A2! a3l a3l U3: A31 C] . (A3)

The elements of the vector fP can be computed by either of the

following two expressions:

Fplx) = (M(x) = My (x)) (A4)

or
fplx) = (M(x) = My (x)) /f«;(x) (25)

where M(x) is the observed value at age x and Mp(x) is the esti-

mated value using equation (A1) and a given vector P of parameter

estimates.
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By introducing eguation (A4),in the objective function set
out in equation (A2), the sum of sguares is minimized; if, on the
other hand, equation (A5) is introduced instead, the chi-square

statistic 1is minimized.

In matrix notation, the Levenberg-Marquardt method follows
the next iterative sequence:
T -1 .T
P =P - {J_.J_+ AxD}  J3°fp
g+1 q aq a4q qfq
where X is a non-negative parameter adjusted to ensure that at
each iteration the function (A2) is reduced, Jq denotes de Jaco~-
bian matrix of ¢ (P) evaluated at the q iteration, and D is a

'diagonai matrix equal to the diagonal of JTJ.

The principal difficulty in nonlinear parameter estimation
is that of convergence, and this method is no exception. The
algorithm starts out by assuming some initial parameters, and
then a new vector P is estimated according to the value of 1},
which in turn is also modified following some gradient criteria.
Once some given stopping values are achieved, vector P* is assumed
to be the optimum. However, in most cases, this P* reflects lo-
cal minima that may be improved with better initial conditions

and a different set of gradient criteria.

Using the data described in this paper, several experiments
were carried out to examine the variation in parameter estimates
that can result from different initial conditions (assuming New-
ton's gradient criteria).* Among the cases studied, the most
significant differences were found for the vector P with eleven
parameters, principally among the parameters of the retirement
component. For schedules without the retirement peak, the vector

P* shows no variation in most cases.

The impact of the gradient criteria on the optimal vector
P* was also analyzed, using the Newton and the Steepest Descent
methods. The effects of these two alternatives were reflected in

*For a complete description of gradient methods, see Fiacco
(1968) and Bard (1974).
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the computing times but not in the values of the vector P*.
Nevertheless, Bard (1574) has suggested that both methods can
create problems in the estimation, and therefore they should be

used with caution, in order to avoid unrealistic parameter esti-

mates. It appears that the initial parameter values may be im-

proved by meansof an interactive approach suggested by Benson

(1979).
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APPENDIX B

ESTIMATED SUMMARY STATISTICS OF NATIONAL PARAMETERS AND VARIABLES
OF THE REDUCED SETS OF OBSERVED MODEL MIGRATION SCHEDULES

GMR (0BS)
GMR (MMS)
MAEZM

LAMBDAZ
A3

MU3
ALPHA3
LAMBDA3
c

MEAN AGE
%( O=14)
%(15=64)
2065+ )
DELTALC
DELTALR
DELTA3Z
BETALC2
SIGMAR
SIGHMA3
LCOH
HIGH
RET.
SHIFT

D X XK X XK

S ols

Observed gross migraproduction rate

Unit gross migraproduction rate
Goodness-of-£fit index*

a,
Oy
a:z
Uz
az
Az
aj,
Us
a3
A
c

Mean age of migration schedule

Percentage of GMR in 0-14 age interval
Percentage of GMR in 15-64 age interval
Percentage of GMR in 65 and over age interval

(Slc = a;/c

Sy2 = ay/a:

S3z = az/az

Biz = ai1/az

Oz = Az2/a:2

O3 = Xi/as

X, = the low point

X, = the high point

X, = the retirement peak
X = the labor force shift
A = the parental shift
B = the jump

*Mean absolute error as a percentage of the observed mean.
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