
Please consider the environment before printing this slide deck
Icon from all-free-download.com, Environmental icons 310835, by BSGstudio, license CC-BY

This presentation is licensed under

a Creative Commons Attribution 4.0 International License 

Coding culture at EEG
Tools and best practices of scientific software development

AG-strategy meeting
Monday, January 17, 2022

Philip Hackstock
Research Software Engineer

Scenario Services Team - Energy, Climate, and Environment Program (ECE)
International Institute for Applied Systems Analysis (IIASA)

Laxenburg, Austria

https://all-free-download.com/free-vector/download/environmental-icons_310835.html
http://buysellgraphic.com/
https://creativecommons.org/licenses/by/4.0/


Purpose of this workshop

2

• Provide a starting point for establishing 'coding culture'

A set of guidelines, tools and processes to make your life better

Focus on science, not fighting with the tools

Better and easier collaboration, internal and external

• This is not going to be a deep dive into topics

• It should be a reference and starting point for you

• Technical terms to google will be underlined

• Provide useful links to videos and articles

• Teach yourself and teach others



Background about myself

3

• Graduated with a master's in physics from TU Wien in 2020

Worked at CERN & MedAustron

Both related to software

• Started at IIASA in March 2021 as a research software engineer

• Part of the Scenario Services Team

• Mainly work in python



Content of the workshop

4

• 3x45min with 15 minutes of breaks

• Git

Basics of version control software

• GitHub

How to build software together

Tools & workflows

• Best Practices, common problems & solutions



Acknowledgements

5

Based on material by:

Can be found here: teaching.ece.iiasa.ac.at

Daniel Huppmann 
(@danielhuppmann)

Paul Natsuo Kishimoto 
(@khearu)

https://teaching.ece.iiasa.ac.at
https://github.com/danielhuppmann/
https://github.com/khaeru/


Part 1

6

• What is it and why do we want to use it?

• Basics principles and terms

• Interaction with git

• Commit messages, special files & branches

Git Basics



What is git and why is it useful?

7
Source: https://phdcomics.com/comics/archive.php?comicid=1531

https://phdcomics.com/comics/archive.php?comicid=1531


What is git and why is it useful?

8

• Git is a (distributed) version control system

• Built for collaboration

• Several hosing providers (GitHub, GitLab) provide additional tools

User interfaces for code review using pull requests

Automated tasks

Issue tracking and discussion, kanban boards, …



A quick introduction to version control using git

9

• Key differences between git version control vs. folder synchronization (e.g. 
Dropbox, Google Drive)

You define the relevant unit or size of a change by making a commit
Adding comments to your commits allows to attach relevant info to your 
code changes
Branches allow you to switch to a "parallel universe" within a version 
control repository
It’s a decentralized version control tool that supports offline, parallel 
work
There is a well-defined routine for merging developments from parallel 
branches

• Git is great for uncompiled code and text with simple mark-up
Use other version control tools for data, presentations, compiled 
software, ...



How to interact with git

Before we dive in

10

• 2 options

'classic' command line

Graphical user interface e.g. GitKraken, GitHub Desktop, ...

• Use GitKraken for this demonstration

• Get GitKraken pro with academic license

GitHub Teacher Toolbox

• Need to learn git vocabulary: push, pull, branch, fork, remote, add, 
commit, etc...

https://education.github.com/toolbox


Git demonstration

11

Nothing has ever gone wrong in a live demo...

So let's do one! 



How to style them so they are useful

Commit messages

12

• Useful for yourself & your collaborators

• Short title (72 characters max)

• Start with a verb in imperative, 'Add', 'Change', 'Fix', etc...

• Use the body for details

• Details can be found here

https://gist.github.com/robertpainsi/b632364184e70900af4ab688decf6f53


Special files in git folders

13

• README

Explains what the repository contains

How to use the code

Displayed by GitHub

• .gitignore

Defines patterns for files that git will not track

.gitignore generator https://www.toptal.com/developers/gitignore

https://www.toptal.com/developers/gitignore


What is a branch, why should you branch and when?

Branching models

14

• Branch is a copy of a repository

• Main branch should always be working

• Don't interfere with colleagues' work

• When developing new features things can (will) break

• Rule of thumb:

One feature per branch

Not always feasible but keep it as small as possible

• Two main models: git flow (details) and GitHub flow (details)

https://nvie.com/posts/a-successful-git-branching-model/
https://docs.github.com/en/get-started/quickstart/github-flow


15

Questions about git



Part 2

16

• General overview

• GitHub flow

• CI/CD with GitHub Actions & Unit testing

• Open-source licenses

• GitHub organizations

GitHub – How to use it 



GitHub flow

17

More details on the GitHub documentation: https://docs.github.com/en/get-started/quickstart/hello-world#creating-a-branch

https://docs.github.com/en/get-started/quickstart/hello-world


An example timeline

Issue & Pull request workflow

18

1. Alice finds & creates an issue

2. Alice creates a new local branch and pushes updates

3. Alice opens a PR, self-assigns and chooses Bob as a reviewer

4. Bob requests some changes

5. Alice implements these changes

6. Bob approves

7. Alice merges & deletes the branch

2.

3. 4. 5. 6.

7.



How to review a pull request

Demonstration on GitHub

19

https://github.com/phackstock/eeg_demonstration

https://github.com/phackstock/eeg_demonstration


Be kind and respectful in collaboration, code review and comments

Programming collaboration etiquette

20

• Collaborative scientific programming is about communication, not code...

• Keep in mind that discussions via e-mail, chat, pull requests comments, 
code review, etc. lack a lot of the social cues that human interaction is built 
upon

• If there are two roughly equivalent ways to do something
and a code reviewer suggests that you use the other approach...

Just do it their way if there is no good reason not to – out of respect for 
the reviewer and to avoid getting bogged down in escalating discussions

• Give credit generously to your collaborators and contributors!

This slide was minimally adapted from slide 17 of Open-Source Energy System Modeling, Lecture 2 by Daniel 
Huppmann (https://data.ene.iiasa.ac.at/huppmann/open-energy-modelling-spring-2021/lecture-2.pdf)

https://data.ene.iiasa.ac.at/huppmann/open-energy-modelling-spring-2021/lecture-2.pdf


Automating repetitive tasks

GitHub Actions

21

• Workflow instructions to be run on GitHub's 
servers

• An implementation of continuous integration 
CI & continuous deployment CD

• Setup as event triggered system

• Only free for public repos

• Defined in yaml files

• Useful for automated testing, code-style, 
publishing to pypi, building documentation, …

• Details in the github action documentation Source: https://github.com/danielhuppmann/lecture-spring-
2021/blob/main/.github/workflows/pytest.yml

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/danielhuppmann/lecture-spring-2021/blob/main/.github/workflows/pytest.yml


Unit testing

22

• Write pieces of code that test one specific aspect

• Run them periodically to make sure you did not introduce any 
breaking changes

• Automate them using GitHub Actions to ensure that only code that 
passes tests is pushed

• Different frameworks to choose from (unittest, pytest, etc...)

• Check code coverage -> no guarantee for correct code though

https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/6.2.x/


Why do we need them and where do we start?

Licenses

23

• Per default creative work is copyrighted

• We need to attach an open-source license to allow people to use it

• Two main types

Permissive: people are free to do whatever

Copy left: All modifications must be redistributed under the same 

open license

• choosealicense.com is a helpful resource to find the right one

• Add a file called LICENSE to your GH repo

https://choosealicense.com/


A useful way to collect all your code

GitHub organization

24

• Code is hosted under a GitHub organization

• Teams can be created to easily collaborate

Different levels of permissions (read, write, admin)

• GitHub actions & other premium features are only free on public repos

• An organization can pay so that GitHub Actions are available for 

private repositories



Examples of bigger projects

25

• Fork & pull request workflow

• Examples: pyam, nomenclature

https://github.com/iamconsortium/pyam
https://github.com/iamconsortium/nomenclature


26

Questions about GitHub



Part 3

27

• Type hints & docstrings

• Formatters & linters

• Packaging

Best practices



Type hints & docstrings

28

• Python now supports type hints (example from nomenclature)

• Purely informational, does not affect the program

• Mypy does type checking

• Integrates with vs code and other IDEs

• Docstrings for functions & classes

Automated generation possible

Different styles (details)

• Turn doc strings into full documentation with sphinx & host on readthedocs

• pyam and nomenclature example

https://github.com/IAMconsortium/nomenclature/blob/main/nomenclature/core.py
http://mypy-lang.org/
https://stackoverflow.com/questions/3898572/what-are-the-most-common-python-docstring-formats
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://pyam-iamc.readthedocs.io/en/stable/
https://nomenclature-iamc.readthedocs.io/en/latest/


Better code-style for better programs

Formatting & linting

29

• Formatting: making sure the code adheres to standards (PEP8)

• Linting: checking for syntax and style problems

• Number of tools for both (black, etc...)

For formatting: black

For linting: Flake8

• Can be integrated into an IDE

• Can be integrated into GitHub using stickler

Only free for public repos

https://www.python.org/dev/peps/pep-0008/
https://black.readthedocs.io/en/stable/
https://stickler-ci.com/


How to make software installable

Packaging

30

• Pseudo-installable with requirements.txt

• Use of a virtual environment and pip freeze

• Python packaging is a bit of a mess

• Different ways to do it with: setup.py, setup.cfg, pyproject.toml

Example: nomenclature

• Using poetry is an easy solution

• Publish your package to pypi so that it can be 'pip installed'

https://github.com/iamconsortium/nomenclature
https://python-poetry.org/
https://pypi.org/


Further information

Resources

31

• Git & GitHub:

Official GitHub documentation

Two example repos, eeg_demonstration, eeg_live_demonstration

• Scientific software development best practices:

teaching.ece.iiasa.ac.at, Daniel Huppmann's and Paul Natsuo Kishimoto's 
lectures

• Youtube channels:

ArjanCodes, mCoding

• Books:

High-performance python

https://docs.github.com/en/get-started/quickstart
https://github.com/phackstock/eeg_demonstration
https://github.com/phackstock/eeg__live_demonstration
https://teaching.ece.iiasa.ac.at/
https://www.youtube.com/c/ArjanCodes/featured
https://www.youtube.com/c/mCodingWithJamesMurphy
https://www.oreilly.com/library/view/high-performance-python/9781492055013/


Please consider the environment before printing this slide deck
Icon from all-free-download.com, Environmental icons 310835, by BSGstudio, license CC-BY

This presentation is licensed under

a Creative Commons Attribution 4.0 International License 

Thank you very much for your attention
Thanks to Daniel Huppmann (@danielhuppmann) and Paul Natsuo Kishimoto
(@khaeru) for sharing their teaching material

Philip Hackstock
Research Software Engineer

Scenario Services Team - Energy, Climate, and Environment Program (ECE)
International Institute for Applied Systems Analysis (IIASA)

Laxenburg, Austria

https://all-free-download.com/free-vector/download/environmental-icons_310835.html
http://buysellgraphic.com/
https://creativecommons.org/licenses/by/4.0/
https://github.com/danielhuppmann
https://github.com/khaeru

