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Abstract 
 
The impact of climate change on human health is not distributed evenly with some demographic groups 
e.g. older adults, people with a low socio-economic status, city inhabitants being more susceptible to 
increasing temperatures. High-resolution spatial projections of population vulnerability are however 
scarce. Using Bayesian Model Averaging (BMA), this paper downscales population structure to intra-
urban level for the case study of Madrid. First, empirical data from the municipal register of inhabitants 
are used to map where vulnerable groups reside. Demographic heterogeneity is captured through 
disaggregating the input data by age groups (below and above 65 years), sex and educational 
attainment (as a proxy for socio-economic status). Second, BMA is employed to project shares of these 
groups to 2050, under selected Shared Socioeconomic Pathways. 

The resulting distributions of population groups and their projected changes are relevant for local 
decision-making regarding adaptation strategies to decrease the health burden heat stress might 
impose in the future. 
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1. Introduction 
The direct impact of heat stress associated with the chaging climate manifests through increasing 
disease (morbidity) and premature death (mortality) rates (Ebi et al., 2018; Gasparrini et al., 2017; 
Honda et al., 2014). Heat waves are considered the deadliest extreme weather events between 1991 
and 2015 in Europe (EEA, 2017; Kovats et al., 2014). In particular, urban populations face amplified 
health risks to the elevated temperatures in the built environment. The urban heat island (UHI) effect, 
whereby urban areas are generally warmer that the surrounding suburban and rural areas, increases 
heat risk and has direct implications for human health (Heaviside et al., 2017). With urbanization being 
projected to increase drastically, reaching 83.7% by 2050 in Europe (European Commission), the future 
health risks from exposure to heat are expected to elevate in a warming climate.  

Heat stress affects population sub-groups disproportionately. Epidemiological studies find that 
population groups with certain socio-economic and demographic characteristics such as age, sex, 
education, and income are associated with increased risk of mortality and morbidity during heat events 
(Conlon et al., 2020). Older adults (aged ≥ 65 years), children (aged < 5 years), infants (aged <1 
year), women or those with low socio-economic status or pre-existing health conditions are more 
vulnerable to the health risks of climate change (Basu, 2009; Calleja-Agius et al., 2021). It is also 
expected that health vulnerability decreases with higher degrees of education (Lutz et al., 2014; 
Muttarak and Lutz, 2014). Research on the impacts of heat on health however consists mostly of studies 
carried out at the regional, national or city level. Employing these coarse resolutions may mask 
differences in vulnerabilities of certain population subgroups. Ascertaining how, for example certain age 
groups or socio-economic statuses differ in the risk of heat related mortality and morbidity is relevant 
for estimating future health impacts and effective planning of adaptation measures in urban areas 
(Arbuthnott et al., 2016). Assessing and projecting demographically differentiated vulnerability are  
essential to improve our understanding of current and future climate risks from heat stress (Muttarak, 
2021).  

To address the research gaps related to scale (Gao, 2017; Jones and O’Neill, 2016; Wear and 
Prestemon, 2019; Zoraghein and O'Neill, 2020) and demographically differentiated vulnerabilities 
(Basu, 2009; Calleja-Agius et al., 2021; Conlon et al., 2020; Jurgilevich et al., 2017; Muttarak, 2021; 
Rohat, 2018), this paper provides a framework for quantifying differential vulnerability based on 
demographic variables at very high resolution (census tract level – approximately 2400 observations ) 
for the case study City of Madrid. Spatial and temporal projections using Bayesian model averaging 
(BMA) are developed in line with three scenarios of the Shared Socioeconomic Pathways (SSPs). Here, 
educational attainment is used as a proxy for socio-economic status as education is considered a good 
indicator, especially in health studies (Winkleby et al., 1992). This paper advances on research gaps 
highlighted in literature with 1) an application of innovative, advanced methods to 2) for the first time, 
include demographically differentiated vulnerability to climate risk assessments by preserving the 
heterogeneity of relevant population groups by age, sex and education and 3) by providing novel 
evidence on downscaled population projections for Madrid. This research framework is applicable to 
other locations and at different scales. However, the results are most useful at the highest resolution 
for which input data are available, so that policy making can take into consideration the specificities of 
different areas within the city.  

Socioeconomic scenarios play a pivotal role in the assessment of heat stress impact on human health 
as well as in the design of adaptation policy responses (Crespo Cuaresma, 2017). The SSPs are a set 
of five coherent narratives, describing plausible future changes in demographics, human development, 
economy and lifestyle, policies and institutions, technology, and environment and natural resources 
(O’Neill et al., 2017). The demographic component of the SSPs provides a powerful resource for 
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studying population dynamics according to different assumptions about future trends in fertility, 
mortality and migration. Age, sex and education are important sources of population heterogeneity and 
their changing composition is directly relevant for vulnerability reduction and adaptation to climate 
change (KC and Lutz, 2017). In this paper we select three of the five SSP narratives (i.e. SSP1, SSP2 
and SSP4) for the vulnerability-relevant spatial population projections. The SSP2: middle of the road 
scenario combines all countries medium fertility, mortality and migration and the Global Education 
Trend (GET) scenario. It is considered to describe the population dynamic trends of the recent past 
and it assumes similar future trends. The SSP1: sustainable development scenario assumes investments 
in health and education, and generally decreasing fertility and mortality that lead to a relatively low 
global population. SSP1 is considered the “best case scenario” and it has been selected because, 
compared to other scenarios, it features low challenges for climate mitigation and adaptation. By 
contrast, SSP4 describes a world of high inequality with increasing stratification between the well-
educated and internationally connected population subgroups and the poorly educated who work in 
labor intensive industries. Regarding adaptation, this narrative contrasts the most with SSP1, featuring 
high challenges for climate change adaptation due to persistent poverty and inequality trends 
(Hausfather, 2018).  

The remainder of the paper is organized as follows: Section 2 describes the methodological approach 
based on Bayesian model averaging (BMA). Section 3 outlines the input data and empirical analysis; 
Section 4 presents the preliminary results and Section 5 concludes.  

 

2. Methods 
This paper provides a robust framework for modelling and projecting population dynamics with high 
granularity at the intra-urban level. BMA is used to assess the driving factors of differences in age 
structure and education for males and females and project their changes over time, following the three 
different SSPs: SSP1 – the sustainable development pathway, SSP2 – middle of the road and SSP4 – 
the inequality pathway.  

The research proceeded in two steps. First, empirical data from the municipal register of inhabitants 
were used to analyze the correlates of the share of two age groups (25 to 64 years and 65+ years old) 
separately for males and females and the share of males and females with primary, secondary and 
tertiary educational attainment. For each dependent variable (e.g., the share of women aged 25-64 
with tertiary education in 2020) a large set of explanatory variables were evaluated by BMA. Explanatory 
variables are represented by weighted fractions of fertility, mortality and internal migration from the 
baseline year 2010, education variables from the previous time step (i.e., if the dependent variable was 
the share of women with tertiary education in 2020, then the explanatory variables were shares of 
primary, secondary and tertiary education from 2010) and a series of district dummy variables (see 
Dummy variables subsection under Input data for BMA), as well as interaction terms among these 
covariates. Using BMA and data from 2010 structured by age, sex and education, we derived projections 
for 2020 which were in turn compared with the observed data for 2020 to assess model performance 
(see Baseline subsection under Analysis).  Second, we developed decadal projections of differential 
vulnerability for Madrid, until 2050 for the three SSPs. 
 
Bayesian Model Averaging (BMA) 
The literature is ambiguous regarding the set of explanatory variables that should be included in 
modelling the share of different populations groups (i.e., age, sex and educational attainment groups) 
over time. Thus, a problem of model uncertainty arises, concerning the explanatory variables that 
should be included in the model and how to perform inference in the presence of uncertainty about the 
nature of the effect of the explanatory covariates. BMA addresses this issue by explicitly integrating 
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this source of uncertainty in the modeling. With a linear model structure (1) where y is the dependent 
variable, X is the matrix of independent variables, αϒ is a constant, βϒ are the coefficients and ε is a 
normal error term with variance σ2, BMA estimates models of all possible combinations of explanatory 
variables in X and constructs a weighted average over them based on their posterior model probabilities 
(Zeugner, 2011).  

y = αϒ + Xϒ βϒ + ε ε ~ N(0, σ2)    (1) 

This can be done with a large size of X. If X contains k potential variables, BMA will estimate 2k variable 
combinations, thus 2k models contained in the model space, formed by all specifications Mϒ of the type 
given by (1) that can be constructed. The model weights for this averaging stem from posterior model 
probabilities that arise from Bayes’ theorem: 

𝑝𝑝�𝑀𝑀𝛾𝛾�𝑦𝑦, 𝑋𝑋� =  
𝑝𝑝�𝑦𝑦�𝑀𝑀𝛾𝛾, 𝑋𝑋�𝑝𝑝�𝑀𝑀𝛾𝛾�

𝑝𝑝�𝑦𝑦�𝑋𝑋�
=  

𝑝𝑝�𝑦𝑦�𝑀𝑀𝛾𝛾, 𝑋𝑋�𝑝𝑝�𝑀𝑀𝛾𝛾�

∑ 𝑝𝑝�𝑦𝑦�𝑀𝑀𝑠𝑠, 𝑋𝑋�𝑝𝑝(𝑀𝑀𝑠𝑠)2𝑘𝑘
𝑠𝑠=1

  (2) 

Bayesian approaches differ from frequentist methods, among other features, through the existence of 
model priors. The model prior reflects prior knowledge or beliefs on the suitability of certain 
specifications and is elicited by the researcher before looking into the data (y, X). Conducting an 
estimate of the effect of an explanatory variable or set of explanatory variables on y in the presence of 
model uncertainty implies evaluating the posterior distribution given by Bayes’ theorem (2), where 
𝑝𝑝�𝑦𝑦�𝑀𝑀𝛾𝛾, 𝑋𝑋� is the posterior distribution of y conditional on specification Mϒ and p(Mϒ) is the prior model 
probability.  

This paper employs Bayesian projection methods that quantitatively describe the narratives of the three 
SSPs (see subsection on Model Projections and SSP integration as prior knowledge) to project future 
trajectories of age, sex and education structure. The importance of different variables in explaining the 
data is represented in the posterior inclusion probabilities (PIP) which is the sum of posterior model 
probabilities (PMPs) for all the models wherein an explanatory variable was included. The PMP is the 
product of the marginal likelihood of the model (i.e. the probability of the data given model Mϒ) and 
the prior model probability (Crespo Cuaresma, 2021).  

This Bayesian framework completes the sampling model with a prior distribution for parameters in Mϒ, 

namely α, β and σ (Fernández et al., 2001). The standard choice for BMA applications is to use an 
improper non-informative prior for the variance of the error term σ and prior over the slope coefficients 
in the parameter vector βϒ given by Zellner’s g-prior (Zellner, 1986). Zellner’s g-prior mimics the 
structure of the variance-covariance matrix of the ordinary least squares, scaled by the g parameter 
(Crespo Cuaresma, 2021). A small g in the model setup implies little prior coefficient variance, thus the 
researcher is conservative in assuming that the coefficients are indeed zero. In contrast, a large g 
implies that the researcher is very uncertain that the coefficients are zero. Prior model probabilities can 
be elicited by assuming a flat or uniform prior. A flat prior implies a model probability of p(Mϒ) = 2-k 
with a prior expected model size of k/2, that is very informative on model size (Zeugner, 2011). To 
overcome this issue, Ley and Steel (2009) propose a binomial-beta hyperprior for the inclusion of 
explanatory variables in a given model leads to flexible distributions  for model size with uninformative 
priors on the number of explanatory variables (Ley and Steel, 2009).  

Here, we use Bayesian model sampling and averaging (bms) algorithms to run BMA projections for 
population structure based on age groups, sex and educational attainment. The preliminary results are 
based on 10 000 iterations after 1000 burn-ins for the test runs. For the final runs, we will use 10 000 
burn-ins and five million iterations. We used the benchmark prior suggested by Fernandez et al., 2001 
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where g=max(N, k2), N being the number of observations and k the number of covariates. For SSP1, 
SSP2 and SSP4 integration we will use suitable assumptions about the overall development of 
demographic and socioeconomic variables which correspond to the narratives of these scenarios. 
Computations underlying this paper are performed in the statistical environment of R, version 3.6.1. 
 
Model projections and SSP integration 
Climate change research often employs scenarios to understand long-term consequences of near-term 
decisions allowing to explore different parallel futures in the context of uncertainty. Furthermore, 
scenarios provide a common basis for exploration of climate impacts and adaptation options, playing a 
pivotal role in the integration of different systems (Riahi et al., 2017). The latest generation of global 
development scenarios focuses on uncertainty in future societal conditions and how this can be 
combined with climate change projections and economic growth and population development 
assumptions. The so-called Shared Socioeconomic Pathways (SSPs) describe plausible alternative 
changes in demographic, economic, technological, social, governance and environmental aspects of 
societal development. They include qualitative descriptions or narratives of broad development trends 
as well as quantification of key variables (O’Neill et al., 2017). The three SSP narratives selected for 
this paper are summarized below, based on their general description in O’Neill et al. (2017) and the 
population development outlined in KC and Lutz (2017). 
 
SSP1: Sustainability – taking the green road  
The world shifts gradually towards a sustainable path with a focus on sustainable development within 
the perceived environmental boundaries. Cooperation and collaboration between local, national and 
international governments and organizations, the private sector and civil society leads to slow but 
pervasive management of the global commons. Education and health investments accelerate the 
demographic transition leading to a low global population due to the implied low mortality and an 
increase in general educational attainment, especially for women. The emphasis is shifting from 
economic growth to human wellbeing and quality of life. Migration levels are assuming to be medium. 
This scenario implies low challenges to both mitigation and adaptation 
SSP2: M iddle of the road  
This world does not shift markedly from the historical patterns. Most economies are politically stable, 
while development and income growth proceed unevenly, with some countries making relatively 
good progress while others fall short of expectations. Environmental systems continue to experience 
degradation although there are some improvements which lead to a decline in the overall intensity 
of energy and resources. In term of demographic development, this scenario combines all countries 
medium fertility with medium mortality, medium migration and the Global Education Trend (GET) 
education scenario. Moderate challenges are assumed for both mitigation and adaptation.  
SSP4: Inequality – a road divided 
Increasing disparities in economic opportunity and political power accompanying with highly unequal 
investments in human capital lead to increasing inequalities and stratification across and within 
countries. The gap widens between the well-educated and internationally connected social groups 
that contribute to knowledge- and capital-intensive sector, and a fragmented collection of low-
income and poorly educated population groups who work in low-tech industries. Current fertility 
patterns do now change markedly from historical patterns, hence countries with high fertility today 
will continue a similar trajectory whereas countries with low fertility will also maintain a comparable 
pattern. Also, high fertility countries are expected to see high mortality rates while others have 
medium mortality. Migration is assumed to be medium for all countries. This world is assumed to 
face low challenges for mitigation and high challenges for adaptation.  
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We chose to focus on these three scenarios because we want to compare different vulnerability aspects 
and their evolution in time. We ask what is the difference between following the current trajectory 
(SSP2), compared with the “best case scenario” (SSP1) and the high inequality scenario (SSP4). SSP4 
was selected as the counterpart scenario over SSP5: fossil-fuel development because the latter includes 
very high radiative forcing levels, implying an unprecedented fivefold increase in coal use by the end 
of the century, which are deemed increasingly implausible (Hausfather and Peters, 2020). 
 
 
 
 

3. Empirical Analysis 
 
Data 
The data used for this analysis are available at census tract level (approximately 2400 observations) 
from the municipal register in Madrid, for 2010 and 2020. The data are divided into the following 
subcategories: 5-year age groups (e.g. 0-4, 5-9, etc.) from 0 to 100+ for male, female and total 
population and 13 educational attainment categories (educational attainment categories are translated 
from Spanish and listed in Table 1). Education data are available for male, female and total population 
above the age of 25.  

Mortality, fertility and migration data were obtained from the statistical office of Madrid. Mortality rate 
data for males and females are available between the years 1975 to 2019 at city level (not census tract) 
for 11 age categories (infant mortality – below 1 year-old, 1 to 9, 10 to 19, 20 to 29, 30 to 39, 40 to 
49, 50 to 59, 60 to 69, 70 to 79, 80 to 89 and 90 to 99). Fertility data are classified into nine age 
categories for women below the age of 15, 15 to 19, 20 to 29, 30 to 34, 35 to 39, 40 to 44, 45 to 49 
and above 50, from 1975 to 2019. Census tract weighted mortality and fertility from 2010 have been 
recalculated for the age groups of interest and included in the analysis. Internal migration data between 
the 21 districts of Madrid are available for 2018. Census tract weighted migration fractions have been 
computed separately for males and females and for the education and age groups of interest and 
included in the analysis. 
 
 
Input data to BMA 
This methodological framework can be used for any other city. However, the accuracy of such a study 
is highly dependent on the granularity of data available. To facilitate the applicability of this framework 
in other locations, the structure of the Spanish education system was coded according to the 
International Standard Classification of Education (ISCED).  

Education (ISCED codes) 
ISCED belongs to the family of economic and social classifications of the United Nations, which are 
applied in statistics to facilitate assembling, compilation and cross national comparability of data. ISCED 
has been designed to serve as framework to classify national educational attainment and resulting 
qualifications into internationally agreed categories. There are nine ISCED levels, from ISCED level 0 
and up to ISCED level 8 (UNESCO, 2011). Table 1 outlines the coding of the variables from the Spanish 
education system in which the data were originally recorded to ISCED levels. 
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Table 1. Correspondence between Spanish education systems and ISCED codes 

No. Education categories in raw data ISCED 

1. Illiterate ISCED 0 

2. No education ISCED 0 

ISCED 0 or early childhood education refers to early childhood programmes that have an intentional education component 
within an institutional context and aim to develop socio-emotional skills for later participation in school and society. 

3. Incomplete primary education ISCED 1 (incomplete) 

ISCED 1 or primary education is part of compulsory education and typically designed to provide students with literacy and 
numeracy while establishing a foundation for learning and understanding core areas of knowledge. Main criteria for ISCED 1 
is systematic instruction in fundamental knowledge, skills and competences, usually between the age of 5 and 7 with 
instruction organized typically by one main class teacher. 

4. Elementary bachelor graduate ISCED 2 

5. Professional formation, first degree ISCED 2 

ISCED 2 or lower secondary education is designed to build upon learning outcomes in ISCED 1. It is characterized by a 
transition to more subject oriented instruction for pupils entering this category at the age 10 to 13. 

6. Professional formation, second degree ISCED 3 

7. Superior bachelor graduate ISCED 3 

8. Other medium degrees ISCED 3 

ISCED 3 or upper secondary education is the final stage of general or vocational training. It is characterized by more 
differentiated programmes with an increased range of options and streams and is typically designed to prepare for tertiary 
education. Pupils enter this category usually between the age of 14 and 16. 

9. University School Diploma (e.g. BA, B.Sc.) ISCED 6 

ISCED 6 refers to Bachelor’s or equivalent degrees and its duration typically varies between 3 to 4 years. This level of 
education, though often theoretically oriented is designed to provide participants with intermediate academic and/or 
professional knowledge, skills and competencies, leading to a first degree or equivalent qualification. 

10. Architecture and Technical Engineering ISCED 7 

11. University degree (e.g. MA, M.Sc.) ISCED 7 

12. Non-university higher studies ISCED 7 

ISCED 7 is the Master’s degree or equivalent with a duration typically varying from 1 to 4 years when following ISCED level 
6 and 5 to 7 years when following ISCED level 3 directly.Provides advanced academic and/or professional knowledge, skills 
and competences leading to a second degree or equivalent qualification. 

13. Doctoral and postgraduate studies ISCED 8 

ISCED 8 refers to doctoral degrees, with a duration of minimum 3 years. ISCED 8 leads to an advanced research qualification 
with programmes devoted to advanced study and original research and are typically offered only by research-oriented tertiary 
educational institutions such as universities. Doctoral programmes exist in both academic and professional fields. 
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Cross-tabulations between age and education data 
Education and age group data for Madrid are provided separately. However, to capture the 
multidimensional characteristics of the population which are relevant to vulnerability and adaptation 
(Lutz and Muttarak, 2017), data that are stratified by age, education and sex are required. The 
intersection between the two datasets was computed based on input from EUROSTAT population by 
educational attainment level, sex and NUTS2 regions (%) for Comunidad de Madrid (Eurostat - Data 
Explorer (europa.eu)). These data are available for the period between 2016 and 2020, for age group 
25 to 65 years. Attaining the values for 2010 involved computing the average change per year and 
assume these values are constant back to 2010. The EUROSTAT data for educational attainment are 
clustered based on ISCED 2011 as follows: less than primary, primary and lower secondary education 
(ISCED 0-2); upper secondary and post-secondary non-tertiary education (ISCED 3-4) and tertiary 
education (ISCED 5-8). ISCED categories 4 and 5 were not represented in the observations (see Table 
1 for coding framework). Therefore, ISCED fractions calculated from the raw data were clustered to 
match the EUROSTAT framing as follows: ISCED 0-2, ISCED 3 and ISCED 6-8.  
 
For the 65+ age group, the fraction for the three education categories were calculated based on data 
from the Wittgenstein Center Human Capital Data Explorer (Wittgenstein Centre Human Capital Data 
Explorer) for population size by education (000’s) indicator by sex (male/female), in 2010 for Spain. 
The education categories from this dataset were coded to match the EUROSTAT categories as follows: 
no education, incomplete primary, primary and lower secondary education were coded into the ISCED 
0-2 category; upper secondary education was coded into ISCED 3-4 category and post secondary 
education was coded into ISCED 5-8. Age and ISCED categories fractions from the total population 
were multiplied with EUROSTAT and Wittgenstein data for 2010 to obtain weighted population structure 
by the three education categories, two age groups (25 to 64 and 65+) for males and females.  
 
Dummy variables 
Finally, to capture the differences between the 21 districts in Madrid, a set of dummy variables was 
created. For each district in turn, a value of 1 was assigned to the district of interest with all other 
districts taking a value of 0. Then, the district dummy was multiplied with the independent education 
variables when future education was the y variable and with the independent variables for age groups 
to project future age structure.  
 
Baseline 
Future projections for age, sex and education 
structure were developed with input from 
raw data on a decadal basis. Basic population 
change variables (i.e. mortality, fertility and 
internal migration) along with education and 
a district dummy from 2010 were used as 
input to project the education and age 
structure in 2020. To assess model 
performance, the projections derived for  
2020 were compared with observations from 
the same year. Figure 1 shows and example 
of model performance, i.e. the comparison 
between the projection of ISCED 0-2 
education category (red line) and the raw 
data for the same education category (blue 
line) in 2020. 

Figure 1. Baseline ISCED 0-2 2020 

https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=edat_lfse_04&lang=en
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=edat_lfse_04&lang=en
http://dataexplorer.wittgensteincentre.org/wcde-v2/
http://dataexplorer.wittgensteincentre.org/wcde-v2/
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4. Preliminary results 
In this section we present some of the preliminary results obtained through model testing. So far, we 
have performed Bayesian model sampling and averaging in R, for three education categories (i.e. ISCED 
0-2, ISCED 3 and ISCED 6-8) for females, aged 25 to 64. The preliminary results are based on 10 000 
iterations after 1000 burn-ins with a benchmark prior where g=max(N, k2) as suggested by Fernandez 
et al., 2001. We conducted Bayesian model sampling and averaging over approximately 2400 
observations (N) and 86 (k) covariates. The final runs will be conducted with 10 000 burn-ins and five 
million iterations and with integration of the narratives from the three selected SSPs (i.e., SSP1: 
sustainable development, SSP2: middle of the road and SSP4: inequality). We will use suitable 
assumptions about the overall development of demographic and socioeconomic variables which 
correspond to the narratives of these scenarios. 

BMA runs yield posterior model size distributions and coefficient results. The prior and posterior model 
size distributions for the three education categories (i.e. ISCED 0-2, ISCED 3 and ISCED 6-8) for females 
between the age of 25 and 64 years in 2020 are outlined in ANNEX 1. The preliminary coefficient results 
are presented in Figure 2 and Figure 3 provides a visual representation of the coefficients for the best 
100 models.  
 
The final results will consist of downscaled population projections at decadal intervals from 2010 to 
2050 and disaggregated in subgroups by age, sex and education. These projections will show the 
population dynamics and allow for comparison between the three trajectories of the SSP narratives. 
The corresponding datasets of the distribution of population groups and their projected changes will 
be openly available. 
 
 
Coefficient results 
Figure 2 represents the coefficient results matrix for females, aged 25 to 64 with education level ISCED 
0-2. The posterior inclusion probabilities (PIP) column shows the importance of the variables in 
representing the data. With migration, ISCED 0-2 fractions from 2012 and a set of dummy variables 
for the same education category at 100%, the posterior model mass relies on models that include these 
variables (see Bayesian Model Averaging (BMA) subsection under Methods for a more detailed 
interpretation of Figure 2). 
 
Post Mean shows the coefficients (weighted) averages over all the models. Among the variables with 
PIP close to 1.000 - i.e. variables with the highest importance in explaining the data, isced02_2012 
covariate has a comparatively large coefficient and thus seems to be the most important. The Post SD 
column displays the coefficients posterior standard deviations, Cond.Pos.Sign is the posterior probability 
of a positive coefficient expected value conditional on inclusion and the last column idx represents the 
index of the variables appearance in the original data.  

Figure 3 brings a comprehensive overview of the best 100 models and their variables, included based 
on PIP. Blue represents a positive coefficient, red corresponds to a negative coefficient and white refers 
to non-inclusion. The x-axis shows the PMP – i.e. posterior model probabilities, for the best 100 models.  
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Figure 2. Coefficient results ISCED 0-2 
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Figure 3. Model inclusion and coefficient sign for ISCED 0-2, females aged 25-64 

 
 
 
Projected change in female education 
Projections for each education category and age group have been conducted so far for SSP2. To assess 
population dynamics over time, we look at projected changes for each education category and age 
group. Figure 5 portrays the change in a share of highly educated females (ISCED 6-8), aged 25 to 64 
between 2010 and 2030 at the census tract level. Clusters of decreasing education in adult women can 
be observed in the far south-east area of the city. These neighborhoods – Villa de Vallecas and Vicalvaro 
– are extensions of the overly populated Puente de Vallecas district. Figure 5 also depicts a belt-shaped 
pattern, on the south side of the city center where only a slight increase in female education is visible. 
These neighborhoods are characterized by high-density working-class population.   
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Figure 2. Change between 2010 and 2030 in highly educated females, ages 25 to 64 

 
 

5. Conclusions 
The negative effects of climate change are already experienced, especially by city dwellers. Rapid 
urbanization and the UHI effect significantly increase the exposure to heat stress in urban 
environments. While drastic emission reductions are urgently needed to meet the ambitions of the Paris 
Agreement and limit the global warming below 2o, enhancing adaptation capacity is paramount to 
minimize the climate impacts on the health of urban populations. Decreasing the burden that climate 
change is imposing on public health, adaptation mechanisms and strategies need to target and prioritize 
vulnerable groups.  

Population dynamics play a central role in climate risk assessments and quantification of vulnerability 
to heat stress. High-resolution population estimates and projections at the intra-urban scale are useful 
in identifying clusters of vulnerable groups within the city. Using the BMA for downscaled population 
projections can contribute to significant advancement in assessing the risk of heat stress for human 
health in cities. We find that BMA performs well in integrating uncertainty within the model and the 
projected data falls in line with observations for all three education categories.  

Estimations of population heterogeneity allow for identification of vulnerable subgroups and assessment 
of adaptive capacity. Preservation of population heterogeneity in the projections is directly relevant for 
anticipating socioeconomic changes and preparing targeted adaptation plans. This paper addresses the 
need for more detailed assessment of vulnerability to heat stress, providing a framework for such 
analysis that is applicable in any other locations. However, the resolution of input data is a determinant 
for the detail that can be obtained in the effort to capture this heterogeneity and the use of data at 
highest resolution available is recommended.  
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ANNEX 1 
 
Running BMA for three education categories for females between the age of 25 and 64 years in 2020, 
yields a posterior model size distribution and coefficient results. An uninformative model prior implies 
a symmetric prior distribution around k/2 = 43. The posterior distribution – i.e. after the update from 
the data, adds more weight on parsimonious models. Figure 1A, 2A and 3A show the comparison 
between the prior and posterior model distributions for ISCED 0-2, ISCED 3 and ISCED 6-8 education 
categories. The posterior model size mean values, namely 23.7477 for ISCED 0-2, 26.6324 for ISCED 
3 and 21.6885 for ISCED 6-8 represent the number of variables that shall be included in the model with 
the highest probability density. Thus, the mean is the posterior expected model size – i.e. the average 
number of included covariates (see Bayesian Model Averaging (BMA) subsection under Methods for a 
more detailed interpretation of these figures).  
 
 

 
Figure 3A. Prior and posterior model distribution for females aged 25-64, education level ISCED 0-2 
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   Figure 4A. Prior and posterior model distribution for females aged 25-64, education level ISCED 3 

Figure 5A. Prior and posterior model distribution for females aged 25-64, education level ISCED 6-8 
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