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ABSTRACT Buildings are responsible for 33% of final energy consumption, and 40% of direct and indirect
CO2 emissions globally. While energy consumption is steadily rising globally, managing building energy
utilization by on-site renewable energy generation can help responding to this demand. This paper proposes
a deep learning method based on a discrete wavelet transformation and long short-term memory method
(DWT-LSTM) and a scheduling framework for the integrated modelling and management of energy demand
and supply for buildings. This method analyzes several factors including electricity price, uncertainty in
climatic factors, availability of renewable energy sources (wind and solar), energy consumption patterns in
buildings, and the non-linear relationships between these parameters on hourly, daily, weekly and monthly
intervals. The method enables monitoring and controlling renewable energy generation, the share of energy
imports from the grid, employment of saving strategy based on the user priority list, and energy storage
management to minimize the reliance on the grid and electricity cost, especially during the peak hours. The
results demonstrate that the proposed method can forecast building energy demand and energy supply with
a high level of accuracy, showing a 3.63-8.57% error range in hourly data prediction for one month ahead.
The combination of the deep learning forecasting, energy storage, and scheduling algorithm enables reducing
annual energy import from the grid by 84%, which offers electricity cost savings by 87%. Finally, two smart
active buildings configurations are financially analyzed for the next thirty years. Based on the results, the
proposed smart building with solar Photo-Voltaic (PV), wind turbine, inverter, and 40.5 kWh energy storage
has a financial breakeven point after 9 years with wind turbine and 8 years without it. This implies that
implementing wind turbines in the proposed building is not financially beneficial.

INDEX TERMS Smart active buildings, AI-based energy model, deep learning, LSTM, energy system
modeling, building energy management, discrete wavelet transformation, energy supply scheduling.

I. INTRODUCTION
The growth of energy consumption in residential and com-
mercial buildings leads to substantial greenhouse gas (GHG)
emissions. Building energy accounts for 33% of the world’s
energy consumption and 40% of the world’s direct and
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indirect GHG emissions [1], [2]. Providing reliable and green
energy sources improves the building energy supply, which
enhances the life quality [2]. For example, smart active build-
ings and net-zero energy buildings aim to preserve interior
thermal convenience and minimize energy consumption in
order to reduce the dependency on the grid and to mitigate
GHG emission [3], [4]. Indeed, smart active building mod-
elling has a significant role in improving energy efficiency,
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FIGURE 1. The schematic of an integrated smart active building with renewable energy sources.

Energy Storage (ES)measures and the development of renew-
able energy systems in buildings [5], [6]. An appropriate
management and planning model for smart buildings enables
using the renewable energy sources (RES) efficiently [7], [8].

To enable smart active buildings, however building energy
modelling and forecasting are applied [9]. Smart build-
ing energy modelling systems include demand-side models,
supply-side models, and hybridization of demand and sup-
ply models for building energy management [10]. As this
is a multi-criterion problem, the building energy modelling
requires considering both energy consumption and genera-
tion simultaneously [11]. The modelling depends on a wide
range of variables, including consumption patterns, temper-
ature, humidity, cloud cover, wind speed, air pressure, and
ES capacity. In addition, the energy demand and supply in
buildings are time-dependent and vary hourly, weekly, and
seasonally [12].

For improving energy security, reducing the costs, and
emissions, from the last decades the use of renewable
energies have increased. For example, the capacity of
Photo-Voltaic (PV) energy generation as a promising renew-
able energy (RE) technology has increased from 7 GW
in 2017 to 17 GW in 2019 [13]. However, in practice imple-
menting the renewable technologies are challenging [8]. For
example, PV outputs fluctuate due to the variation of solar
irradiance and temperature [14]. Wind energy is also another
renewable energy source (RES) [15], in which the chal-
lenge pertains to the unpredictable wind speed and direction.
Furthermore, there are hybrid RES that combine different
energy generation sources such as wind-solar, solar-hydro,
and wind-hydro hybrids [16] which offer benefits. For exam-
ple, integrating wind energy with solar PV can significantly

increase the renewable energy supply system’s sustainability
as wind energy is available during cloudy hours and the
nighttime, unlike solar PV [17].

While, the main drivers for developing smart active
buildings include energy efficiency, energy price, and envi-
ronmental concerns; the main challenges are the efficient
integration of RES and removal of energy conversion losses.
To overcome the challenges, a smart integrated energy sys-
tem (SIES) that considers both energy generation and con-
sumption systems is required [18]. Figure 1 illustrates the
concept of a smart integrated energy system. A SIES sched-
ules various energy supply resources to optimize the energy
supply package (i.e., renewable and non-renewable energy
sources). A SIES continuously compares the energy demand
and supply levels to minimize the energy supply by the
non-renewable energy sources [19]. To enable SIES, smart
active building energy management needs high granular-
ity of energy consumption and energy generation datasets
such as hourly or half-hourly datasets. Moreover, the energy
modelling of the smart building equipped with RE sources
involves a high level of complexity and non-linearity. Due to
the reason that RE involves the intermittency of meteorologi-
cal information and uncertainty in energy generation patterns
during the day and across the seasons [20].

In this paper, we develop an artificial intelligence
(AI)-based SIES to estimate the hourly, daily, and weekly
building energy demand and supply. We model energy
demand and energy supply using a hybridization of Long
Short-Term Memory (LSTM) neural network and Discrete
Wavelet Decomposition (DWT) methods. As a case study,
we use a dataset from five residential buildings in the
province of British Columbia, Canada. Where, we use the
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average value of the five buildings’ energy demand to elim-
inate the effects of accidental disturbances. Unlike Home
Energy Management Systems (HEMS) scheduling methods
which mostly focus on scheduling appliances to decrease
energy costs [21], we develop a novel framework to evaluate
the energy demand and RE generation. We also make deci-
sions about the reliance share on the energy grid, and schedule
building energy supply based on the Deep Learning (DL)
predictions of energy demand, RE supply, energy price, and
a pre-planned energy saving strategy. For forecasting and
scheduling the energy supply and demand, we consider the
buildings as a black-box unit. We also consider the user
convenience, energy price, and energy sustainability; and we
achieve the RE sources’ maximum penetration.

II. RELATED WORK
An efficient building energymanagement necessitates precise
energy demand and supply forecasting. This is due to its
importance in building energy planning and policy-making
as it enables policymakers to make critical decisions [22].
An efficient building energy management system needs accu-
rate prediction of distributed energy sources such as wind
or solar PV energy. On this basis, numerous methodologies
have been developed comprising physical models, statistical
and artificial intelligence techniques, and hybrid models to
increase the prediction accuracy.

In the last decade, substantial research has been per-
formed on building energy forecasting due to its potential
for demand-side management and smart power grids pene-
tration [23]. In residential building energy management, two
main factors for building convenience are the energy demand
profile and renewable energy generation. Appropriate renew-
able energy generation allows efficient use of energy storage
and less reliance on energy exchange with the grid [24].

Based on recent research, 20%–30% of building energy
consumption can be saved through optimized operation and
management without changing the building structure and the
energy supply system’s hardware configuration. Therefore,
there is considerable potential for improving building energy
efficiency through effective processes, and predictions [25].

Indeed, building energy demand modeling is significantly
essential in decision-making to reduce energy consumption
and CO2 emissions, as it helps improving building energy
efficiency and enhancing demand and supply management.
However, building energy demand (BED) prediction is still
a challenging task due to the variety of factors’ effect on
the consumption, such as the physical characteristics of the
building, the installed facilities, the weather conditions such
as temperature and daylight [6], [26], and the energy-use
patterns of the building residents [27].

On the other hand, according to the global population’s
growth and rapid economic developments, the energy sup-
ply has become an essential human concern [28]. As a
result of limited conventional energy sources and their harm-
ful effects on the environment, RES such as wind and
solar have become essential in energy system development

according to their sustainability, and environmentally friendly
characteristics [29]. For example, to increase PV operators’
expected efficiency and PV facility systems’ effective oper-
ations, thus, the prediction of PV energy production has
become important [20]. Moreover, one of the most critical
challenges in renewable energy forecasting is the uncer-
tainty of the renewable energy sources and building energy
load [30]. In practice, wind power and solar PV’s intermittent
nature makes accurate and reliable predictions very challeng-
ing. The power output fluctuations of RES may substantially
restrict the ability to cover the demand load, thereby reducing
the system reliability and consequently leading to financial
losses [31].

Predicting energy consumption and energy production in
buildings through forecastingmethods significantly improves
active buildings management systems’ efficiency. However,
to achieve this efficiency, first, there is a need to decrease
fluctuations and schedule the power peaks and RES supply
in buildings; and second, it is crucial to decrease the energy
exchange with the grid [32]. However, some studies report
that the energy supply scheduling and forecasting approach as
well as evaluating the influences of the distributed renewable
energy sources penetration on building energy management
is a challenging problem that calls for novel solutions [33].

In this section, we review the state-of-the-art research on
building energy management. We categorize the previous
studies into three main groups. First, the forecasting methods
represent the developed methods to predict building energy
consumption and energy generation. Second, the scheduling
methods aim to find the energy consumption, price, and gen-
eration patterns in buildings and optimize buildings energy
by scheduling the energy demand and supply. Third, the
combination of forecasting and scheduling methods were
implemented to improve building energy management effi-
ciency. This can be achieved by forecasting energy consump-
tion/generation and scheduling energy demand.

Figure 2 presents the classification the forecasting meth-
ods. In this classification, the building energy forecasting
methods are categorized into four groups: machine learning,
deep learning, engineering methods, and hybrid methods.
Due to the paramount role of deep learning methods in
building energy forecasting and management, we catego-
rize this method separately from machine learning. These
groups are further divided based on the intended applications.
We present the summary of abbreviations used in this paper
in Table 1. The reviewed articles that consider the forecasting
methods are summarized in Table 2 and the articles that apply
different optimization and scheduling methods, hybridization
of forecasting and scheduling methods, and deep learning
methods for buildings energy consumption are summarized
in Table 3.

A. FORECASTING METHODS
In literature, forecasting methods are divided into three
groups, including statistical, engineering, and data-driven
methods [34]. Data-driven forecasting methods refer to the
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TABLE 1. Summary of abbreviations.

FIGURE 2. Classification of forecasting methods.

ensemble machine learning approaches and deep learn-
ing methods [35]. Therefore, in this paper, as presented

in Figure 2, we divide the forecasting methods into
Machine Learning (ML), Deep Learning (DL), engineering,
and hybrid methods.

Engineering methods are among the most popular build-
ing energy modelling approaches. These methods esti-
mate energy consumption and energy supply of the
buildings considering environmental interactions, build-
ing conditioning, occupants consumption, energy demands,
energy tariffs, on-site dispatchable, and non-dispatchable
generation [36], [37].

Although, engineering methods are effective and accu-
rate in practice, they are complex to be modelled as these
methods are based on physical principles. To develop a
model, the engineering methods require precise details about
buildings such as environmental parameters for their input
data. These parameters are hard to obtain in many cases;
for example, the physical characteristic of each room in a
large building is hard (if not impossible) to retrieve. The lack
of precise details will thus lead to achieving low accuracy.
Hence, implementing engineering methods require experts
(professional engineering knowledge) and high computa-
tional resources (powerful computers), which makes them
cost-inefficient and hard to use [38].

On the other hand, MLmethods are capable to handle large
amounts of data with accurate forecasting analysis. There-
fore, these methods have a high potential to be applied for
modelling building energymanagement. For example, a com-
parative study in a short-term energy forecasting of anoma-
lous days was implemented using different ML methods,
including an ensemble forecast framework (ENFF), Elman
neural network (ELM), Feedforward Neural Network (FNN),
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TABLE 2. A summary and classification of different forecasting methods for buildings energy consumption.

and Radial Basis Function (RBF) neural network, showed
the high performance of ML methods in energy demand and
supply forecasting [39]. The work in [40] that evaluates the
performance of support vector regression (SVR) and MLP
in building energy forecasting proves the effectiveness of
these machine learning-based methods in building energy
modelling.

A hybridization of lower-upper bound estimation and neu-
ral networks as an ensemble of ML methods are also applied
to calculate potential uncertainties associated with forecast-
ing wind and solar power and energy load [30]. A combina-
tion of the grid-genetic algorithm (GA) searching algorithm
and SVR model to forecast renewable energy generation
(wind and solar energy) and energy demand load is also
presented in [41]. In addition, an ANN method is imple-
mented to forecast energy generation and consumption in a
hotel building for the next 24 hours based on daily weather
forecasts [42].

Fortunately, deep learning (DL) methods are promising
approaches for learning the intrinsic non-linear character-
istics and constant data patterns [43], [44]. DL methods
are highly accurate energy forecasting models for modelling
energy demand and supply due to their high performance
in dealing with solid data regularity, and periodicity [14],
[45]–[47]. In addition, DL methods are reliable for learning
long-term dependencies of energy data, leading to accurate

forecasting results. Thereby, DL methods often outperform
other alternative ML approaches [48]. Moreover, the per-
formance of DL methods are comparable and, in some
cases, superior to engineering methods such as expert-based
models [49], [50], fuzzy logic [51], mixed-integer linear
programming models [52]. As a result, DL methods have
attracted significant attention in recent studies in building’s
energymanagementmodelling. For example, the work in [53]
employs a convolutional neural network (CNN) approach to
forecast solar PV energy generation. This work highlights the
superiority of the DL forecasting method over SVR, ANN,
and deep belief networks.

Another example in [54] implements a deep belief network
to solve short-term load forecasting problems in demand-side
management. The results show the high accuracy of the
DL model. Furthermore, another study in [55] applies recur-
rent neural network (RNN) to model energy demand and
supply forecasting. Indeed, the RNN uses its internal state
(i.e., memory) for processing sequences of inputs, and thus it
shapes a directed graph along with the sequences of inputs.
In particular, LSTM is a special type of RNN that pro-
vides better performance than other DL models in energy
demand modelling [50]. For instance, the research in [56]
develops a combination of deep RNN with LSTM methods
(DRNN-LSTM) to forecast aggregated power load and the
photovoltaic (PV) power output in a community micro-grid.
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TABLE 3. A summary and classification of different optimization and scheduling methods, hybridization of forecasting and scheduling methods, and
deep learning methods for buildings energy consumption.

The research demonstrated that the DRNN-LSTM model
outperforms other ML models such as MLP and SVM meth-
ods. Another example that highlight the performance of
LSTM in energy forecasting is presented in [57] that fore-
casts 3-day ahead energy demand across each month in a
year.

B. OPTIMIZATION AND SCHEDULING METHODS
Optimization and Scheduling (OS) is a sub-category of
building energy management methods that aim to optimize
energy consumption and generation using energy consump-
tion patterns, RE generation patterns, energy storage capacity
and energy cost [62]. The OS methods mainly focus on
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minimizing the overall cost of energy (financially and envi-
ronmentally) and reliance on the grid by producing as much
as possible the renewable energy sources. For example,
the study in [66] implements an intelligent load scheduling
model for residential load. This study aims to minimize the
user intervention by considering the degradation cost of
the battery pack in the vehicle-to-grid mode. This
addresses the necessity of managing and optimizing the
energy consumption in smart buildings, and fully utiliz-
ing solar energy or wind energy, and electrical storage
operation [25], [58], [60].

The energy OS methods and renewable sources have
a crucial role in moving toward an independent and
low-cost smart building. The efficiency of integrating
RE sources and energy storage in a smart active build-
ing also can be significantly increased through an OS
approach. For example, the study in [59] developed an
OS method based on demand response and time of con-
sumption pricing to optimize the integration of a solar
PV system and an energy storage system (ESS) in smart
homes. The results showed that the energy consumption
decreased by 48% and the renewable energy share increased
to 65% of the total energy consumption. Moreover, the uncer-
tainty of various environmental and psycho-economic factors
such as the residents’ energy consumption patterns are among
the main challenges in scheduling building energy con-
sumption. Indeed, the data-driven machine learning methods
proved to be an efficient approach in tackling these types of
challenges [67].

Another study in [68] integrates solar PV and an OS
approach, leading to the reduction of more than 43% of
electricity consumption in an official building supplied by the
grid. Besides, the OS model decreased the per-unit cost of
PV/Grid system electricity by almost 10% comparing with
the grid tariff. It also reduced over 90% emission compared
with the study site’s total emission. Indeed, implementing
an OS method in a smart building has also shown that an
integrated OS model with a PV system covers 16.02% of
the annual load energy at 0.5252$/kWh energy cost, while an
integrated OS model with a PV-wind system covers 53.65%
of the annual load at the lowest energy cost; 0.1251$/kWh.
In addition, adding battery storage to the integration of the
OS model and solar-wind system improves the annual aver-
age load cover ratio and self-consumption ratio by 14.08%
and 16.56%, respectively. The OS-PV-wind-battery system
also covers 81.29% of the annual load at an affordable energy
cost (0.2230$/kWh) [69].

The work in [58] uses a fuzzy decision support method as
an OS approach to optimize the integration of ground source
heat pump and solar PV in a smart building. As a result,
the integration of OS, ground source heat pump and solar
PV covers 44% smart building energy demand and reduces
11.4% of the life cycle environmental impacts at the build-
ing level. Furthermore, the hybridization of an OS method
and IoT-based techniques demonstrate efficiency in schedul-
ing energy consumption and generation simultaneously.

For example, while the IoT-based approach is used to collect
the real-time data of energy consumption [70]; the data can
then be analyzed to optimize the energy scheduling and to
control the home energy consumption patterns in order to
decrease the energy cost [11].

Fortunately, deep learning methods have shown
potentials in optimizing and scheduling smart home energy
management. For example, the study in [71] applies a hier-
archical deep reinforcement learning method for scheduling
smart home appliances’ energy consumption and distributed
energy resources. The method utilizes an energy storage
system (ESS) and an electric vehicle (EV) based on weather
conditions, the driving patterns of the EV, cost of electricity,
state of energy of the ESS and EV, and consumer preferences.
As a result, implementing deep learning and solar PV in
building energy management has decreased energy costs
by 11%.

C. COMBINATION OF FORECASTING AND SCHEDULING
METHODS
Combination of Forecasting and Scheduling methods (CFS)
are among the efficient approaches that simultaneously
implement forecasting and scheduling approaches. These
methods forecast energy generation, energy consumption and
energy price; and then schedule the energy demand and sup-
ply in order to optimize and schedule the share of RES, energy
price, environmental emission, and reliance on the grid due to
the forecasting results [61]–[63], [72]. For example, the work
in [61] develops a method to forecast and schedule the elec-
tricity pricing, electricity consuming tasks, and renewable
energy generation. The implementation results of the method
demonstrate the energy reduction in smart homes due to the
optimization of distributed energy resources operation and
electricity-consuming household tasks.

Another work in [62] applies a CFS method to forecast
wind speed and solar radiation and schedule smart appliances
and charging/discharging of electric vehicles (EVs) using
the MILP method. The results of the method show that the
CFS method can optimally mitigate the energy and increase
the RE penetration. In addition, coupling forecastingmethods
with an experimental simulation to monitor energy supply
and energy consumption of the smart building lead to a
reduction in electricity cost, reduction of peak power, and
increase in comfort levels [72].

The deep learning forecasting methods have recently been
coupled with Linear Programming (LP) methods to schedule
energy-consuming appliances based on demand response.
For instance, the work in [63] establish a deep learning
method to achieve an optimal operation of smart home
appliances. This method uses an annual dataset to forecast
day-ahead energy consumption by smart building appliances.
The forecast results were coupled with an LP-based opti-
mization model to manage and schedule the appliance for a
suitable demand response considering price limits, demand,
and equipment rating. The results demonstrate a significant
reduction in energy costs.
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FIGURE 3. The schematic diagram of our proposed integrated energy system structure.

The studies mentioned in this subsection state that devel-
oping a smart building energy management framework is
necessary to decrease reliance on energy grid and energy cost;
as well as to increasing renewable energy share in the energy
supply in buildings and power grids.

D. OUR PROPOSED METHOD
In the literature, there are limited studies that have considered
the smart active building energy consumption and generation
using scheduling and forecasting methods, battery manage-
ment, RE generationmanagement, and consumption schedul-
ing based on the forecast patterns. Using these considerations,
our proposed method forecasts energy supply and demand
using hybridization of LSTM and DWT methods which are
suitable for modelling complex and non-linear problems such
as forecasting solar and wind energy generations as well as
energy demands. Based on the forecasting results, we propose
a scheduling algorithm which schedules energy demands to
minimizes the electricity imported from the grid and conse-
quently reduces energy costs during the peak days. Using
the proposed algorithm, we thus achieve the lowest level
of dependency on the energy grid and the highest level of
RE penetration.

III. MATERIALS AND METHODS
In this section, first we model the energy demand and
RE energy supply of the building using long short-term

memory neural network and wavelet decomposition trans-
formation (DWT) methods. The historical datasets of the
energy demand and energy supply, temperature, humidity,
and air pressure are the inputs to the DWT. The DWT
decomposes each input into three levels of frequencies. The
decomposed signals are inserted into LSTMmodels to predict
energy demand and energy supply based on the temperature,
humidity, pressure, day of the week, and hour of the day.
The energy demand and energy supply models represent the
energy consumption patterns of the building, energy gener-
ation of the RE sources and their responses to the climatic
patterns, time of the day, and day of the week. In addition,
we have developed a novel framework to forecast and control
energy demand, energy supply, RE generation, reliance on
the grid, electricity price, the level of ES, and activation
of energy-saving strategy. Figure 3 illustrates the schematic
diagram of our proposed framework. In the figure, the oval
cells are the inputs to the framework. The rhomboid cells
are decision functions, and the rectangle cells are simple
functions for recording and subtracting.

In general, the proposed method in our study includes
integration of DWT and LSTM methods applied to forecast
energy demand and energy supply and a scheduling frame-
work to schedule the energy supply to minimize energy costs,
reliance on the grid. Thewind energy generation, solar energy
generation, energy demand, and the imported electricity from
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the grid based on the electricity price are forecasted for
the next week. The proposed scheduling method is used for
scheduling energy supply based on a week-ahead predic-
tion of energy demand, energy supply, reliance on the grid,
exported electricity to the grid, cost of imported electricity
from the grid, and the level of saved energy in the energy
storage. The first objective of the proposed framework is to
minimize the imported electricity from the grid, especially
during the peak days (days with more than 22.1918 kWh
net imported energy from the grid) by saving the RE supply
in the energy storage or importing electricity from the grid
during the non-peak days (until the boundary limit), if RE is
not available and energy storage is unable to supply the week
ahead energy demand.

A. SCHEDULING FRAMEWORK
Scheduling energy supply in a smart active building plays
an important role in saving RE for peak hours. The energy
utilization in peak hours increase the buildings energy costs.
In addition to the peak hours, the electricity price also has
a significant role in building energy costs. Indeed, the elec-
tricity price per kWh increases by 50% for electricity con-
sumption if electricity is consumed more than 22.1918 kWh
per day. Hence, reducing reliance on the grid especially with
the high tariff has a key role in decreasing building energy
costs. The annual energy cost, energy demand, electricity
price of the buildings for the year 2019 which is studied in
this paper are demonstrated in Figure 4. These results show
the average energy consumption of the buildings. As shown
in Figure 4(a), energy demand during January, February,
November, and December has increased; which results in
increasing the energy costs in these months (as shown
in Figure 4(c)). Buildings energy costs are also highly influ-
enced by the electricity price. This is obviously depicted by
the increase and decrease in energy price in Figure 4(b) and
energy cost in Figure 4(c).

Therefore, to seek a solution for energy cost minimization,
in this paper, we propose a scheduling framework to schedule
RES supply and imported electricity from the grid. In the
proposed framework, we define an index to represents the
ratio of renewable energy supply to energy demand called
Supply to Demand Index (SDI). The SDI is the measure of
energy balance in the building which is estimated as follows:

SDI =
ERE
ED

(1)

where, the SDI represents supply to demand index, ED and
ERE refers to energy demand and available RE energy supply,
respectively. The SDI also shows the relationship between
energy demand and the sum of RE supply and energy storage
and should meet the following conditions:

SDI =


> 1, If ED < ERE
1, If ED = ERE
< 1, If ED > ERE

(2)

FIGURE 4. Annual energy demand and energy cost in 2019.

To define when the scheduling framework should use the
inputs from the grid or not, we define α as an index to
show when the building needs to import electricity from the
grid and when it can recharge the energy storage or export
electricity to the grid. The index α is binary and defined as:

α =

{
1, If 1 6 SDI
0, If 0 6 SDI < 1

(3)

where, α returns zero for SDI value lower than 1 and one
for SDI more than 1. Indeed, when SDI returns 1, the
RE supply is greater or equal to building energy demand;
otherwise the building demand should rely on energy stor-
age (if available) and energy grid. In addition, the schedul-
ing framework also estimates hour-ahead, day-ahead and
week-ahead net energy generation/consumption. The net
energy generation/consumption is the net energy supply sub-
tracted by net energy demand as:

ENet = EPV + EWind − EDemand (4)

where, the ENet is equal to subtraction of energy demand
from the summation of renewable energy sources supply. The
ENet also has a positive value as the energy generation is more
than energy consumption. Conversely, the ENet has a negative
value when the energy generation is lower than the energy
consumption.

In British Columbia, the electricity price has two tariffs
based on daily electricity consumption; with 0.0941$/kWh
for lower than the boundary value of electricity consump-
tion (22.1918 kWh per day) and 0.141$/kWh for more than
22.1918 kWh per day. Whereas, the ratio of net electricity
demand to the boundary value reflects that the imported
electricity and calculated by:

EP =
ED − ERE
22.1918

(5)

Where, EP is the index of imported electricity cost; ED
and ERE indicate to the energy demand and the amount of
the electricity load supplied by RE resources, respectively.
Indeed, our scheduling framework relies on a binary approach
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to specify when the proposed building relies on the grid with
the higher tariff. To this end, we define β for binary decisions
as follows:

β =

{
1, If 1 6 EP
0, If 0 6 EP < 1

(6)

As explained, EP is the ratio of the electricity demand
to the electricity demand boundary, and β determines whether
the electricity load is higher than the boundary demand. The
β is 0 when the electricity demand is lower than the bound-
ary load and 1 for higher than the boundary load. The
proposed scheduling method considers week-ahead energy
demand and energy supply predictions to monitor the com-
bination of the RE supply, import from the grid, and the
saved energy in the energy storage. Based on the estimated β
and EP value, the reliance on the grid during the peak days
and the amount of imported electricity during the peak days
are estimated. Accordingly, the lower boundary for the energy
storage is estimated to minimize the reliance on the grid
with the higher tariff. The amount of the electricity that is
necessary to import from the grid with the higher tariff is
estimated as follows:

ESMin =
∑

(EPi − 22.1918)× β (7)

Where, ESMin is the minimum level of saved electricity in
the energy storage to avoid reliance on the grid with higher
electricity tariff; and EPi is the electricity demand with the
higher tariff in day i. The proposed framework applies
the Equation 8 below and performs decisions for minimizing
the reliance on the grid during the peak time.

ESG =
∑

(α)× ((ERE − (EESmax − EES )− ED)) (8)

In the equation, ERE , EESmax − EES , and ED, denotes the
amount of the supplied RE energy, the electricity used for
charging the energy storage, and the building energy demand,
respectively. While applying this equation, the extra supplied
electricity is used to recharge the energy storage and then the
surplus electricity is sold to the electricity grid; then following
decisions are also made by the scheduling framework:
• It specifies the week ahead energy demand and sup-
ply based on the predictions. Likewise, the peak days,
non-peak days and net-zero days are determined for the
next week.

• Theminimum level of energy storage is defined as ESmin
to save energy for the peak days during the next week
using the extra supply RE in net-zero days and imported
electricity during the none-peak days. Note that the
term none-peak days refers to when extra RE supply is
not able to supply the peak-days extra energy demand.
In this way, the reliance on the grid is decreased during
the peak days.
In fact, the possibility of recharging the energy storage
and maintaining its charge level at ESmin by ERE is
evaluated. During the next week, when the

∑
ERE is

less than ESmin, the framework imports electricity from

the grid during the non-peak days to recharge the energy
storage up to the amount of ESmin.

• Based on ESmin, the possibility of recharging the energy
storage and maintaining its charge level at ESmin by ERE
is evaluated. During the next week, when the

∑
ERE is

less than ESmin, the framework imports electricity from
the grid during the non-peak days to recharge the energy
storage up to the amount of ESmin.

• It stores the extra generated RE in the energy storage
when ERE is higher than the ED until the energy storage
is fully charged; and then it exports the extra ERE to the
grid.

• It exports (ENet − 40.5) to the grid when ERE − ED is
positive and higher than the ESMax (40.5 kWh).

In our paper, the scheduling framework tries to reduce the
reliance on the electricity grid during the higher tariff. More-
over, we define a cost function to estimate the final energy
costs of the building. These costs are composed of imported
electricity from the grid during the high consumption days
and the net income from the injected electricity to the grid
during the high RE supply. The total cost Ct is estimated
based on the two electricity tariffs and a hypothetical selling
price to the grid. We take into account the injected electric-
ity price to be equal to the lower electricity tariffs. Hence,
we estimate the total electricity cost as follows:

Ct =
∑

(ESG × Ps)

−

∑
(EBG × (|β − 1|)× Pb1 )+(EBG × (β)× Pb2 )

(9)

subject to:
ED(i) 6 ERE (i)+ ES (i)+ EBG(i)
0 6 ES (i) 6 40.5
EBG(i) 6 22.1918

(10)

Where, ESG, EBG, Pb1 , Pb2 , and Ps represent the amount of
the injected electricity to the grid, the amount of the imported
electricity from the grid, the electricity price in the first tariff,
the electricity price in the second tariff, and the price of the
injected electricity to the grid, respectively. In addition,
the constraints of the proposed scheduling framework are
presented in Equation 10. In this equation, ED(i), ERE (i),
ES (i), and EBG(i) refer to the energy demand, renewable
energy supply, energy storage level, and imported electricity
from the grid at moment i, respectively.
In our scheduling framework, the input variables are

extracted from the forecasting results of the proposed deep
learning models. The input variables include the energy
demand, RE energy supply, imported energy from the grid,
and injected energy to the grid. We have also developed a
saving strategy in which the users choose a saving strategy
based on the α and β factors (Equations 3 and 6) and their
financial plans to reduce reliance on the grid on the one hand
and decrease the energy costs on the other hand. Such that the
users can modify the saving strategy to attain the best saving
strategy with the highest convenience.
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B. DISCRETE WAVELET DECOMPOSITION
Discrete Wavelet Transform (DWT) methodology is a func-
tional approach to derive valuable characteristics from
the non-stationary time-series data analysis. DWT method
decomposes a signal in a time-scaled way. The buildings
energy demand, wind energy generation, and solar PV energy
generation have a high level of intermittency and non-
linearity. The DWT denoising approach tries to remove
the redundant noises and prevents the LSTM model from
being occupied with intermittent noises resulting from uncer-
tainty and intermittency in the input dataset. DWT is a
well-accomplished method in extracting meaningful infor-
mation from the non-linear and intermittent datasets such
as building energy demand, wind and solar PV energy
generation [73]. Moreover, the non-stationary decompo-
sition of time series into multidimensional components
by DWT can effectively reduce the volatility of the origi-
nal time series and make them more stable and predictable.
Therefore, the integration of DL models, such as LSTM
models with DWT, has proven to be a powerful tool for mod-
elling energy demands [74], PV energy [75], and wind energy
generations [76]. Recently, hybridization of LSTM and DWT
methods demonstrated to be effective in the forecasting of
wind power generations [65], wind speed [15] and energy
consumption [34].

The discrete version of Wavelet Transform (WT) is
a common tool to reducing the load of continuous wavelet
computation. It passes the signal through serial filters, includ-
ing High Pass (HP) filters and Low Pass (LP) filters.
Equation 11 and 12 represent the HP and LP. The
DWT decomposition coefficients are computed through the
passing process [77]:

x1(n) =
L−1∑
k=0

ckx(k − n) (11)

x2(n) =
L−1∑
k=0

dkx(k − n) (12)

The LP and HP components are x1(n) and x2(n), respec-
tively. The ck and dk are the coefficients of the LP and HP
filters, respectively. The k also indicates the decomposition
level, and n is the translating constant, which are integers.
It is worth noting that DWT is a transformation function that
decomposes a signal into several levels. These levels are time
series of coefficients. Each set of coefficients demonstrates
the given signal’s evolution in a specific frequency band [78].
This study compared a two-layer DWT and three-layer DWT
in decomposing the variables into two and three layers of
frequency bands. As it is depicted in Figure 5, the DWT
method decomposes the original data (signal) into layers.
In each layer, the input frequency is divided into Low Pass
and High Pass. In the next layer, the LP signal of the pre-
vious layer is decomposed into high and low passes. The
DWT method helps to extract long-term and short-term time
series characteristics of the variables. Therefore, using the

DWT outputs improve the LSTM models’ accuracy in fore-
casting the energy demand and the energy supply. Figure 5
presents the block diagram of our implemented DWT.

FIGURE 5. Block diagram of the proposed DWT denoising methods.

The number of DWT layers plays a significant role
in the level of denoising. When the number of layers
increases, the short-term patterns vanish and the long-term
patterns remain. Figure 6 demonstrates the building energy
demand decomposition layers. While Figure 6(a) shows a
three layer-DWT decomposition, Figure 6(b) depicts a two
layer-DWT decomposition. Comparing the two layer and
three layer decomposition of building energy explains that
by increasing the number of layers in signal denoising,
the short-term fluctuations are more likely removed and the
long-term patterns becomemore visible. This is obvious from
the plot in blue color in Figure 6(b), i.e., a2 that is a denoised

FIGURE 6. The denoising results of the proposed DWT denoising methods.
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signal and has a higher level of short-term fluctuations when
compared with the plot in blue color in Figure 6(a), i.e., a3.
In fact, increasing the number of decomposition layers helps
extracting more clear long-term patterns, however this is
at the price of increasing the risk of removing meaningful
short-term patterns.

Figure 7 compares a two-layer and three-layer and DWT
denoising process on building energy demands. It can be
noticed in Figure 7(a), the daily patterns remains in the
three-layer DWT while the hourly patterns are almost
removed. In the contrary, the hourly patterns still remain in
the two-layer DWT in Figure 7(b), and the redundant noises
are removed. With the increase of the layers, the capability of
the LSTM increases in accuratelymodelling the denoised sig-
nals (target variable and input variables). However, increasing
the number of layers would remove important short-term
patterns, which decreases the model’s reliability as it is not
capable for short-term modelling.

FIGURE 7. DWT denoising of building energy demand.

C. LSTM NEURAL NETWORK DEEP LEARNING
Artificial Neural Networks (ANN) are AI-based mod-
els inspired by biological neural networks. Commonly,
ANN models are implemented in the modelling of complex
and non-linear problems [79]. ANN models are potential
approaches with a high level of self-learning, flexibility, and
non-linearity. ANN finds patterns among datasets by its neu-
rons. ANN includes interconnected neurons, the input layer,
hidden layers, output layer, iterations, connection weights,
learning algorithms, and transfer function. It uses the learned
patterns from datasets to apply this knowledge in upcom-
ing situations [80]. Although neural networks are potential

methods, they have drawbacks regarding learning speed,
error convergence, and accuracy due to long-term depen-
dencies. In the back propagation (BP) learning algorithm,
long-term dependencies face exploding and vanishing gradi-
ents. Deep learning methodology has attracted attention dur-
ing the last few years as a result of its potentials in non-linear
modelling issues with long-term dependencies precisely [81].

Recently, by introducing the gate controller, the LSTM
gained the ability to significantly resolve the problem
of vanishing or exploding gradient that occurs in the
back-propagation process; this feature makes the LSTM one
of the most popular DL neural networks in recent years [82].
LSTM is a variation of Recurrent Neural Networks pro-
posed by Hochreiter for the first time [83]. The LSTM
saves the forward and back-propagated weights in its layers.
LSTM combines long-term memory and short-term memo-
ries using gate monitoring.

Figure 8 demonstrates the structure of an LSTM unit.
An LSTM cell is composed of a forget gate, input gate,
memory cell. The forget gate controls the reflection of the
previous state on the current state. The input gate governs
the updating of the cell state by new data. The output gate
monitors the output information according to the cell state.
The input gate, output gate, and memory cell are defined
as [84], [85]:

ft = σ (Wf .[ht−1, xt ]+ bf ) (13)

it = σ (Wi.[ht−1, xt ]+ bi) (14)

ot = σ (Wo.[ht−1, xt ]+ bo) (15)

Ĉt = tanh(Wc.[ht−1, xt ]+ bc) (16)

Ct = ft � Ct−1 + it � Ĉt ) (17)

ht = ot × tanh(Ct )) (18)

FIGURE 8. Structure of a LSTM cell.

In Equations (13)-(18), the Xt is the input at time t . The
selected set of inputs Xt is saved in the Ct by the input
gate. On the other hand, Ct−1 is selectively forgotten by
forgetting gate. The output gate finallymonitors the section of
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the Ct that is added to the output ht [85]. Also, Wf , Wi,
Wo, and Wc are the forget, input, output gate, and cell state
weights, respectively. The forget, input, output, and cell
state biases are saved in bf , bi, bo, and bc, respectively.
The Sigmoid function in Equations (13), (14), and (15) pre-
pare the dataset for the forget gate, output gate, and input
gate by converting the dataset to a value between 0 and 1.
The output of the gates is a function of Xt and ht−1 that are the
present inputs and previous cell outputs, respectively. If the
ht−1 and Xt values are equal to 0, and the gates will block
them. In contrast, when the values are equal to 1 they will be
saved. The cell states,Ct , andC ′t are defined in Equations (17)
and (18), respectively.

D. ENERGY DEMAND MODELING
Building energy systems are complex non-linear systems
influenced by weather conditions, building operating modes,
occupant schedules, and energy costs [86]. Energy demand
forecasting models are mainly categorized into three groups:
i) Engineering methods in which the thermodynamic and
physical rules are implemented based on the building’s com-
plex parameters and the environment. ii) Statistical meth-
ods that are developed based on the energy-related factors
correlations. Statistical models generally suffer from a lack
of accuracy and flexibility. iii) AI-based methods which
take energy consumption patterns as input and aim to
find the non-linear relationship between the input datasets
and the target datasets. AI-based approaches have higher
accuracy and flexibility than engineering and statistical
models [34]. In addition, AI-based building energy demand
forecasting models do not require data about the simu-
lated building in detail and learn from historical data for
forecasting [87].

Modelling energy demand faces two main obstacles that
hinder the existing AI-based forecasting methodologies from
beingwidely implemented in the smart grid development pro-
cess. Firstly, the reliability of AI-based methods in modelling
residential households’ energy demand is still a source of
doubt as the energy demand patterns for every household can
be intermittent. Secondly, conventional deep learning neural
networks such as the convolutional neural networks (CNNs)
require multidimensional inputs to attain high forecasting
precision. Hence, uni-dimensional time-series data such as
energy demand data forecasting is still challenging even for
deep learning methodologies. However, a combination of
wavelet transformation and LSTM proved to be a promising
method in modelling the BED [73]. In our case the input
variables are as follows:
• Building energy demand: The data of previous week,
day and hour average energy consumption of five resi-
dential buildings.

• Holidays and weekends: The impact of the weekends
and holidays on the building energy demand are consid-
ered as a binary value (zero for holidays and weekends
and 1 for non-holidays and weekdays).

• Temperature: Hourly deviation of the temperature.

• Hour of the day: Introducing the correlation between
the hour of the day and building energy demand to the
model.

In our study, the implemented LSTM and DWT-LSTM
model energy demand based on energy consumption, holi-
days, temperature, and the hour of the day historical datasets
from January 1st 2019 to December 1st 2019 as training
inputs. As shown in Figure 9, the energy demand is strongly
influenced by air temperature, where the energy demand is
decreased by the increase in the temperature. The energy
demand in the buildings has a periodic pattern by having
hourly, daily, weekly, monthly, and annual patterns. Accord-
ingly, we predicted energy consumption for the next thirty
days (720) hours and compared the observed energy demand
results. The holidays and the weekends also has a significant
role in building energy demand as the families usually have
different energy consumption patterns due to the effects of
gatherings, going on trips and spending more time at home
instead of the workplace. The holidays and weekends are
considered binary variables (one for holidays and weekends
and zero for non-holidays and weekdays). It is worth noting
that the hour of a day helps the LSTM model to extract
hourly consumption patterns more accurately for a reliable
prediction of building energy demand.

FIGURE 9. Air temperature and energy demand annual trends.

The utilized datasets1 are based on a survey about
energy consumption in residential buildings in British
Colombia [88]. The characteristics of these buildings which
are presented in Table 4 are the last read, coverage of the
datasets, house type, facing, region, and HVAC system. The
coverage is the per cent of non-missing readings. The value
of 1 is 100%. The missing values are interpolated from neigh-
bouring values. Facing is the direction that the house is facing
toward north, south, east or west. The region is defined by a
three-letter code of the house’s regional weather station. YVR
is Vancouver and lowermainland area, andWYJ is in Victoria
and the surrounding area. The house type is defined based on
the age and number of the building levels [88].

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/N3HGRN
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TABLE 4. Characteristics of the studied buildings.

E. ENERGY SUPPLY MODELING
The wind and solar energy supplies are highly affected by cli-
matic factors (e.g., sunny hours, cloudiness, and wind speed).
Consequently, wind and solar energy sources have the highest
uncertainty among these groups. One of the goals of this
study is to predict the wind and solar energy generation pat-
terns [14] using the integration of DWT and LSTM [15], [64].
Utilizing these factors, we develop LSTM and DWT-LSTM
models to predict wind and solar energy supplies on an hourly
basis. The solar PV generation in cases where the consumer
operates a solar PV system is dependent on the latitude
(geographical location) [89].

In our primary analysis, we use the hourly solar PV gen-
eration for a location in Metro Vancouver, British Columbia,
based on simulated data from renewables.ninja1. The renew-
ables.ninja converts solar irradiance from satellite reanaly-
sis data into power output using the Global Solar Energy
Estimator model [90]. The input variables to the LSTM
and DWT-LSTMmodels are extracted from renewables.ninja
simulation tool based on a solar PV and wind energy genera-
tion simulator considering weather data from global reanaly-
sis models and satellite observations [90].

1) PHOTOVOLTAIC SOLAR ENERGY GENERATION
Solar PV is strongly dependent on climatic factors, espe-
cially sunny hours and temperature. Therefore, predicting
these factors is required to forecast solar energy supply [89]
The hourly prediction of PV power outputs is considered
a challenging problem due to the intermittency of solar
energy resources and dynamic nature of meteorological
data [20], [46]. We developed our proposed DWT-LSTM
and LSTM models using the solar electricity output of the
previous week, day and hour, hours of the day, air tempera-
ture, solar irradiance, air density, and cloud cover as external
input variables1. The hourly solar electricity output is consid-
ered as the target variable. The hourly solar PV generation,
solar irradiance, temperature, cloud cover and air density
dataset of the considered location inMetro Vancouver, British
Columbia, is based on simulated data from renewables.ninja
online platform for renewable energy simulation. Forecasting
solar power generation is strongly influenced by solar irra-
diance, temperature and solar generation weekly, daily, and
hourly patterns. The input time series are divided into
two groups. The first group is the training dataset from
January first, 2019 to December first 2019, and the second
group is the evaluating dataset from December 1st 2019 until
December 30th 2019. Note that in our work we consider that

the solar PV unit is a fixed top roof PV with a capacity
of 10 kW, a 35-degree tilt, and a 135-degree azimuth.

2) WIND ENERGY GENERATION
Wind energy is a sustainable energy source with a high
level of uncertainty. Wind power generation is among the
fastest-increasing types of renewable energy generation. Due
to the uncertainty and variable nature of wind, wind energy
prediction requires an accurate model. Wind speed prediction
has a significant role in wind energy generation as wind
power prediction is not practicable without wind speed pre-
diction [65]. In this study, wind energy supply is estimated
based on the wind speed prediction and the power output
of the BWC 5kW Grid-Intertie wind turbine according to
the wind energy production and wind speed data sheets
Bergey Windpower Company (BWC). The considered wind
turbine is a 6.2 diameter and 30-meter hub height small
scale grid-connected wind turbine. The DWT-LSTM model
is developed to forecast the wind speed based on temperature,
air density, and the hourly relative air density changes as input
variables1. The used variables are defined as follows [90]:
• Wind speed: The previous week, day and hour dataset
of the wind speed are considered as inputs to represent
the wind speed patterns.

• Temperature: Temperature represents the influence
of hourly air temperature fluctuation on wind speed
deviations.

• Air density: Air is the mass per unit volume of the
air. Air density fluctuates with variation in atmospheric
pressure, temperature and humidity.

• Hourly relative air density changes: The relative air
density represents the air pressure which is the main
reason of blowing the wind.

Wind turbines have a lower limit for wind speed that the
turbine is not spinning and an upper limit that the turbine’s
brakes are activated to prevent damages to the turbine. The
lower speed of the BWC 5 kW turbine is 2 meters per sec-
ond. The higher limit is 17 meters per second. Wind energy
generation is mainly influenced by the technical characteris-
tics of the wind turbine as the wind turbine manufacturing
companies provide a table of wind energy generation based
on wind speed. The provided wind energy based on the wind
speed for a BWC5kW,Grid-Intertie wind turbine is presented
in Table 5.

1https://www.renewables.ninja/
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TABLE 5. Wind power generation of BWC 5kW, grid-intertie wind turbine based on wind speed.

F. ENERGY STORAGE
The annual energy demand and supply patterns have valuable
information about the building energy system. As shown
in Figure 10, the solar PV sources annually produce 2.2 times
more than building energy demand. The energy demand
reduces during the summer while solar PV energy generation
increases significantly. Moreover, as it is depicted in Fig-
ure 11, wind energy generation is significantly lower than
solar energy generation, while wind energy generation has
a higher level of stability during the day. Hence, developing
a smart building energy system is necessary to increase the
share of RES in the energy supply by implementing energy
storage to save generated energy during the sunny and windy
hours for peak shaving and returning the energy during the
low energy generation hours. Energy storage can significantly
decrease the energy cost, and reliance on the energy grid
through peak shaving and energy scheduling [91]. The energy
storage systems have been implemented for many years and
evolved to reach the current developments that many ES
types are available for saving energy. ES systems are mainly
developed for saving RES such as wind and solar energy
and are used when needed. ES has several advantages like
increasing RE resources penetration, decreasing energy costs
and increasing the energy system reliability. ES also helps
the electrical systems by batteries (i.e, electrochemical ES)
which are mature ES devices with high voltages, and high
energy densities [91]. Noting that the lithium batteries have a
significant role in electrical ES systems compared with other
types of batteries due to their high specific energy density and
energy density [92]).

FIGURE 10. Annual energy demand and supply.

The energy generation and consumption have an annual
pattern that is illustrated in Figure 10. The net energy gener-
ation is equal to net RE energy generation subtracted by net
energy demand in a daily interval. As it is shown in Figure 10,
the solar PV energy generation has a significant role in

FIGURE 11. Hourly average energy demand and supply.

moving toward a net-zero building while there are still chal-
lenges in supplying the energy demand during consecutive
cloudy days such as the last month of the year. The annual
energy demand and supply in Figure 10 depicts the impor-
tance of solar PV in a building supply system. The annual
solar PV with a capacity of 10 kW generation is 12664 kWh,
while a 5 kW wind turbine generates just 964 kWh, which
is almost fifteen times less than solar PV generation. The
main reason for this discrepancy is the low wind speed as
a building size wind turbine has a low height, and the wind
speed significantly decreases in low altitudes.

In our study, the daily mean energy demand, solar energy
supply, and wind energy supply are presented in Figure 11.
The average daily solar electricity generation is 40.7 kWh,
and the wind electricity generation is 2.83 kWh. The
daily average energy demand of the considered buildings
is 18.43 kWh. Solar energy is available between 7:00 a.m.
to 6 p.m. The energy demand is 7.61 kWh in this period,
while the total daily energy demand is 18.43 kWh. Hence, the
ES should provide 10.8 kWh in the nighttime. However, there
are anomalous days that have higher energy demand and
lower energy supply.

IV. RESULTS AND DISCUSSION
Our proposed method is composed of two main parts; the
deep learning forecasting and the decision-making frame-
work. The deep learning is used to perform forecasting energy
demand and energy supply. The decision-making framework
is composed of three decision-making layers. We utilized
different performance metrics including Root Mean Square
Error (RMSE), Mean Squared Error (MSE), Mean Average
Percentile Error (MAPE), and R-Squared to evaluate the
performance of the proposed methods. The R-Squared is the
proportion of variance of the observed dataset to the variance
of the predicted dataset. These metrics can be evaluated using
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TABLE 6. Deep learning modeling evaluation results.

the following equations [81]:

MSE =
n∑
t=1

1
n
(Yi − Y ′i )

2 (19)

RMSE =

√√√√ n∑
t=1

1
n
(Yi − Y ′i )

2 (20)

MAPE =
100
n

n∑
t=1

(Yi − Y ′i )

Yi
(21)

R2 = 1−

∑n
t=1 ((Yi − Y

′
i ))

2∑n
t=1 ((Yi − Ŷi))2

(22)

In these equations, Yi is the observed value, Ŷi is aver-
age value of the observed value, and Y ′i is the DL models’
forecasted value. Table 6 shows the results of used perfor-
mance metrics for comparing LSTM and DWT-LSTM for
three types of forecasting results, including wind speed, solar
supply and energy demands. They will be described in details
in the following subsections.

A. BUILDING ENERGY DEMAND FORECASTING
In our study, we develop the LSTMandDWT-LSTMmethods
to forecast building energy demand. Figure 12 shows the
forecasting results of these models and shows the comparison
of the forecasting results with the observed energy demand
of the buildings. These models forecast building energy
demand from 1st to 30th December 2019 (one month) with
hourly intervals. Figure 12 demonstrates that DWT-LSTM
and LSTM methods have good performance in forecasting
the building energy demand when comparing with observed
real data of energy demand. However, the results show that
the DWT-LSTM outperforms the LSTM in forecasting the
building energy demand. DWT-LSTM can forecast the build-
ing energy demand with a MAPE value of 8.57%, while the
MAPE value of the LSTM is 18.2%. In addition, DWT-LSTM
and LSTM methods are potential for forecasting the peak
energy demands. As shown in Figure 12, the building energy
demand has sudden increases between hour 0-24, 144-192,
and 312-360 which are the weekends. This states that despite
the high intermittency of building energy demand fluctua-
tions; DWT-LSTM and LSTM methods have a high level of
accuracy in forecasting building energy demand.

Moreover, the results of RMSE, MSE, MAPE, and
R-Squared values of the methods prove that the methods can
accurately forecast building energy demand and RE supply.
The building energy demand is highly fluctuating due to
the intermittency and non-linearity of the buildings’ energy

FIGURE 12. Energy demand models (Dec 1st 2019-Dec 30th 2019).

consumption patterns. The DWT approach has efficiently
decomposed the building energy demand without remov-
ing the main hourly, daily, and monthly patterns. Therefore,
the DWT approach effectively increases the accuracy of the
DWT-equipped LSTM in comparison with the LSTMmodel.

B. RENEWABLE ENERGY GENERATION FORECASTING
1) WIND SPEED AND WIND ENERGY
We forecast the wind speed using the DWT-LSTM and
LSTM methods in order to estimate wind energy generation.
The wind speed and the wind energy generation predic-
tions are illustrated in Figure 13 and Figure 14, respectively.
The wind speed and the wind energy are forecasted from
1st to 30th December 2019 (one month) with hourly intervals.

According to the wind energy generation and wind speed
data sheets of Bergey Windpower Company, the wind energy
generation is calculated using the wind speed forecasting and
the power output of the BWC 5kW Grid-Intertie wind tur-
bine. The results of the wind speed forecasting using LSTM
and DWT-LSTM methods are depicted and compared with
the observed values of the wind speed in Figure 13. Based
on these results, the DWT-LSTM has higher accuracy in
comparison with the LSTM method. In addition, considering
the MAPE value, the DWT-LSTM outperforms the LSTM
in wind speed forecasting as it removes the noises using a
two-layer DWT approach. It is worth noting that the two-layer
DWT approach successfully removes the extra noises and
accordingly increases the LSTM accuracy.

Using the data sheet from the Bergey Windpower Com-
pany, future wind energy generation can be estimated
from the results of wind speed forecasting as illustrated
in Figure 14. The results demonstrate that the estimated
wind energy supply prediction follows the pattern of
observed wind energy supply. Furthermore, due to the noise
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FIGURE 13. Wind speed prediction (Dec 1st 2019-Dec 30th 2019).

FIGURE 14. Wind energy supply prediction (Dec 1st 2019-Dec 30th 2019).

removal effect, Figure 14 also depicts that DWT-LSTM
method is more accurate than LSTM method in forecasting
wind energy supply.

2) SOLAR PV ENERGY
We forecast the solar PV energy generation by DWT-LSTM
and LSTM using the air temperature, solar irradiance on the
ground surface, previous week, previous day and previous
hour solar energy generation data as inputs, and the hourly
PV energy generation as the target variable. A two-layer
DWT method is deployed to denoise the solar energy gen-
eration and the input variables. As a result, the effects of
noises decrease while preserving the influential patterns in
these variables. However, in the method development phase
some important features may be missed to be captured due to
the DWT implementation

Figure 15 shows the performance of DWT-LSTM and
LSTM methods for solar electricity supply prediction. This
comparison of results clarifies the fact that equipping the
LSTM method with the DWT denoising and decomposing
method does not improve the accuracy of the solar energy
forecasting model. The main reason is the high variation
of the solar energy generation patterns, which misleads the
DWT method to shave the important patterns in solar energy
generation dataset. The DWT method considers the energy
generation peaks as noises and tries to remove them. This
results in decreasing the wide range variation of the solar
energy output. In other words, the DWT decomposes the
solar energy generation fluctuations as noise and tries to
remove them. Therefore, implementing the DWT method in

FIGURE 15. Solar electricity supply prediction (Dec 1st 2019-
Dec 30th 2019).

decomposing the solar energy generation dataset decreases
the accuracy of solar energy generation forecasting. In con-
clusion, by looking at the Table 6, the results of both methods
are acceptable for forecasting the solar PV energy supply.

C. SCHEDULING FRAMEWORK
Our proposed scheduling framework is composed of a
scheduling algorithm and a saving strategy. The scheduling
algorithm aims to maximize the share of supplied energy
demand by renewable energy sources; and minimize the
energy cost through decreasing electricity import during the
peak days (i.e., days with higher than 22.1918 kWh energy
demand). The framework schedules the RE supply and elec-
tricity import in weekly intervals based on the week-ahead
forecasting results of RE supply and energy demand. Based
on the SDI (Equation 1) and EP (Equation 5) outputs,
the share of imported electricity from the grid and also
imported electricity amount during the peak days are esti-
mated. In addition, saving strategy is activated based on the
user’s predefined strategy. Saving strategy decreases the extra
energy demand based on the user’s preference to reduce the
reliance on the grid during the peak days. Saving strategy is
defined to decrease the energy demand when the net demand
exceeds the boundary layer. Indeed, saving strategy is acti-
vated to evaluate the scheduled energy demand to identify the
peak days which the scheduling framework cannot supply by
energy storage.

Table 7 presents the results of scheduling framework when
saving strategy is applied. Table 7 shows the results of the
imported electricity from the grid, cost of imported electricity,
and exported electricity to the grid in 2019. The results of
the imported electricity from the grid and electricity costs in
the table are estimated based on two-step electricity prices.
Let’s recall that the first-step price and second-step price
are considered for lower than 22.1918 kW per day and
more than 22.1918 kW per day, respectively. According to
the results in table, implementing the scheduling framework
alone decreases the annual electricity cost from 130.46$
to 80.8$; and integration of the scheduling framework
with the saving strategy reduces the annual electricity cost
to 80.5$. Furthermore, in the second-step price (more than
22.1918 kWh per day), the scheduling framework decreases
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TABLE 7. Electricity costs and electricity transactions with the grid during 2019.

FIGURE 16. Scheduled and non-scheduled electricity import and electricity cost in 2019.

FIGURE 17. Energy storage charge/discharge and exported electricity to the grid in 2019.

the imported electricity from the grid from 15.42 kWh to
0.3 kWh. Using both scheduling framework and saving strat-
egy also reduce the imported electricity from the grid from
15.42 to 0 kWh. Moreover, as shown in Table 7, considering
a no saving strategy the proposed scheduling framework
decreases the imported electricity from the grid from 1332
(1222.55 + 109.4) kWh to 858 (855.8 + 2.17) kWh, which
is equal to 35.5% reduction.

Figure 16 demonstrates the impact of the proposed
scheduling method in decreasing reliance on the grid and
reduction of electricity costs. Figure 16(a) and 16(b) illus-
trate the electricity import from the grid and energy costs
in both scheduled energy supply and non-scheduled energy
supply systems. In these figures, the orange line represents
the scheduled electricity import; and the blue line presents
the non-scheduled electricity import from the grid.

Figure 16(a) shows the scheduled electricity import and
non-scheduled electricity import in 2019. This figure explains

that during January, February, November, and December,
the electricity import increases. This is obvious in the start
and in the end of the plot (between day 1 to day 60; and
day 300 to 365). In this figure, comparing the orange and blue
lines shows that the electricity import is considerably reduced
from the grid after applying the scheduling framework.
In addition, the amount of electricity import always has been
below 22.1918 kWh per day (i.e., the boundary that specifies
the cost of the electricity.), except only in day 337. Note
that exceeding this boundary increases the electricity price
by 50%.

Figure 17 shows the energy storage charge/discharge and
exported electricity to the grid in 2019. While, Figure 17(a)
illustrates the energy storage charging and discharging pat-
terns; Figure 17(b) demonstrates the amount of exported
electricity to the grid. As it is illustrated in Figure 17(a),
the energy storage has a significant role during January,
February, November, and December as the RE supply is

125456 VOLUME 9, 2021



S. A. Nabavi et al.: DL in Energy Modeling: Application in Smart Buildings With Distributed Energy Generation

lower during this periods of the year. Based on this figure,
RE supply increases during the summer time and decreases
during the winter. Moreover, as shown in Figure 17(b) the
exported electricity to the grid is at its lowest level during this
period as the RE supply is saved in the energy storage; that
was for minimizing the reliance on the grid. The conclusion
is that utilizing the our proposed method not only decreases
the energy import from the grid but also exports electricity to
the grid during the peak RE supply.

In conclusion, implementing our proposed framework
for scheduling energy supply of the buildings (as shown
in Figure 16) notably decreases the reliance on the electric-
ity grid especially during the peak days, and consequently
reduces the total cost of imported electricity from the grid.

D. FINANCIAL ANALYSIS
In our study, we implemented Net Present Value (NPV) for
the financial evaluation of the investment in building energy
systems. NPV is a standard concept for modelling, represent-
ing and comparing economic preferences [93]. NPV is the
sum of the present values of incoming and outgoing cash
flows over a specific time. NPV is described as the difference
between the sum of discounted cash inflows and outflows and
calculated as follows [94]:

NPV =
n∑
t=0

(
CIt

(1+ r)t
− COt )− CO0 (23)

Where, n, r , CIt , COt , and COO indicate to the number
of time steps, discount rate, cash inflow at moment t , cash
outflow at time t , and initial investment, respectively. The
cash outflow is composed of operational and maintenance
(O&M) costs, and capital costs. While, capital costs are the
initial investment for installation of the energy system; O&M
costs are the annual costs for maintenance and servicing of
the system. The cash inflow, cash outflow, and maintenance
costs are estimated based on the solar PV, wind turbine,
inverter, and energy storage specifications. The specifications
of the solar PV, wind turbine, inverter, and energy storage is
presented in Table 8. The estimated cash inflow, cash outflow,
and O&M costs are presented in Table 9. NPV is a valuable
tool to determine whether a project will result in a net profit or
a loss. Net profit is when the NPV is positive and the invest-
ment adds value to the energy system. A loss is when NPV is
negative and the investment subtracts value from the energy
system [94].

1) FINANCIAL ANALYSIS OF THE PROPOSED SMART
ENERGY MANAGEMENT SYSTEM
In our study, we use NPV value to evaluate the pro-
posed building energy management system financially.
We evaluate the whole system considering the role of solar
electricity generation, wind turbine electricity generation,
building energy demand, capital investment, andmaintenance
costs. Financial analysis of the proposed method includes the
impact of solar PV panels and wind turbines in returning
the investment. Solar PV systems convert the energy of the

TABLE 8. The specification of proposed wind turbines, inverters, energy
storage and solar PV panels.

TABLE 9. The cash inflow and outflow patterns.

solar light into electricity using PV cells. The electricity
output of the PV panels culminates when the sun’s light
beams are perpendicular to the surface of the PV panel. Due
to the earth’s elliptical movement around the sun and spinning
itself, the solar reception angle changes daily and seasonally.
However, a sun tracking system tackles seasonal and diurnal
reception angles disparities through constantly controlling
PV panel positioning toward the sun’s rays. This is to achieve
a perpendicular condition and the increase of the electricity
output of the PV panels [95].

Although, the dual-axis solar tracking systems have higher
energy generation in comparison with fixed solar systems
and single-axis solar tracking systems, the high investment
and maintenance costs of dual-axis solar tracking systems
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outweigh the extra generated energy [95], [96]. Due to this
reason, in our implementation we utilized a fixed solar
PV system in order to decrease both the investment and main-
tenance costs so that the smart building energy system has
the lowest financial breakeven point. In this paper, the imple-
mented solar PV units and the wind turbine annually generate
12664.03 kWh and 964 kWh, respectively. The building’s
annual energy demand is 6597.7 kWh, the net electricity
import from the grid is 1332 kWh, and the net electricity
export to the grid is 7777 kWh. Table 10 presents the total
energy demand and energy production in the building in 2019.

TABLE 10. Annual energy demand and supply. The G/C indicates to
generation/consumption in 2019.

Using the information provided in Table 10, thus, we can
calculate the cash inflow based on the G/C energy and elec-
tricity tariffs utilizing the definitions of the BC-Hydro com-
pany. This company defines a pricing policy for decreasing
energy consumption. This company introduces energy in
two tariffs; low energy consumption price and high energy
consumption price. These two prices are specified based
on the daily and two-month energy consumption boundary
22.1918 kWh and 1350 kWh, respectively. Based on the
energy consumption boundary value, the energy price is
considered 0.0941$/kWh for low energy consumption and
0.141$/kWh for high energy consumption [100].

Accordingly, by implementing the proposed method,
the building annual energy cost decreases from 665$
(6709 kWh) to 80.8$ (858 kWh), which equals to 87.5%
decrease in energy cost. Besides, the building can return
731.8$ (7777 kWh) annually by selling the extra generated
RE to the grid. As it is presented in Table 7, the schedul-
ing algorithm solely decreases the reliance on the grid
from 1333 kWh/year to 858.9 kWh/year. This translates
to 35.5% reliance on the grid. In addition, the algorithm
decreases the reliance on the grid during the peak days from
109.4 kWh/year to 2.17 kWh/year (98%) when without sav-
ing strategy; and to 0 (100%) kWh/year with a 10% saving
strategy. Based on the calculations presented in Table 9,
implementing a smart building integrated with a 10 kW
PV system and 5 kW wind turbine provides 1591$ cash
inflow annually, while the same system without the wind
turbine provides 1500$ cash inflow annually. Considering the
wind turbine cash inflows and outflows, the conclusion is
that utilizing wind turbine is not economically beneficial in
our proposed building energy system. This is demonstrated
in Figure 18.
The figure shows theNPVof both building energy systems.

The smart building that is integrated with a solar PV system

FIGURE 18. Net present value of the proposed energy management
systems.

is more economical than the building integrated with both
solar PV and wind turbine. The figure shows the break even
points are nine years for the building with solar PV, wind
turbine, inverter, and energy storage; and eight years for a
building with solar PV, inverter, and energy storage. The
break even points are the intersections of the two plots with
the straight black line.

V. CONCLUSION
Building energy management with renewable energy sources
is a complex and non-linear problem that conventional meth-
ods are unable to cope with such a problem. The complexity
increases as renewable energy is variable, unpredictable, and
weather dependent. In our paper, using weather and energy
consumption/generation patterns, we developed deep learn-
ing models to forecast energy demands and supplies for five
buildings in Vancouver in British Columbia. Our method
uses the combination of discrete wavelet transformation and
long short-term methods (DWT-LSTM). The results showed
that the method can model building energy demands and
renewable energy supplies with a high level of accuracy in
terms of mean average percentile error (MAPE) ranging from
1.24% to 2.89%.

We also developed amonitoring and scheduling framework
that uses the forecasted energy demand, renewable energy
supply, the state of charge of energy storage, energy cost, and
availability of the energy grid to schedule the energy demand.
The framework implements a scheduling algorithm based
on week-ahead prediction of energy demand, energy supply,
energy storage level of charge, and energy costs to minimize
the reliance on the grid and energy cost, especially during
peak days. As a result, our integrated smart energy framework
can help the building owner to meet their energy demand for
304 days in a year without reliance on grids and can export
more than 57% of generated solar andwind energy to the grid.
In addition, implementing the proposed framework can cover
up to 83.2% of electricity load by renewable energy sources.
Implementing the proposed framework also decreases energy
import from the grid by 98% during the higher electricity
tariff (peak days) and 87.2% of total imported electricity from
the grid.
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Our scheduling framework further increases the renewable
energy sources utilization by 57%.Moreover, based on finan-
cial analysis of two smart building systems, the proposed
smart building with solar PV, wind turbine, inverter, and
40.5 kWh energy storage has a financial breakeven point
after 9 years. With the same specifications except for the
wind turbine, the proposed smart building framework has
a financial break even point after 8 years. To this end,
the framework is expected to return the capital investment
in 8 years. That is by considering the warranty and the
lifespan of the implemented technologies, replacement costs,
power exportation income, and operational and maintenance
costs. Finally, based on the financial analysis, implementing
wind turbines in the proposed building has a negative NPV
growth which is not economically beneficial compared to the
case without wind turbines.

As our future work, we plan to focus on net-zero smart
buildings with renewable energies, where we aim to investi-
gate the combination of deep learning methods and optimiza-
tion algorithms such as the Sine Cosine Algorithm, Genetic
Algorithm, and Wolf Pack Algorithm. We also plan to con-
sider load scheduling problems and use additional factors
such as user satisfactions.
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