Journal Pre-proof

Designing the building space of a shopping street to use as a disaster evacuation shelter during the COVID-19 pandemic: A case study in Kobe, Japan

Muneta Yokomatsu, Hyejeong Park, Hitomu Kotani, Hideyuki Ito

PII: S2212-4209(21)00641-5

DOI: https://doi.org/10.1016/j.ijdrr.2021.102680

Reference: IJDRR 102680

- To appear in: International Journal of Disaster Risk Reduction
- Received Date: 14 June 2021
- Revised Date: 3 November 2021
- Accepted Date: 5 November 2021

Please cite this article as: M. Yokomatsu, H. Park, H. Kotani, H. Ito, Designing the building space of a shopping street to use as a disaster evacuation shelter during the COVID-19 pandemic: A case study in Kobe, Japan, *International Journal of Disaster Risk Reduction* (2021), doi: https://doi.org/10.1016/j.ijdrr.2021.102680.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

1	Designing the Building Space of a Shopping Street to Use as a
2	Disaster Evacuation Shelter During the COVID-19 Pandemic:
3	A Case Study in Kobe, Japan
4	
5	Muneta Yokomatsu ^{a,b*} , Hyejeong Park ^a , Hitomu Kotani ^c , Hideyuki Ito ^d
6	^a Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
7 8	^b POPJUS/BNR/ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
9	^c Graduate School of Engineering, Kyoto University, Kyoto, Japan
10	^d P&I Office for Humanitarian Logistics, Aichi, Japan
11	

12 Abstract

13 This study considers the risk of a natural hazard-induced disaster occurring during a pandemic, 14 such as the novel coronavirus (COVID-19) pandemic, and develops the idea of utilizing a 15 shopping street with disaster-proof buildings as a temporary evacuation shelter by 16 incorporating countermeasures against the spread of infectious diseases. Using a case study 17 of a shopping street in Kobe, Japan, we estimate shelter capacity by considering the 18 requirement of 6 m² of space allotted for each person. The shelter can accommodate 1,194 19 evacuees and provide them with food and drinks for one day, even in the worst case of lifeline 20 disruption. This study proposes a method of designing shelter space, and demonstrates how 21 non-homogeneous and noncontinuous spaces within shopping street buildings can be applied 22 to prevent the spread of infection, through the classification of evacuee types and use of 23 space and facilities designated for each type. The study further examines the liability issue of 24 secondary infection at the shelter with reference to civic law and the roles of government in 25 developing a distributed evacuation framework.

26

27 Keywords:

* Corresponding author.

Email addresses: yokomatsu.muneta.7v@kyoto-u.ac.jp (Muneta Yokomatsu), hyejeong82.park@gmail.com (Hyejeong Park), kotani.hitomu.5c@kyoto-u.ac.jp (Hitomu Kotani), pi0001@h3.dion.ne.jp (Hideyuki Ito)

- Natural hazard, novel coronavirus, evacuation shelters, shopping streets, infection prevention
 measures, Kobe, Japan
- 30

31 1. Introduction

32 The novel coronavirus (hereafter COVID-19) has rapidly spread worldwide since the initial 33 outbreak in China in December 2019. The World Health Organization (WHO) declared a 34 pandemic on March 12, 2020, and presented the guiding principle of "Avoid the Three Cs" [1], 35 indicating that COVID-19 spreads more easily in certain places: "crowded spaces with many people nearby," "close-contact settings especially where people have close-range 36 37 conversations," and "confined and enclosed spaces with poor ventilation," and thus that built spaces should avoid these characteristics. As other slogans and catchphrases, such as "social 38 39 distance," "stay home," and "new normal," infiltrated society, disaster management experts and authorities were faced with the urgent need to modify evacuation strategies, including 40 expanding the shelter area required per person, from 3 m^2 to 6 m^2 . This was followed by a 41 heavy rainy season in Japan in 2020, during which designated evacuation shelters, such as 42 43 school gymnasiums and community centers, could only accommodate 30-50 % of the 44 evacuees they had before COVID-19 [2,3]. Accordingly, shelters could not admit almost half 45 of the evacuees, many of whom had to stay overnight in their cars or other places that were 46 not organized disaster shelters. This situation enhanced the Japanese government's 47 awareness to the fact that the total area of available shelter space needed to be increased to 48 provide safe havens for all potential evacuees. To address this issue, the national government 49 recommended that local governments encourage their residents to carry out "distributed 50 evacuation" [4,5], which is based on the principle that people should be asked to evacuate 51 not only to designated evacuation shelters but also to other, undesignated shelters available 52 in local communities or ad hoc for individual evacuees, such as hotels, welfare centers, homes 53 of relatives or friends, and religious buildings. It was even indicated that staying at home was 54 also an option, should it be safer than evacuating to another location [4,6-8].

55 Under the distributed evacuation policy, residents have a greater chance of securing 56 temporary shelters; nonetheless, they may face other challenges, such as finding an 57 appropriate shelter, managing such a shelter, and preparing emergency and relief supplies, 58 by themselves or in cooperation with others. As for the management and operation of 59 evacuation shelters during a pandemic, some international and domestic organizations have 60 published guidelines for preventing the spread of COVID-19 in shelters [1,4], which share 61 several basic strategies such as classifying evacuees based on health status and providing 62 separate spaces and facilities based on those classifications (see Appendix A). Moreover, the 63 Japanese government requested each designated evacuation shelter to arrange for the 64 distribution of hygiene products, such as masks, alcohol-based hand sanitizers, and cleaning 65 supplies (see Appendix B), and recommended that evacuees, especially those in undesignated 66 shelters, prepare and take such hygiene products to shelters themselves.

67 Regarding the problems of insufficient space in designated shelters and difficulties in 68 providing disaster relief supplies to evacuees in undesignated shelters, the authors have 69 proposed the idea of using buildings on a shopping street as undesignated evacuation 70 shelters, and examined the potential to do so in the context of Japan and in particular the 71 case-study area, Taisho-Suji shopping street in Kobe [9]. The study estimated accommodation 72 capacity and available supply of food and drinks based on the available stockpiles of 73 restaurants and grocery stores. It was concluded that the shopping street could provide 74 shelter to approximately 2,300 persons, drinks for 1,700 person-days, and food for 1,200 75 person-days in the case of lifeline disruption, and for 2,800 person-days if substitute facilities 76 are available. Despite the idea's novelty, the risk of the spread of infectious diseases was not 77 considered in this estimation [9].

78 The purpose of the present study is to develop the idea of using shopping-street evacuation 79 shelters during a pandemic such as COVID-19 from viewpoints of disaster management and 80 planning. Concretely, this study aims to: (i) update the estimation of a shelter's capacity to 81 accommodate evacuees and supply food and drink using the shopping street's inventory 82 considering the risk of the COVID-19 spread; (ii) investigate the possibility of providing 83 hygiene products from the inventory and the quantities required to accommodate all 84 evacuees; (iii) present example spatial designs for shelters as well as operational processes; 85 and, (iv) investigate implementation and governance issues, especially regarding liability 86 related to secondary infection and government attitudes. While the first aim above can be 87 achieved by applying the same method as was used in Kotani et al. [9], the other aims require 88 completely new foci and discussions, where essential advantages of the shopping-street 89 buildings are found.

90 While some studies focused on the availability of facilities and buildings with large spaces as 91 temporary evacuation shelters [10-20], only a few studies have investigated commercial 92 facilities [21-23] among which our previous study [9] is unique due to its focus on the use of 93 shopping streets as evacuation shelters with stockpile warehouses where evacuees can 94 receive food and drinks on site. In this study, we again target the same street in Nagata, Kobe, 95 Japan, that we have investigated from various points of view [24-26].

96 Since before the COVID-19 outbreak, problems related to infectious diseases during a time of 97 natural hazard-induced disaster (hereafter "natural disaster" or "disaster") have been studied 98 mainly in the fields of medical science and public health [27-31]. Since the outbreak, 99 considerable attention has been paid to issues in the management of natural-and-pandemic 100 complex disasters [32,33]. Among various problems brought up, this study discusses 101 evacuation shelter design [34,35] with consideration of vulnerable people [36], and argues 102 that our idea of using shopping-street buildings as evacuation shelters has the further merit of preventing virus spread, owing to these buildings' non-homogeneous spaces composed ofmultiple floors and partitioned subspaces.

105 The remainder of this paper is structured as follows: Section 2 explains the background, target 106 area, and approach of the study; Section 3 provides the results of the case study; Section 4 107 discusses the applicability and implementability of the shelter plan; and, Section 5 108 summarizes the findings and discusses the potential of future studies.

109

110 2. Background, focus, and methods

111 **2.1** Shelter space shortages before and after the COVID-19 pandemic

112 The shortage of designated evacuation shelters is not a problem that first emerged after the 113 outbreak of COVID-19, but one that Japanese society had already faced prior to 2019. For 114 example, when the Tohoku earthquake and tsunami occurred on March 11, 2011, an 115 elementary school in Otsuchi, Iwate prefecture, served as a designated shelter expected to 116 accommodate approximately 120 evacuees in the event of a disaster. However, immediately 117 after the earthquake, over 1,000 people rushed to the shelter [37]. Consequently, some 118 evacuees who could not enter the building had to stay in their cars instead. During the 2016 119 Kumamoto earthquake, 183,882 people evacuated to the designated evacuation shelter on 120 the day after the main earthquake [38], a number much higher than the local government 121 had expected. Prior to the earthquake, the city had set up designated shelters to 122 accommodate 58,000 people [39], resulting in a shortage of shelter space during the 123 emergency.

124 In May 2020, following the initial COVID-19 outbreak, the Japanese government issued new 125 guidelines for evacuation shelter management [40] to prepare for potential floods in the 126 coming rain and typhoon season as well as for potential earthquakes, which could occur at 127 any time. These guidelines are intended to prevent COVID-19 from spreading in designated 128 shelters during disasters by taking precautions such as allowing evacuees to maintain a social 129 distance of 2 m. Consequently, shelters refused to accept evacuees in several prefectures. For 130 example, during heavy rainfall in July 2020, more than 500 shelters in 116 municipalities in 131 the Kyushu region and Yamaguchi prefecture rejected evacuees [41]. Based on this 132 experience, when Typhoon No. 10 was approaching Japan in September 2020, each local 133 government in Nagasaki prefecture, Kyushu region, added evacuation shelters, for 742 shelters in total. When the typhoon arrived, more than 50,000 people evacuated, far 134 135 exceeding the 1,670 people who had evacuated during Typhoon No. 9 the previous month. 136 However, only 18 % of the 742 shelters actually went into operation, with 82 % of them unable 137 to be used due to disaster damage or lack of measures in place to protect against COVID-19. 138 At least 133 shelters in 12 cities and towns reached their capacity limit [42].

139 2.2 Target area

140 In this study, we revisit the case study of the Taisho-Suji Shopping Street in the Nagata Ward of Kobe, Japan (Figure 1),¹ which was proposed for use as an undesignated evacuation shelter 141 142 in Kotani et al. [9]. The shopping street was damaged by the 1995 Kobe earthquake (the Great Hanshin-Awaji Earthquake). Before the earthquake, this street had the typical features of 143 144 downtown areas of the time, with its small space busy and crowded with people, goods for 145 sale, and so on (Figure 2a). The shopping street suffered catastrophic damage during the 146 earthquake, and a large fire that occurred immediately after the earthquake caused further 147 extensive damage (Figure 2b); the narrow streets were densely packed with wooden houses, 148 preventing fire engines from entering the area. Approximately two months after the disaster, 149 to construct fire- and earthquake-proof buildings, Kobe proposed a recovery plan to 150 redevelop an area south of the Japan Railway Shin-Nagata Station [43]. In this project, the 151 street was transformed into a modern shopping arcade, with skyscrapers, high ceilings, and 152 wide streets (Figure 2c). The buildings also have basements (Figure 3a) and several floors above ground. However, after the transfiguration effected by this redevelopment, the street's 153 154 lively scene was drastically damaged; vacant stores increased, and visitors decreased. Then, with efforts such as those made by local companies and shop owners to organize new events 155 156 and develop traditional festivals, the street has gradually been regaining visitors [25], although the number of vacant stores has not declined (Figure 3b) [9,43]. 157

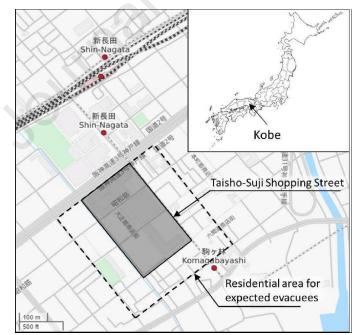


Figure 1. Target area and shopping street in the Nagata Ward, Kobe, Japan; the shaded

¹ We targeted the shops and restaurants in six buildings constructed as part of the recovery project. The Taisho-Suji Shopping Street does not include all the shops and restaurants in the buildings, but only those that belong to the Shopping Street Association. For simplicity, this study refers to all shops and restaurants in the relevant buildings as the "Taisho-Suji Shopping Street." Member shops of the association comprises approximately 60 % of those in the buildings. The association could be one of the factors of implementability; however, generally, which element plays a crucial role in driving community-based activity of disaster management varies from community to community.

area represents the Taisho-Suji Shopping Street; expected evacuees live in the area marked by the dashed line [9].

(a) The shopping street in 1994

(b) The shopping street damaged by the (c) Reconstructed shopping street earthquake (Source: http://shinsai-ar.kobe-shashinkan.jp/map_shinnagata_s.html)
 Figure 2. Taisho-Suji Shopping Street before and after the 1995 Kobe earthquake and reconstruction.

159

160 Figure 1 illustrates the target area, consisting of the Taisho-Suji Shopping Street and a residential area of 5,219 residents [44], some of whom would potentially evacuate to this 161 162 shopping-street shelter. As mentioned above, the buildings currently on the street are fire-163 and earthquake-proof, the central passage is wide, and the arcade ceiling is high enough so 164 that fire engines can pass the street. Therefore, the buildings are suitable for use as 165 earthquake evacuation shelters. Further, this area is not subject to tsunamis or landslides, 166 and has been classified as inundation-free against floods on the scale of a one-hundred-year 167 return period. However, in 2020, updated flood simulation results indicated that the area could be inundated by floodwaters of "less than 0.5 meters high" in the case of floods on the 168 169 scale of a one-thousand-year return period [45]. Since a flood's scale is predictable to some 170 extent before it reaches an area, in the case of huge-scale events such as those of the one-171 thousand-year return period, the floor plan is arranged so that the basement and first floor

- are not used, while floors above the second floor will become more significant, owing to the
- scarcity of tall buildings that can serve as evacuation shelters in the district. Considering such
- 174 needs for a flexible arrangement, in this study, we explore hazard scenarios except for a flood
- of one-thousand-year-return-period scale, meaning that we include the basement and first
- 176 floor in shelter planning to ascertain the potential of the buildings to cover most disasters.
- 177 As previously mentioned, in Kotani et al. [9], we developed the idea of a shopping-street
- shelter plan and estimated its capacity not during a pandemic: results indicated that it could
- be used as an accommodation space for 2,300 evacuees, provide drinks for 1,700 person-days,
- 180 and proper meals for 1,200 and 2,800 person-days in the case of power, gas, or water outages
- 181 and in the case of an alternative lifeline being available, respectively.

182 2.3 Procedures

- In this study, we focus on a case of a natural disaster that could occur during the COVID-19
 pandemic. Quantitative examinations are performed to determine the following three
 matters:
- Capacity to accommodate evacuees with safe physical distancing maintained and supply
 adequate food and drinks from the inventory;
- Possibility of providing hygiene products from the inventory and the quantities required
 to cover accommodated evacuees;
- Examples of typical designs to allocate evacuees to vacant spaces depending on their
 health status.
- 192 The procedures to demonstrate these aspects are described below.

193 2.3.1 Capacity to accommodate evacuees with safe physical distancing and supply food and194 drinks

195 Following the method proposed in Kotani et al. [9], we calculate the area (unit: m²) of 196 "available spaces" for evacuees (i.e., shared space [Figure 3a] and empty lots [Figure 3b]), 197 which are used as shelter spaces in disasters in the shopping street. The building's floor plans 198 and information on the empty lots as of 2020 are obtained from the management company. 199 In the calculation of the total area of shared spaces, we exclude stairs, walls, and toilets, and 200 only focus on spaces where people could lie down; in calculating that of empty lots, we 201 assume that there is no furniture (e.g., shelving) there. Based on the area of available spaces, 202 we estimate the number of evacuees that can be accommodated in the buildings. In this 203 estimation, we assume that each evacuee would need 6 m² of space to avoid COVID-19 204 infection [33], instead of 3 m²/person, as is often used in non-pandemic situations. We also 205 illustrate what percentage of expected evacuees would be accommodated.

To estimate the quantities of food and drink supplied from the shopping street, we calculate the average quantity of inventory from restaurants and shops, following the method and inventory data in Kotani et al. [9]. The shops include convenience stores, supermarkets,

- bakeries, and meat and fish shops. The calories (unit: kcal) and liter (unit: L) of supplied food
 and drink, respectively, are calculated. Based on the recommended daily intake of calories
 and water (2,000 kcal and 3 L per person for a day, respectively [9]), we estimate the number
 of person-days that could be supplied with available food and drinks. In this estimation, as
 the quantity of available food depends on the situation after the disaster, we consider the
 following two cases: (1) the case of power and water outage (hereafter "the case without
 utilities") and (2) the case of a substitute power and water supply (hereafter "the case with
- 216 substitute utilities").

217 2.3.2 Possibility of providing hygiene products from the inventory and the quantities 218 required to cover accommodated evacuees

The installation and use of hygiene products, as shown in Table A1(b), are important in evacuation shelters during a pandemic. Therefore, we examine the availability of these products from the shopping street's inventory. We visit stores that are likely to sell these products (e.g., supermarkets, convenience stores, and pharmacies) on the shopping street, check whether they exist in the inventory, and determine the possibility of their being supplied from the shopping street itself.

- 225 It is also recommended that citizens bring some hygiene products to the shelter themselves 226 (Appendix B); however, citizens may not do so, and thus, it is important to stockpile essential 227 hygiene supplies in shelters. We estimate the required quantities of four specific hygiene 228 supplies, which almost everyone needs—(1) masks, (2) alcohol-based sanitizer, (3) plastic 229 bags used for storing reusable materials, garbage etc. (i.e., "three types of polybags" in Table A1(b)), and (4) wet wipes (i.e., "alcohol wipes for cleaning" in Table A1(b))—to cover the 230 231 number of evacuees accommodated in the shopping street. As a benchmark, we assume that 232 each evacuee would wear one mask a day. Hand sanitizer requires at least 3 mL of liquid on 233 each use [46]. We assume that a person would use hand sanitizer 10 times a day, and thus 234 approximately 30 mL (3 mL X 10 times) would be used per person per day. We also assume 235 that a person would use one plastic bag for trash (20 L) and one pack of wet wipes (50 sheets) 236 a week. Evacuees would be expected to stay in the shopping street for one week.
- In 2020, we could not estimate the average quantity of these hygiene products in the inventory of each shop because the inventory had changed dramatically. For example, the mask inventory decreased at the beginning of 2020, but later was overstocked, due to the increased use of reusable masks and production expansion. Future studies should calculate the exact numbers of hygiene products to be supplied from the shopping street; however, clarifying the necessary numbers will contribute to the discussion on measures to increase hygiene product stockpiles.

244 2.3.3 Example shelter space design and space allotment depending on evacuee health245 status

246 While Kotani et al. [9] only examined the total area of the available spaces to discuss 247 accommodation capacity, in a non-pandemic situation, the current COVID-19 pandemic necessitates the inclusion of another dimension—the geographical distribution of evacuees to prevent the spread of infection. We begin by discussing the spatial arrangement by obtaining floor maps of the building and information on the vacant stores and available common spaces. The number of available floors, rooms, toilets, taps with running water, stairs, and elevators is surveyed on the maps and clarified. Additionally, the necessary functions that should be provided in a shelter, such as reception areas and health check locations, are determined by referring to relevant articles and reports [47,48].

Potentially, there could be a large number of combinations for evacuee classification, the 255 256 criteria for which could include COVID-19 infection status, contact with an infected individual, 257 related symptoms, age, other underlying conditions, and support needs. The classification 258 framework in the present study was designed to meet the necessary conditions for preventing 259 the infection spread and supporting evacuees who need help for other reasons, while also considering the physical configuration of the building space. While several classification 260 261 criteria have been proposed [9,48], in this study we formulate a meaningful framework to 262 reflect needs and conditions at the site.

263

(a) Shared space in the basement (b) Vacant spaces Figure 3. Available spaces for evacuation shelters in Taisho-Suji Shopping Street [9]

264

265 **3. Results**

3.1 Capacity to accommodate evacuees with safe physical distancing and supply food and drinks

268 Based on the buildings' floor plans and information on the empty lots as of 2020,² we

- determine that the total area of the vacant spaces is 7,164 m². From the total area, we
- 270 estimate that the shopping street could accommodate 1,194 evacuees (7,164 m 2 \div 6
- 271 m²/person; Table 1). This is half of the 2,388 evacuees (7,164 m² \div 3 m²/person) that could

² Three restaurants which opened in 2017, when the survey in Kotani et al. [9] was conducted, closed for business, and no new restaurants opened on their lots. Accordingly, the empty lots were increased compared with Kotani et al. [9].

- be accommodated in a non-pandemic situation; however, the shopping street still has the
- 273 capacity to accommodate 23 % (1,194 people \div 5,219 people) of the expected evacuees.
- 274 Table 1. Number of accommodatable evacuees and percentage among expected evacuees
- 275 during pandemic and non-pandemic situations

	Pandemic	Non-pandemic
Number of evacuees to be accommodated	1,194	2,388
Percentage of evacuees to be	23 %	46 %
accommodated among expected evacuees	23 /0	40 /0

276 As of 2020, 56 shops located in the shopping street are identified as being likely to be able to supply food and drinks.³ Based on the inventory data and methods illustrated by Kotani et al. 277 278 [9], we estimate the total calories (unit: kcal) of food and the total quantity (unit: L) of drinks 279 supplied from the shops to be 2,404,820 kcal and 5,389,607 kcal of food in the case without 280 utilities and with substitute utilities, respectively, and 4,816 L of drinks regardless of the 281 utilities situation (the second row of Table 2). These supplies are equivalent to 1,202 and 282 2,695 person-days of food in the cases without utilities and with substitute utilities, 283 respectively, and 1,605 person-days of drinks (the last row of Table 2). If we were to provide 284 the available food and drinks to the number of evacuees who could be accommodated (i.e., 285 1,194 evacuees), these results indicate that we could provide meals on the first day of the 286 disaster, even in the case without utilities. The remaining food and drinks—8 person-days 287 (1,202 person-days – 1,194 evacuees) of food and 411 (1,605 person-days – 1,194 evacuees) 288 of drink, could be distributed to people who stayed in their homes or were in neighboring 289 shelters. If the food were cooked using power generators, gas cylinders, and well water, we 290 would be able to cover two days' worth of meals for the evacuees accommodated on the 291 shopping street.

292 Table 2. Estimated quantity of food and drinks supplied from the shopping street

	Food (kcal)		
-	Case without	Case with substitute	Drink (L)
	utilities	utilities	
Total supply from	2 404 820	E 280 607	1 916
56 shops in 2020	2,404,820	5,389,607	4,816
Equivalent person-	1 202	2 605	1 605
days	1,202	2,695	1,605

³ In comparison with Kotani et al. [9], the following three changes were observed in the shops associated with the estimation: (1) as mentioned in the previous footnote, three restaurants which opened in 2017 closed for business and no new restaurants opened in their lots; (2) another restaurant that opened in 2017 closed, and then a company that did not sell food and drinks opened a business on the lot; and, (3) one fish shop that opened in 2017 was changed to a restaurant. We accounted for the above changes in the estimation.

293

3.2 Possibility of providing hygiene products from the inventory and the quantities required to cover accommodated evacuees

We visited stores that were likely to sell hygiene products (i.e., two supermarkets, one convenience store, one drug store, and one electronics retail store) and checked their inventory. As shown in Table 3, we determine that most of the hygiene products, such as masks, alcohol-based sanitizers, and thermometers, can be supplied from the shopping street's inventory (In the table, \odot denotes at least one store has the inventory; \triangle denotes that the store visited do not stock them in their inventory.).

302 Following this, we estimate the required number of four specific hygiene supplies -(1) masks, 303 (2) alcohol-based sanitizer, (3) plastic bags, and (4) wet wipes—to cover a one-week stay for 304 evacuees accommodated in the shopping street (i.e., 1,194 evacuees), based on the 305 assumptions described in Section 2. It is found that 8,358 masks (1,194 people X 1 mask/day 306 X 7 days), 35,820 mL of hand sanitizer (1,194 people X 30 mL/1 day X 7 days), 1,194 plastic 307 bags, and 1,194 packs of wet wipes would be required (Table 4). These quantities of hygiene 308 products should be supplied from the shopping street's inventory and/or stockpiled as relief 309 supplies in the shopping street.

Items	Possibility of being provided from the inventory
Masks	Ø
Alcohol-based sanitizer	Ø
Thermometers	Ø
Non-contact thermometers	Ø
Alcohol wipes for cleaning	Ø
Disposable towels	Ø
Paper towels	Ø
Paper bags (for vomiting)	Ø
Hand soap	Ø
Household detergent for cleaning	Ø
Sodium hypochlorite for sanitization	0
Face shields	Δ
Raincoats	0
Poly gloves	Ø
Wraps	Ø
Three types of polybags	Ø
Zipper bags	Ø

310 Table 3. Hygiene products likely to be supplied from the shopping street's inventory

Multipurpose baskets	\bigtriangleup
Spray containers	٥
Trash cans with foot pedals	\bigtriangleup
Portable toilets	٥
Cardboard beds	\bigtriangleup
Partition walls	Δ

311 \bigcirc : Highly likely to be supplied \triangle : less likely to be supplied

312

313 Table 4. Required hygiene products for evacuees to be accommodated in the shopping street

Items	The required quantity for a week stays
Masks	8,358 masks
Hand sanitizer	35,820 mL
Plastic bags	1,194 bags
Wet wipes	1,194 packs

314

315 3.3 Example shelter space design and space allotment depending on evacuee health status

316 **3.3.1 Classification of evacuees**

- Here, we illustrate example designs for allocating evacuees to available spaces depending on their health status. Assuming the shelter reception is set up outside the first floor of the building, we classified evacuees into the following types according to their health status and support needs:
- Type I (infected) evacuees: People who have undergone a COVID-19 infection test before
 the evacuation, have tested positive, and have neither yet fully recovered nor received a
 negative test.
- Type CS (close contact with infected others and symptomatic) evacuees: People who
 came in close contact with an infected person. They have not been tested yet, but have
 some symptoms related to COVID-19, such as a fever or cough.
- Type C (close contact with infected others) evacuees: People who have been in close
 contact with an infected person but are not showing symptoms.
- Type S (symptomatic) evacuees: People who have neither made close contact with an
 infected person nor have been diagnosed as positive for COVID-19, but have some related
 symptoms.
- Type H (healthy) evacuees: People who do not meet any of the criteria above.
- 333 In addition, some people are more vulnerable in disaster contexts due to physical causes

other than COVID-19 infection, such as other illnesses, injuries, disabilities, and old age; thus,
they would have support needs. They are classified into the following types with the
additional letter "V" (vulnerable): Type IV, Type CSV, Type CV, Type SV, and Type HV evacuees.
Evacuees who are not vulnerable are classified as Type IN, Type CSN, Type CN, Type SN, and
Type HN evacuees, with the letter "N" (not vulnerable) added.

339 The shelter space should be designed such that it meets three conditions. First, the entrance needs to include a space to conduct health checks and determine each evacuee's type. 340 341 Second, spaces for occupancy should be completely divided between Type IV, IN, CSV, CSN, 342 CV, CN, SV, and SN evacuees (Group I-CS-C-S) and Type HV and HN evacuees (Group H). 343 Accordingly, the spaces where each evacuee group stays should be divided, either on separate 344 floors or in rooms separated by walls. Shared facilities, such as toilets and the water supply, 345 should also be divided, as should the traffic (flow) lines for accessing them. If possible, Group 346 I-CS-C-S should be further divided, with Type IV and IN evacuees (Group I) and Type CSV, CSN, 347 CV, CN, SV, and SN evacuees (Group CS-C-S) in separate spaces. The queue for toilets and the 348 water supply can get congested at certain times of the day. In order to keep distance between 349 two individuals in a queue, tapes can be put on the floors to indicate where users should be 350 standing. Third, regarding the traffic line design, vulnerable people should be given priority in 351 elevator use. If there is more than one elevator, they should be separately allotted to Group 352 I, Group CS-C-S, and Group H, to reduce their possible contact. If there is only one elevator, it 353 should be arranged so that the space for one group—for example, Group H—is set up on the 354 first floor, or hygiene practices, such as disinfecting one's hands before and after touching the 355 elevator buttons, should be more strictly requested.

356 Figure 4 shows an example shelter space design that satisfies the above three conditions, 357 targeting the basement, first floor, and second floor of Building No. 5 on the shopping street, 358 which has relatively large available spaces. Almost all the empty lots in the available spaces 359 have air conditioning facilities; therefore, air circulation is significantly ensured in each lot. In 360 the figure, the red areas indicate available spaces, blue areas indicate stairs, yellow areas indicate elevators, and green areas indicate facilities such as toilets and the water supply. The 361 362 gray areas indicate unavailable spaces, which are occupied by stores and used for purposes 363 other than disasters, and are therefore not expected to be used as shelter spaces during a 364 disaster.

365 3.3.2 Procedures to classify evacuees at reception

Figure 5 illustrates the detailed procedures for classifying evacuees who come to the building. At the reception, evacuees who are already known to be infected with COVID-19 are sent to "the desk for evacuees with a confirmed infection" and classified as Type I. After checking their support, evacuees would be identified as either Type IV or Type IN.

- 370 Evacuees who have been in close contact with people infected with COVID-19 would be sent
- to "the desk for evacuees with close contact with the infected" and categorized as Type CS if
- they report symptoms during their health status check, and Type C otherwise. Next,
- depending on their support needs, Type CS evacuees would be categorized as either Type CSV

- or Type CSN. The same procedure would be applied to Type C evacuees, who would then beclassified as either Type CV or Type CN.
- 376 Evacuees who have neither tested positive for COVID-19 nor made close contact with people

377 infected with COVID-19, but perceive some related symptoms, would be sent to "the desk for

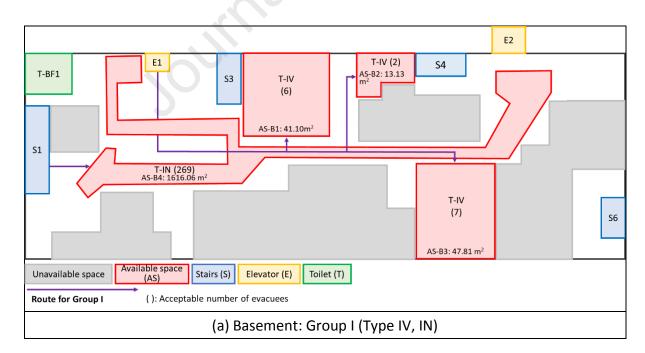
- 378 evacuees with noticeable symptoms" and categorized as Type S. Then, their support needs
- would be checked, and they would be classified as either Type SV or Type SN.
- Evacuees who do not fit any of the above categories would be sent to the "desk for evacuees
 without noticeable symptoms." If some symptoms are detected in the health status check,
 those evacuees would be categorized as Type S; otherwise, they would be categorized as Type
- 383 H. Type H evacuees would then be classified as either Type HV or Type HN, depending on their
- 384 support needs.

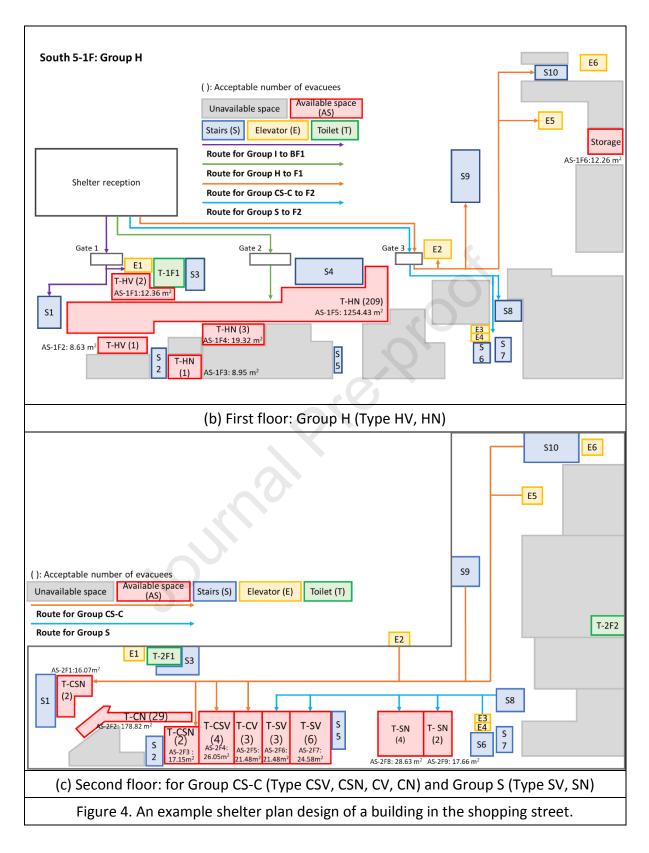
385 **3.3.3 Space and traffic lines for each evacuee type**

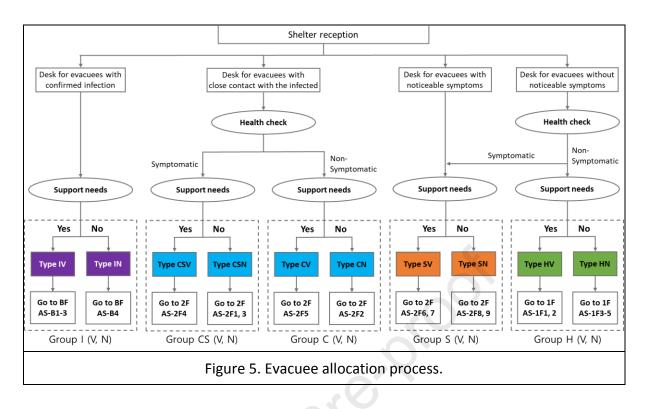
- After evacuees are classified as one of the above types, they would be requested to follow a specific traffic line to access a specific space (Figure 4). The details of the assigned available spaces on each floor and traffic lines with access to the spaces for each type are shown below.
- 389 Basement (Figure 4a)
- 390 To reduce their contact with other evacuee groups as much as possible, we decided that only 391 Group I would use the basement. Group I would follow the purple route to go to the basement, 392 using only Gate 1 to avoid contact with other groups. Type IV evacuees would be prioritized 393 to use *Elevator 1* (E1) to move to the basement. They would be allocated to one of the 394 partitioned Available Spaces 1, 2, and 3 (AS-B1, 2, and 3), which can accommodate six, two, 395 and seven people, respectively. Type IN evacuees would be asked to use Stairs 1 (S1) to reach 396 Available Space 4 (AS-B4), which can accommodate 264 people. Toilet BF1 (T-BF1) would be 397 used by Group I only.
- In this example, we expect that the stay of Group I would be short, since they should be moved to other appropriate facilities as soon as possible to receive medical treatment. Thus, we allocated Group I to the basement, where they cannot see the outside and are likely to get stressed to some degree. Thus, if significant space is available on the upper floors and Group I could be kept separate from the other groups, it would be desirable to allocate them there.

404 First floor (Figure 4b)

The first floor would only be used by Group H. They would exclusively use *Gate 2* to avoid contact with other groups and would follow the green route to available spaces on the first floor. Type HV evacuees would be accommodated in *Available Spaces 1* (AS-1F1) and *2* (AS-1F2), which are partitioned and can accommodate one and two people, respectively. Type HN evacuees would be allotted *Available Spaces 3* (AS-1F3) to *5* (AS-1F5) near the entrance, which can accommodate 216 people. *Toilet 1F1* (T-1F1) would be used only by Group H. *Available Space 6* (AS-1F6) could be used for hygiene product storage.


412 Second floor (Figure 4c)


The second floor would be occupied only by Group CS-C-S. This floor has eight independent rooms, which is advantageous for allotting different separated available spaces to each Type of evacuees in Group CS-C-S. *Gate 3* is to be used exclusively by this group.


416 Type CSV, CSN, CV, and CN evacuees (Group CS-C) would follow the orange route to the 417 second floor. Type CSV and CSN evacuees (Group CS) would use *Elevator 2* (E2) and move to 418 Available Space 4 (AS-2F4), which can accommodate four people. Type CSN evacuees would 419 use Stairs 9 (S9) and be assigned Available Spaces 1 (AS-2F1) and 3 (AS-2F3), which can each 420 accommodate two people. Similarly, out of Type CV, CN evacuees (Group C), Type CV 421 evacuees are to use Elevator 5 (E5) and be assigned Available Space 5 (AS-2F5), which can 422 accommodate three people. Type CN evacuees would use Stairs 10 (S10) and be assigned 423 Available Space 2 (AS-2F2), which can accommodate 29 people. Only Group CS-C would use 424 *Toilet 2F1* (T-2F1).

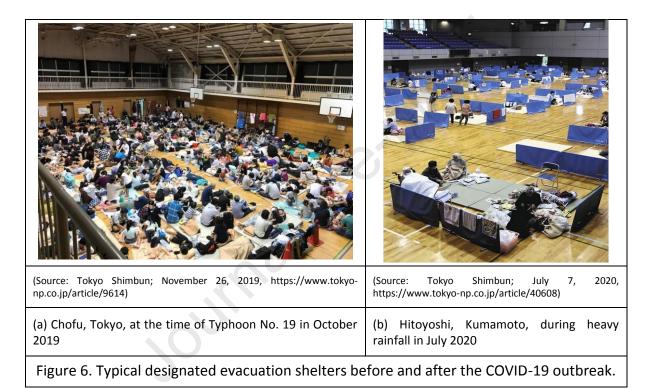
Type SV, SN evacuees (Group S) would follow the blue route to the second floor. Type SV evacuees would take *Elevators 3 and 4* (E3 and E4) to the second floor and be allotted *Available Spaces 6* (AS-2F6) and 7 (AS-2F7), which can accommodate three and six people, respectively. Type SN evacuees would use *Stairs 6–8* and be assigned *Available Spaces 8* (AS-2F8) and *9* (AS-2F9), which can accommodate four and two people, respectively. *Toilet 2F2* (T-2F2) should only be used by Group S. The traffic lines to *Toilet 2F2* (T-2F2) for Group S, and to *Toilet 2F1* (T-2F1) for Group CS-C, should be separated as much as possible.

432

434

435 **4. Discussion**

436 **4.1 Non-homogeneity of space and shelter design flexibility**


437 According to a survey conducted by the Small and Medium Enterprise Agency (SMEA), there 438 are 14,035 shopping streets in Japan that contribute to local commerce. However, with an 439 increase in big shopping malls that have larger commercial spheres, the commercial scale of local shopping streets has declined; vacant shops have increased annually from 7.31 % in 2013 440 441 to 13.77 % in 2018 [49]. While the revitalization of local shopping streets has attracted 442 attention, this trend is expected to remain in a substantial percentage of local economies. Our concept of the shopping street evacuation shelter plan is associated with a basic motivation 443 444 to reactivate local shopping streets through disaster management activities by using such 445 vacant spaces.

In Kotani et al. [9], we identified the potential of targeted shopping street buildings, with their 446 fire- and earthquake-proof properties, availability of vacant and common spaces, and food 447 and drink inventories. During the COVID-19 pandemic, the buildings offer additional merits, 448 449 such as multiple floors, separate rooms, toilets, and stairs, users of which can be separated 450 based on the infection status. The buildings' non-homogeneous, separated spaces work to 451 prevent the virus from spreading and consequently allow the evacuees to feel secure. Such 452 advantages are more obvious when comparing these buildings with school gymnasiums, 453 which have been the most conventional and common designated evacuation shelters in Japan, 454 as shown in Figure 6. Maintaining distance between individuals or families with partitions was 455 introduced after the COVID-19 outbreak, although their spaces are connected, and most gymnasiums usually have only one lavatory for each male and female user. People could 456

Journal Pre-proof

457 become less optimistic about evacuation if they feel that they might share space and facilities 458 with people infected with COVID-19, which could result in them staying in a hazardous 459 environment during a disaster. However, Building No. 5, which was examined in Subsection 460 3.3, accommodates 555 of 1,194 evacuees. It has 18 separated rooms and spaces in total (4 461 in the basement, 5 on the first floor, 9 on the second floor), and their sizes vary. While the 462 biggest space accommodates 269 evacuees, there are 13 rooms with a capacity of less than 5 463 people. These small rooms are quite useful for guarantine in cases where there is a 464 comparatively small number of Type IV, IN and Type CSV, CSN evacuees.

465

466

It should be emphasized that space allotment is flexible according to the breakdown of the 467 468 population by the state of infectiousness. In the previous section, we placed Group I in the 469 basement, Group H on the first floor, and Group CS-C-S on the second floor. Nonetheless, we 470 can also conceive of a case in which there are no Type IV or IN evacuees at the shelter because 471 they have already moved to hospitals due to their symptom severity. In such a case, Type CSV 472 and CSN evacuees with severe symptoms would be given the basement spaces with the 473 expectation of moving to a hospital as and when the situation allows. However, if hospitals 474 are busy and they need to spend several days in the shelter, they may find a small room on 475 the second floor to be more comfortable, as the sky would be visible. Another possible 476 arrangement would be one in which a small room on the second floor is allotted to one family 477 that includes Type CSV and CSN members with severe symptoms.

With some expectations on the proportions of the types based on the current state of infection in society, the shelter can prepare for multiple situations to adapt to different 480 circumstances in advance. Thus, the shopping street shelter plan contributes to society by
481 increasing not only the total space for accommodating evacuees but also the number of
482 isolated rooms and the flexibility of spatial arrangement.

483 **4.2 Responsibility for the spread of infection in the shelter**

In Section 3.3, we described a shelter-space design method in which Group I-CS-C-S and Group
H are kept separate, with the aim of preventing the spread of infection among residents.
Moreover, unlike shelters with continuous large spaces such as school gymnasiums, which
are commonly used as designated shelters, the shopping street's arcade buildings have high
potential and enable a shelter design that incorporates the need for group divisions.

- 489 Nevertheless, there is a possibility that the infection could spread in shopping-street shelters 490 if evacuees who should be identified as Type IV, IN, CSV, CSN, CV, CN, SV, or SN evacuees are 491 miscategorized as Type HV or HN. Further, if responsibility for the spread of infection in 492 evacuation centers could be attributed to the shelter manager, that possibility would be a 493 major obstacle to implementing this plan. Since this would be a non-designated shelter, the 494 plan would be implemented within the framework of community-based activities. The 495 "shelter manager" or "operator" is a committee of community members, possibly including 496 managers of the arcade buildings and shopkeepers from the shopping street. If the committee 497 is afraid of being sued after the spread of the infection, they are likely to discontinue the plan. 498 In this subsection, we will consider the issue of responsibility of the committee, that is, the
- 499 shelter manager.
- 500 Cases in which a COVID-19 carrier transfers the virus to a non-carrier are classified into the 501 following three types:
- 502 Case A: A case in which a Type IV, IN, CSV, CSN, CV, CN, SV or SN evacuee makes a false 503 declaration and is settled in a space meant for a Type HV or HN evacuee.
- 504 Case B: A case in which an evacuee does not follow the rules of the designated traffic lines 505 and communal facilities.
- 506 Case C: A case in which an evacuee who was identified as a Type HV or HN evacuee by not 507 having symptoms related to COVID-19 is actually a virus carrier.
- There are no measures the shelter manager can take against Cases A and Case B. Accordingly,
 the shelter manager is not liable for secondary infections caused by either case.
- Likewise, even with Case C, there is no problem with the manager classifying such an evacuee as Type HV or HN at reception, as the evacuee was asymptomatic at the time. In addition, if symptoms such as fever appear later, and the manager moves and isolates the evacuee promptly and not unattended, even if secondary infection occurs, the manager will not be liable under the Civil Code of Japan. Article 698 (emergency administrative management) states, "If a Manager engages in the Management of Business in order to allow a principal to

516 escape imminent danger to the principal's person, reputation or property, the Manager shall 517 not be liable to compensate for damages resulting from the same unless he/she has acted in 518 bad faith or with gross negligence" [50]. Thus, providing shelter to protect community 519 members from the risk of death or injury in the event of a disaster is an act of rescue from 520 urgent harm, namely, an act of first aid, and is considered to fall under the category of 521 "emergency administrative management" [51]. Therefore, managers will not be held civilly 522 liable unless they have caused damage to another person due to malicious intent or gross 523 negligence. Hence, as previously mentioned, as long as the manager checks the health status 524 of the evacuees and takes appropriate measures, such as the settlement and traffic divisions, 525 which consider the buildings' structural constraints, even if secondary infection occurs, a 526 lawsuit could not be filed and the manager would not be held liable.

527 Article 698 (emergency administrative management) of the Civil Code is considered to be a 528 provision for reducing liability with the intent to encourage people to provide first aid in an 529 emergency [52]. Therefore, its content is considered to support the practice of this shelter 530 plan. As such, potential managers should avoid hesitating to open non-designated shelters 531 due to concerns over possible liability. In Japan, based on the fact that Article 698 of the Civil 532 Code supports the opening of evacuation shelters, this provision should be understood and 533 shared by all community members when they are formulating their local disaster 534 management plans.

535 **4.3 Required government attitude and response**

536 As previously stated, there has been a shortage of available evacuation shelters during a large-537 scale disaster, even without an ongoing pandemic, and non-designated evacuation shelter 538 use is increasing. If the required area per evacuee is doubled during a pandemic, then the 539 capacity of designated evacuation centers will be further reduced. Central and local 540 governments have already recommended distributed evacuation, and the need for non-541 designated evacuation centers is increasing. Therefore, non-designated evacuation centers 542 that are community-operated and have the above-mentioned capacity, such as the shopping 543 street evacuation shelter described in this study, can assist government-operated designated 544 shelters by reducing their population density.

545 In addition, shopping street shelters would also be valuable in that they would be pre-planned 546 by the community. Conventionally, most undesignated shelters have been cars in parking 547 areas for overnight stays or relatives' homes, where it is difficult for local governments to 548 estimate in advance the number of evacuees who will use non-designated evacuation shelters. 549 Furthermore, presumably some evacuees who ultimately stayed in their cars were refused 550 entry to a designated shelter because it had reached its capacity for accommodating evacuees. 551 In that case, in addition to the time loss and stress that evacuees experience during the 552 evacuation process, the population density of the designated shelter's reception space will 553 temporarily increase amid such confusion. In that respect, the shopping street shelter, whose

554 plan is shared by the community and government in advance, is superior to designated 555 shelters.

556 It is possible, however, that community residents, including those operating evacuation 557 shelters, will not be able to dispel a certain level of anxiety until it is demonstrated several 558 times that the shopping street non-designated evacuation shelter can actually perform well. 559 It is also likely that there will be differences in enthusiasm for the implementation of the plan 560 among shopkeepers who are responsible for providing food and drinks. Given such a situation, even if it is positioned as an "undesignated evacuation shelter," it can benefit the local 561 562 community; thus, the local government should publicly express support for such a plan or 563 take action to guarantee the plan's validity. This will greatly increase the local population's 564 confidence in and motivation to use non-designated shelters.

Moreover, local governments must be motivated to provide disaster relief supplies to the 565 566 shopping street shelter in advance. Having these disaster relief supplies stored in the empty 567 spaces of shopping street buildings would also benefit the government. Such supplies would 568 include ones that do not normally exist as commodities in the shopping district, such as 569 blankets, partitions, and non-contact thermometers, and would also address a shortfall of 570 masks during a disaster. Without shopping street shelters, such supplies would only be 571 located and used in designated shelters and kept under administrative control. Relocating 572 them to shopping street buildings in advance will strengthen the policy of distributed 573 evacuation. Section 4.1 showed that 1,194 evacuees could be accommodated in the shopping 574 street shelter, and Section 4.3 indicated that 1,194 masks, plastic bags, and wet wipes, and 575 35,820 mL of hand sanitizer, were the required hygiene supplies. These findings could provide 576 useful information for local governments when determining the size of stockpiles to be stored 577 in shopping street buildings.

578 Furthermore, the government is required to play an important role in obtaining an estimate of the proportion of Type IV and IN evacuees—that is, those infected with COVID-19—among 579 580 all the shelter evacuees. First, the government needs to create an environment in which Type CSV, CSN, CV, CN, SV, and SN individuals can quickly undergo PCR tests when there has been 581 582 no disaster. As a result, the number of residents of these types will decrease, and some will 583 become Type IV, IN. Severely ill patients among them would be hospitalized. To ensure this 584 process, hospitals need to be equipped with a sufficient number of beds. Then, what is 585 important as a disaster prevention policy is to encourage those who are asymptomatic or 586 have mild symptoms to be isolated in hotels and facilities with sufficient disaster safety protocols. Thus, it is necessary to secure a sufficient number of isolation facilities for that 587 588 purpose.

589 Such measures eliminate the need for Type IV and IN residents to move to evacuation shelters 590 in the event of a disaster. In other words, those infected with COVID-19 who come to 591 evacuation shelters in the event of a disaster consist of coronavirus carriers who have not

- 592 undergone the PCR test and infected persons who are quarantined at home. By reducing the 593 number of such individuals in advance, the risk of spreading the infection in disaster shelters 594 is greatly reduced. The reduced risk then mitigates the anxiety of healthy residents heading 595 to shelters and encourages their active evacuation behavior. This point holds regardless of 596 whether it is the shopping street evacuation shelter or a designated evacuation shelter. 597 Governments need to implement a set of integrated multiple risk policies against COVID-19 598 and natural disasters, which are consistent with each other and cover a region or society as a 599 whole.
- If an evacuation shelter rejects Type IV, IN, CSV, CSN, CV and CN evacuees or Type SV and SN
 evacuees with severe symptoms who fled to the shelter, it could lead to a human rights
 violation. To prevent such matters, it is necessary to comprehensively discuss in nonemergency situations what kind of restraint should be applied legally.
- 604 If Type IV, IN, CSV, CSN, CV, CN, or severe Type SV or SN evacuees arrive at shelters despite 605 such proactive steps taken beforehand, they need to be transferred to a medical institution 606 as quickly as possible. In this respect, equivalent measures must be taken between designated 607 and non-designated evacuation centers. It is important for the government to take a uniform 608 approach toward isolation within evacuation shelters and in the process of moving evacuees 609 to medical institutions, assuming that many evacuation shelters do not have medical 610 professionals available. Furthermore, in 2020, the Japanese government published a manual 611 for operating shelters during the COVID-19 pandemic. This manual also points out the 612 importance of providing training to increase the number of individuals available to participate 613 in public health activities at evacuation shelters.
- 614 In this study, we have investigated the case of a shopping street in the Nagata Ward of Kobe, 615 Japan. In addition to using data from this area to calculate the available area for evacuation 616 and available quantity of food and drinks, the previous subsection developed a consideration 617 in accordance with the Civil Code of Japan. In this way, the topic was thoroughly explored in 618 line with the peculiarities and specificities of the targeted district. The results obtained from 619 such research procedures will raise questions regarding the finding's generalizability and their 620 applicability to other countries and regions. Some of the answers to such questions have 621 already been provided in our previous study, Kotani et al. [9], which pointed out that shopping 622 streets in many countries and regions have the potential to become "shelters with food 623 stocks,"; shopkeepers often play a central role in the community's resident network and 624 possess the foundations to become members of a shelter management group. However, 625 environmental conditions, such as the location of a shopping street and the size and strength 626 of the buildings, vary depending on the location. Additionally, laws, institutions, and norms 627 regarding the concept of emergency administrative management and its liability—that is, the issue of liability for secondary infections of infectious diseases, which were dealt with in this 628 629 study-vary by country. In that regard, it is beyond the scope of this study to offer an 630 international institutional comparison. Nonetheless, the "generality" of this study, in terms

of its contribution to research and practice regarding the utilization of shopping street shelters in other countries is characterized by another dimension that is one level more general. This study presented viewpoints, checkpoints, methods, and thought processes when creating and characterizing evacuation shelters. Confirming the spirit implied by the laws of each society is one of them. Including the above, a way that this study considers the relationship between the individuality and generality of the research findings is in line with many area studies.

638

639 5. Conclusions

640 In consideration of the increasing occurrence of large-scale disasters, the shortage of 641 designated evacuation shelters that had already been observed, and the seismic-resistant 642 buildings in shopping districts, we proposed in Kotani et al. [9] that shopping street buildings 643 be utilized as disaster evacuation shelters that are perpetually stocked with food and drinks 644 as commodities and inventory. This time, after the outbreak of COVID-19 and after emergent 645 responses began to be provided for the purpose of preventing the spread of infection in 2020, 646 we quickly updated our idea of a shopping street evacuation shelter with conviction that this 647 type of shelter has enhanced comparative superiority against other, more typical shelters 648 during a pandemic.

Using the latest data from the Taisho-Suji Shopping Street in Kobe, Japan, we estimated the 649 650 capacity of the shopping street shelter; it can accommodate 2,388 evacuees under the non-651 pandemic condition, and 1,194 evacuees-which is equivalent to 23 % of the local population—under the pandemic condition, where 6 m² of space is required for one person 652 653 to maintain enough distance from others. Moreover, we updated our estimation of supplies, 654 finding that the shopping street shelter could provide food for 1,202 person-days in the case 655 of lifeline disruption, for 2,695 person-days in the case of substitute utilities being available, 656 and drinks for 1,605 person-days. Additionally, we provided a list of necessary hygiene 657 supplies and the quantities required for 1,194 evacuees to stay in a shelter for a week.

658 The novelty of this study exists in how non-homogeneous and separate spaces in the buildings 659 are applied to prevent the spread of infection. Evacuees, who are classified by properties such 660 as being infected, having had close contact with infected individuals, being symptomatic, or 661 being vulnerable for reasons other than COVID-19 are separated, so that they do not share 662 space, toilets, or traffic lines. We exemplified the shopping street shelter design, 663 demonstrated its flexibility, and verified its physical competency. In addition, we investigated 664 the liability issue of secondary infection at a shelter and clarified that the Civic Law of Japan 665 supports community implementation of a shelter plan. Furthermore, we discussed the role of 666 the government, such as providing more convenient PCR test and increased beds in hospitals 667 and guarantine facilities, which can better promote its policy of distributed evacuation by 668 taking several actions in support of community-based shelter management.

While it is urged amid the ongoing pandemic, as of March 2021, that the shelter plan moves 669 670 to the practice stage, important issues to be addressed in future research remain. The 671 advantages and disadvantages of the arcade buildings of the targeted shopping street against 672 other big shopping malls should be examined. Their differences will include implementability, 673 where the local and small areas covered by the shopping street at the community scale may 674 manifest some strengths. For example, people can access it on foot and, moreover, evacuees 675 may be able to share some feelings of solidarity and concerns about the damage to their 676 residences based on the fact that they all live in the same district. Other topics that should be 677 addressed include: (1) the estimation of opportunity costs incurred by shop owners and examination of their compensation needs⁴; (2) surveys on local people's perceptions of 678 679 infection risk and the use of undesignated shelters as alternatives to designated shelters that 680 may be dependent on demography of the community⁵; (3) simulations on the organizational 681 process of the working staff team and logistics considering the decreased mobility among 682 volunteers due to the pandemic; and, (4) comparative evaluations of the safety of the 683 shopping street shelter against all kinds of possible risks versus the safety of designated 684 shelters.

685

686 Acknowledgements

- 687 We are deeply grateful to Shin Nagata Town Management Company Ltd. and Mr. Masayuki
- 688 Shishida, its former president and currently the auditor of Kobe Nagata TMO Company Ltd., 689 for comments and support.
- 690 Funding
- 691 This work was partly supported by JSPS KAKENHI (Grant No. 20H02272).
- 692

⁴ A survey conducted in the previous research, Kotani et al. [9], demonstrated that 35 % of the shops and restaurants were willing to provide items in their inventories for free, 13 % were willing to provide for a fee, 13 % were willing to provide conditionally, and 39 % were not sure whether to provide. The result indicates the potential of the corporation in question. Another interesting fact is that during the failure of the water supply system after the Great Hanshin-Awaji Earthquake in 1995, a market located near the targeted street supplied its well water to residents, and some of those residents began to shop in this market eventually. Expectations of a long-term relationship may mitigate the difficulty of the compensation issue. Nonetheless, it is important to quantitatively examine the conditions under which an adequate number of shop owners agree to the plan.

⁵ Until August 2021, the level of people's perceptions on infection of COVID-19, especially the one that is consistent with their behaviors, has moved in waves in Japanese society. Meanwhile, there are several factors regarding the use of the targeted shopping-street buildings that could make local people accept the plan naturally. These are as follows: 1) the local context that the buildings were reconstructed after the Great Hanshin-Awaji Earthquake along with the recovery of their community; 2) one of the shopping-street buildings includes the disaster prevention center that stores equipment and materials necessary in an emergency; and, 3) generally speaking, it has been pointed out that people want to evacuate to familiar places when an emergency arises. For example, it was found that Muslim people in a certain city in Japan tended to want to evacuate to a mosque that they visited in their daily lives [20]. Nonetheless, surveys conducted from various viewpoints are necessary.

693 Appendix

694 A. Examples of guidelines on evacuation shelter management under COVID-19

695 Several international and governmental organizations published guidelines in 2020 regarding 696 shelter management. WHO [1] suggests that evacuees maintain a physical distance of at least 697 1 m, use partitions, and be separated by household groups. Depending on their health status, 698 evacuees would be classified into three groups: (i) evacuees without COVID-19 symptoms, (ii) 699 evacuees with COVID-19 symptoms, and (iii) evacuees confirmed to have COVID-19. In 700 addition, vulnerable people and high-risk groups should be separated from other groups and 701 given their own space. Each group is not allowed to interact with other groups. Further, 702 evacuees must use their specific assigned route in evacuation shelters. The groups should also 703 use separate public facilities, such as toilets, water supply, and waste management. 704 Environmentally, evacuation shelters should be frequently cleaned and ventilated to reduce 705 the spread of infection. Since it is difficult to avoid the "Three Cs" (i.e., closed spaces, crowded 706 spaces, close-contact settings) in evacuation shelters, evacuees and staff should use personal 707 protective equipment (PPE), such as masks and hygiene supplies.

708 The guidelines of the Japanese government and an organization [47,48] also indicate that 709 people should avoid the "Three Cs" by maintaining 1–2 meters of physical distance among 710 families in evacuation shelters. At the entrance of a shelter, operators should check evacuees' 711 health status and classify them into (i) infected evacuees, (ii) close contact with the infected, 712 (iii) evacuees who have symptoms, and (iv) general evacuees, including determining who is 713 vulnerable and in need of support. The concepts of separation of the settlement areas, public 714 facilities, and traffic lines, and of cleaning and ventilation, are almost the same as those 715 suggested by WHO [1]. It is emphasized that alcohol-based sanitizers should be located in 716 public spaces, such as at reception, the entrances to each room/staircase/toilet, restaurants, 717 and around places for trash. In addition, each evacuation shelter should prepare 718 approximately 25 hygiene items for evacuees (Table A1(b)). All evacuees and staff should also 719 use PPE, such as masks, face shields, and alcohol-based sanitizers.

720

721 B. Necessary relief supplies during a disaster and pandemic

722 Table A1(a) shows the authors' previously developed list of essential disaster relief supplies 723 [53]; however, this list lacks hygiene supplies for preventing disease transmission. In 724 September 2020, to prepare for natural disasters during COVID-19, the Japanese government 725 published a list of necessary emergency hygiene supplies that evacuation shelters are 726 expected to keep on hand, as shown in Table A1(b) [54]. Nevertheless, the government also 727 recognized that it is not easy for these supplies to be kept sufficiently stocked in shelters, and 728 thus requested citizens take some of their own simple hygiene supplies, such as masks, 729 alcohol-based sanitizer, and wet wipes when evacuating to shelters. Accordingly, it is implied 730 that if a certain percentage of evacuees prepare themselves, the needs of other evacuees

- may be covered by the supplies stocked at the shelter. However, this would not be the case
- for undesignated shelters. Evacuees who use undesignated shelters have to assume that, in
- most cases, they need to procure both basic relief supplies and hygiene supplies.

734

Table A1. Basic relief supplies (a) and necessary hygiene supplies during a pandemic (b)

(a) Basic relief supplies [53]
Water
Food
Powdered milk and nursing bottles for babies
Blankets
Heating pads
Sanitary goods
Diapers
Toilet paper
Toilet bags
Bags for toilet bags
Portable toilets
Partition walls

736

11-) Necessary hy		a alleration of a		- A1
in	I Necessary ny	giene si innile	s during a	nangemic i	541
(12	j nececssury my	Sichic Supplie	Juanngu	punaenne l	<u>J</u> -1

Masks

Alcohol-based hand sanitizers

Thermometers

Non-contact thermometers

Alcohol wipes for cleaning

Disposal towels

Paper towels

Paper bags (for vomiting)

Hand soap

Household detergent for cleaning

Sodium hypochlorite for sanitization

Face shields

Raincoats

Poly gloves

Wrap	S
------	---

Three types of polybags

Zipper bags

Multipurpose baskets

Spray containers

Trash cans with foot pedals

Portable toilets

Cardboard beds

Partition walls

737

738 References

- 739 [1] World Health Organization, Manila: WHO Regional Office for the Western Pacific,
- 740 Disaster evacuation shelters in the context of COVID-19.
- 741 https://apps.who.int/iris/handle/10665/336856, 2020 (Accessed 10 February 2021).
- 742 [2] NHK News, 'Evacuation shelter is not enough,' Disaster and COVID-19 (In Japanese).
 743 https://www3.nhk.or.jp/news/html/20200522/k10012440341000.html, 2020 (Accessed
 744 20 October 2020).
- 745 [3] NHK News, Only 20 % can enter an evacuation shelter? Getting serious about a lack of
 746 evacuation shelter (In Japanese). https://www3.nhk.or.jp/news/special/saigai/select747 news/20200624_01.html, 2020 (Accessed 20 October 2020).
- [4] Cabinet Office, Regarding the further response to COVID-19 in evacuation shelters (In
 Japanese). https://www.fdma.go.jp/laws/tutatsu/items/200407_bousai_jimu1.pdf, 2020
 (Accessed 5 December 2020).
- 751 [5] Nikkei Newspaper, Distributed evacuation-Emerged issued-successive fully booked752 hotels (In Japanese).
- https://www.nikkei.com/article/DGXMZO63598680Y0A900C2CC1000, 2020 (Accessed 5
 December 2020).
- Y. Araki, S. Tsuboi, A. Hokugo, Patterns of emergency shelters in coastal plains a case
 study after the great east Japan Earthquake and Tsunami in Higashi-Matsushima City,
 Jpn. Archit. Rev. 3 (2020) 552–563. https://doi.org/10.1002/2475-8876.12171.
- 758 [7] T. Katada, Recommendation related to evacuation, Japan Society for Disaster759 Information Studies (In Japanese),
- http://www.jasdis.gr.jp/_src/JASDIS_Proposal20200515-1.pdf, 2020 (Accessed 6
 January 2021).
- [8] NHK News, How to deal with COVID-19 and emergency evacuation from now on (In
 Japanese), https://www3.nhk.or.jp/news/special/coronavirus/disaster/, 2020 (Accessed)

- 764 20 October 2020).
- [9] H. Kotani, M. Yokomatsu, H. Ito, Potential of a shopping street to serve as a food
 distribution center and an evacuation shelter during disasters: Case study of Kobe,
 Japan. Int. J. Disaster Risk Reduct. 44 (2020) 101286.
- 768 https://doi.org/10.1016/j.ijdrr.2019.101286.
- [10] N. Taga, University campus for a base of shelter for urban disaster prevention
 preparedness: Note of promising project and coming plan in near future at Fukuoka
 University, Fukuoka Univ. Rev. Technol. Sci. 73 (2004) 121–137 (In Japanese).
- [11] M. Ansary, M. Reja, I. Jahan, Rethinking the public building as post disaster shelters-in
 the context of Old Dhaka, in: Proceedings of the 9th US National and 10th Canadian
 Conference on Earthquake Engineering, 2010.
- [12] H. Etou, H. Fujii, T. Funakura, The role of regional public libraries and assistance system
 for them in catastrophic disaster, vol. 5, The University Bulletin of Chiba Institute of
 Science, 2012, pp. 35–54 (In Japanese).
- [13] M.A. Mohit, R.K. Zahari, M.A. Eusuf, M.Y. Ali, Role of the Masjid in Disaster
 management: Preliminary investigation of evidences from Asia. J. Architect Plann.
 Construct. Manag. 4 (2013) 1-16.
- [14] A.R. Cheema, R. Scheyvens, B. Glavovic, M. Imran, Unnoticed but important: revealing
 the hidden contribution of community-based religious institution of the mosque in
 disasters. Nat. hazards 71 (2014) 2207-2229. https://doi.org/10.1007/s11069-013-10080.
- [15] H. Gotoh, K. Ishino, N. Tamai, M. Takezawa, Consideration on functions of temples for
 evacuation sites against tsunami attack, J. Jpn. Soc. Civil Eng. Ser. B3 (Ocean Eng.) 71
 (2015) I 695–I 700. https://doi.org/10.2208/jscejoe.71.I 695 (In Japanese).
- [16] T. Sasaki, H. Katsumata, Designation of Buddhist temples as emergency place and/or
 evacuation shelters and actual usage during widespread disasters, J. Archit. Plann.
 (Trans. AIJ) 80 (2015) 2221–2229. https://doi.org/10.3130/aija.80.2221 (In Japanese).
- [17] A. Tanaka, K. Kawasaki, Current state and future issues of the development of roadside stations as disaster prevention function-a case study of roadside stations in Fukushima
 Prefecture-, Reports of the City, Planning Institute of Japan, 14 (2016) 236–241 (In
 Japanese), https://www.cpij.or.jp/com/ac/reports/14_236.pdf (Accessed 17 February
 2021).
- [18] A. Hirano, A study on the function of roadside rest area "Michinoeki" in disaster relief
 operation, 6, The Bulletin of Graduate Engineering and Design Studies of Hosei
 University, 2017 (In Japanese), http://hdl.handle.net/10114/13089 (Accessed 17
 February 2021).
- 800 [19] T. Okubo, M. Hayashi, K. Izuno, R. Fukagawa, Y. Satofuka, K. Tateyama, K. Sako, Y.

- 801 Ooka, Utilization of cultural heritage buildings as evacuation spaces near Sendai after 802 the Great East Japan Earthquake, J. Disaster Mitig. Hist. Cities 5(2011) 329-334 (In 803 Japanese), http://r-cube.ritsumei.ac.jp/repo/repository/rcube/2736/dmuch5 h07.pdf. 804 [20] H. Kotani, M. Tamura, J. Li, E. Yamaji, Potential of mosques to serve as evacuation 805 shelters for foreign Muslims during disasters: a case study in Gunma, Japan, Nat. 806 Hazards. (2021). https://doi.org/10.1007/s11069-021-04883-7. 807 [21] A. Ota, K. Inagaki, S. Sadohara, A survey on temporary shelters for stranded victims 808 during disasters in commercial/business districts: Focus on Minato Mirai 21, Yokohama, 809 Report of the City Planning Institute of Japan, 2017 (In Japanese), 810 https://www.cpij.or.jp/com/ac/reports/16 28.pdf (Accessed 1 November 2018). 811 [22] R. Sanuki, E. Satoh, T. Suzuki, T. Yoshikawa, N. Maki, Evaluation of the location 812 potential of commercial facilities as a place of refuge: A case study on facilities 813 providing food in the Kii Peninsula, Jpn. Archit. Rev. 1(2018) 118-128. 814 https://doi.org/10.1002/2475-8876.12023. 815 [23] O. Murao, Y. Iwamoto, Disaster response plans by the convenience stores and their 816 regional contribution map of Kawasaki City, J. Archit. Plann. (Trans. AIJ) 70 (2005) 77–84 817 (In Japanese). https://doi.org/10.3130/aija.70.77_2. 818 [24] H. Kotani, M. Yokomatsu, Environmental transformation after disaster and 819 transfiguration process of practice in a community, J. Jpn. Soc. Civil Eng., Ser. D3 820 (Infrastruct. Plann. Manag.) 70 (2014) | 241–I 254 (In Japanese). 821 https://doi.org/10.2208/jscejipm.70.1_241. 822 [25] H. Kotani, M. Yokomatsu, A role of Ennichi and Jizobon in expanding interaction in a 823 local community – results of a social network survey in Nagata Ward, Kobe City, Reports 824 of the City Planning Institute of Japan, The City Planning Institute of Japan, 2015, pp. 825 91–98 (In Japanese). https://www.cpij.or.jp/com/ac/reports/14-1_91.pdf. (Accessed 1 826 November 2018). 827 [26] H. Kotani, M. Yokomatsu, Quantitative evaluation of the roles of community events 828 and artifacts for social network formation: a multilayer network model of a community 829 of practice, Comput. Math. Org. Theory 25(2019) 428-463. 830 https://doi.org/10.1007/s10588-018-9277-5. 831 [27] E.L. Yee, H. Palacio, R.L. Atmar, U. Shah, C. Kilborn, M. Faul, T.E. Gavagan, R.D. Feigin, J. 832 Versalovic, F.H. Neill, A.L. Panlilio, M. Miller, J. Spahr, R.I. Glass, Widespread outbreak of 833 norovirus gastroenteritis among evacuees of Hurricane Katrina residing in a large "Megashelter" in Houston, Texas: lessons learned for prevention, Clin. Infect. Dis. 834 835 44(2007) 1032-1039. https://doi.org/10.1086/512195.
- [28] I.K. Kouadio, S. Aljunid, T. Kamigaki, K. Hammad, H. Oshitani, Infectious diseases
 following natural disasters prevention and control measures, Expert Rev. Anti Infect.
 Ther. 10 (2012) 95-104. http://doi: 10.1586/eri.11.155.

[29] T. Kawano, Y. Tsugawa, K. Nishiyama, H. Morita, O. Yamamura, K. Hasegawa, Shelter
crowding and increased incidence of acute respiratory infection in evacuees following
the Great Eastern Japan Earthquake and tsunami, Epidemiol. Infect. 144(2016) 787-795.
http://doi.org/10.1017/S0950268815001715.

- [30] K. Izumikawa, Infection control after and during natural disaster, Acute Med. Surg.
 6(2019) 5-11, https://doi.org/10.1002/ams2.367.
- [31] E. Karmarkar, S. Jain, J. Higa, J. Fontenot, R. Bertolucci, T. Huynh, G. Hammer, A.
 Brodkin, M. Thao, B. Brousseau, D. Hopkins, E. Kelly, M. Sheffield, S. Henley, H.
 Whittaker, R.L. Herrick, C-Y. Pan, A. Chen, J. Kim, L. Schaumleffel, Z. Khwaja, E. Epson,
 S.J. Chai, S. Wadford, S. Vugia, L. Lewis, Outbreak of norovirus illness among wildfire
 evacuation shelter populations—Butte and Glenn Counties, California, November 2018.
 Morb. Mortal. Wkly. Rep. 67 (2018) 613-617.
- 851 http://dx.doi.org/10.15585/mmwr.mm6920a1.
- [32] M. Ishiwatari, T. Koike, K. Hiroki, T. Toda, T. Katsube, Managing disasters amid COVID19 pandemic: Approaches of response to flood disasters, Prog. Disaster Sci. 6(2020)
 100096. https://doi.org/10.1016/j.pdisas.2020.100096.
- [33] M. Sakamoto, S. Sasaki, Y. Ono, T. Makino, E.N. Kodama, Implementation of evacuation
 measures during natural disasters under conditions of the novel coronavirus (COVID-19)
 pandemic based on a review of previous responses to complex disasters in Japan. Prog.
 Disaster Sci. 8(2020) 100127. https://doi.org/10.1016/j.pdisas.2020.100127.
- [34] S. Arlikatti, A.S. Andrew, J.M. Kendra, C.S. Prater, Temporary sheltering, psychological
 stress symptoms, and perceptions of recovery. Nat. Hazards Rev. 16(2014), 04014028.
 https://doi.org/10.1061/(ASCE)NH.1527-6996.0000166.
- [35] World Health Organization, Disaster evacuation shelters in the context of COVID-19.
 https://apps.who.int/iris/bitstream/handle/10665/336856/WPR-DSE-2020-033 eng.pdf?sequence=1&isAllowed=y, 2020 (Accessed 10 February 2021).
- [36] M. Kako, M. Steenkamp, B. Ryan, P. Arbon, Y. Takada, Best practice for evacuation
 centres accommodating vulnerable populations: a literature review, Int. J. Disaster Risk
 Reduct. 46(2020) 101497. https://doi.org/10.1016/j.ijdrr.2020.101497.
- 868 [37] Asahi Newspaper, Shelters crammed with evacuees-30 people spent the night in cars, 869 enduring cold weather in Otsuchi Iwate 21 Mar (In Japanese),
- 870 http://www.asahi.com/special/10005/TKY201103200271.html, 2011 (Accessed 20
 871 October 2020).
- 872 [38] Cabinet Office, A report of the Kumamoto Earthquake (In Japanese),
- http://www.bousai.go.jp/updates/h280414jishin/pdf/h280414jishin_37.pdf, 2016
 (Accessed 5 January 2021).
- [39] Kumamoto City, Administrative response to the 2016 Kumamoto earthquake: Lessons-learned from a failure (In Japanese),

877	https://www.city.yokohama.lg.jp/shikai/kiroku/katsudo/h30/gensai2018-
878	2019.files/0002_20190311.pdf, 2019 (Accessed 5 January 2021).
879	[40] Cabinet Office, Regarding facilitation of evacuation in the future typhoon based on
880	typhoon No. 10 in 2020 (In Japanese),
881	http://www.bousai.go.jp/pdf/enkatsu_toushi.pdf, 2020 (Accessed 6 January 2021).
882	[41] NHK News, Spread infection? Evacuation to hotels-at the scene of disaster issued the
883	highest level of warning during the Typhoon No. 10 (In Japanese),
884	https://www3.nhk.or.jp/news/html/20200908/k10012605941000.html, 2020 (accessed
885	5 January 2021).
886	[42] Nagasaki Newspaper, Typhoon No. 10-133 evacuation shelters were full, exceeded
887	expectations-verification required- (In Japanese),
888	https://this.kiji.is/676240188827141217?c=39546741839462401, 2020 (Accessed 15
889	February 2021).
890	[43] Kobe City, Outline of the urban redevelopment projects after disasters in the South of
891	the Shin-Nagata Station (In Japanese),
892	https://www.city.kobe.lg.jp/a29387/shise/kekaku/jutakutoshikyoku/redevelop/kobe-
893	kh/susume/nagata/index.html, 2018 (Accessed 8 January 2021).
894	[44] Ministry of Internal Affairs and Communications, Statistics Bureau. 2015 National
895	census: A result of population and other basic sets (In Japanese).
896	http://www.stat.go.jp/data/kokusei/2015/, 2015 (Accessed 17 December 2017).
897 898 899 900 901	 [45] Hyogo Prefecture, Hazard map: Local response information to storm and flood (In Japanese). http://www.hazardmap.pref.hyogo.jp/hazmapap/map/map.asp?dtp=51&mpx=135.198 46501261037&mpy=34.68658881669752&mps=20000&bsw=1440&bsh=757, 2021 (Accessed 23 March 2021).
902	[46] W. Zingg, T. Haidegger, D. Pittet, Hand coverage by alcohol-based handrub varies:
903	Volume and hand size matter, Am. J. Infect. Control 44(2016) 1689–1691.
904	https://doi.org/10.1016/j.ajic.2016.07.006.
905	[47] Cabinet Office, Reference for the response to COVID-19 in evacuation shelters (In
906	Japanese). http://www.bousai.go.jp/pdf/colonasanko.pdf, 2020 (Assessed 5 December
907	2020).
908	[48] Rescue Stock Yard, COVID-19 Infection: A helpful support book for life in evacuation,
909	third ed. (In Japanese). http://jvoad.jp/wp-
910	content/uploads/2021/02/db1b9a713e3816a3037c96d4d1539390.pdf, 2020 (Accessed
911	3 March 2021).
912	[49] Small and Medium Enterprise Agency. Survey report on the 2018 actual condition of
913	shopping streets: Overview (In Japanese).
914	https://www.chusho.meti.go.jp/shogyo/shogyo/2019/190426shoutengaiA.pdf?201201,

- 915 2019 (Accessed 5 January 2021).
- 916 [50] M. Kanayama, Article 698 Emergency administrative management, in: Taniguchi, T. and
 917 M. Kai. (Eds.), New annotated edition-The Civil Code 18, Credit 9, Yuhikaku Publishing
 918 Inc., Japan, 1991, pp.236-245 (in Japanese).
- [51] S. Yonemura, Catastrophes and the law of compensation for damages, Special issue on
 earthquake disaster and civil law, Quarterly Jurist. 6(2013) 64-72 (in Japanese).
- [52] K. Hirata, Office administration, Article 697-702, in: A. Kubota (Eds.), New annotated
 Civil Code 15, Credit 8, Article 697-711, Yuhikaku Publishing Inc., Japan, 2017, pp.42-47
 (in Japanese).
- 924 [53] T. Kajihara, M. Yokomatsu, H. Ito, W. Wisetjindawat, Inter-ward, risk-diversified
- allocation model for storing of disaster relief foods, J. Nat. Disaster Sci. 37(2016) 11–33.
 https://doi.org/10.2328/jnds.37.11.
- 927 [54] Cabinet Office, Guideline for evacuation shelter establishment and operation training928 considering COVID-19 response (In Japanese).
- 929 https://www.fdma.go.jp/laws/tutatsu/items/200907tuuti.pdf, 2020 (Accessed 5
- 930 January 2021).

Designing the Building Space of a Shopping Street to Use as a Disaster Evacuation Shelter During the COVID-19 Pandemic: A Case Study in Kobe, Japan

Highlights:

- This study considers a plan of disaster evacuation during a pandemic. •
- The idea of utilizing shopping-street buildings as a temporary shelter is extended. •
- A shopping-street shelter in Kobe, Japan, can accommodate 1,194 evacuees. •
- A method of designing shelter space is shown with the classification of evacuees. •
- The liability issue of secondary infection at the shelter is examined. •

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: