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Abstract. Current estimates of stand volume for South Korean forests are mostly derived from expensive field data. 
Techniques that allow reducing the amount of ground data with reliable accuracy would decrease the cost and time. 
The fifth National Forest Inventory (NFI) has been conducted annually for all forest areas in South Korea from 2006 to 
2010 and using these data we can make a model for estimating the stand volume of forests. The purpose of this study is 
to test deep learning whether it is available for measurement of stand volume with satellite imageries and geospatial 
information. The spatial distribution of the stand volume of South Korean forests was predicted with the convolutional 
neural networks (CNNs) algorithm. NFI data were randomly sampled for training from 90% to 10%, with 10% 
decrement, and the rest of the area was estimated using satellite imagery and geospatial information. Consequently, we 
found that the error rate of total stand volume was <5% when using over 17% of NFI data for training (R2 ¼ 0.96). 
We identified that using CNNs model based on satellite imageries and geospatial information is considered to be 
suitable for estimating the national level of stand volume. This study is meaningful in that we (1) estimated the stand 
volume using a deep learning algorithm with high accuracy compare with previous studies, (2) identified the minimum 
training rate of the CNNs model to estimate the stand volume of South Korean forest, and (3) identified the effect of 
diameter class on error hotspots in stand volume estimates through clustering analysis. 
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1 Introduction 
As an important part of terrestrial ecosystems, forest ecosystems are a huge global carbon pool and will likely play a 
long-term and sustained role in mitigating the impacts of global warming 1. In South Korea, >63% of the country is 
covered by forest, which is twice the world average of 31%, and it has the fourth-largest forest area among Organization 
for Economic Co-operation and Development countries 2; thus, an accurate estimation of stand volume is essential in 
understanding the carbon pool. The necessity for accurate estimates of forest stand volume is increasing 
nowadays due to the importance of sustainable forest management along with the assessment of forest structure, 
productivity, and carbon fluxes based on sequential changes in stand volume 3. 

Estimating forest stand volume in South Korea is mostly conducted using both the Sampling method, which estimates the 
total population through a sampling survey and the Wall-to-Wall method, which can determine the land change of the 
total area in space units 4. Korean National Forest Inventory (NFI) is mainly estimated using sampling techniques. The 
NFI, field surveyed data, includes various information such as tree species, tree height, diameter at breast height 
(DBH), stand volume, and the location of the surveyed area collected from entire forests in South Korea in the past 
for every 5 years 5. Since the current stand volume estimation carried out by the Korean government costs >3 million 
dollars per year, there is a limitation in that it is difficult to conduct a survey on the entire forest nationwide annually 
considering the large budget required for a single survey 6. To overcome these limitations, various methods have been 
developed to estimate stand volume 7. Particularly, remote sensing technologies using satellite imagery such as KOMPSAT, 
LANDSAT, SENTINEL, and MODIS have become popular alternatives for estimating stand volume using various 
imaging methods 8–11. In this regard, the satellite for forestry and agriculture (CAS500-4) scheduled to be launched in 
2025 in Korea is expected to have great utility in estimating the national stand volume 12. The aforementioned remote 
sensing imageries are convenient for obtaining the distribution of the forest stand. However, the actual problems related 
to the ground forest sample, such as estimation of the stand volume of accumulation in the sample, cannot be solved. To 
solve the problem, various data must be analyzed by complex expressions such as deep learning. 



  
 

Deep learning is a technique of machine learning that refers primarily to artificial neural networks (ANNs) of 
sufficient complexity to interpret raw data without the need for human-derived explanatory variables 13. Deep learning 
created major advances in solving problems that have resisted the best attempts of the artificial intelligence community 
for many years. It has turned out to show better performance in discovering intricate structures in high-dimensional 
data and is, therefore, applicable to many domains of environmental sectors 14. 

Convolutional neural networks (CNNs) are greatly effective in large-scale image recognition, object detection, and 
semantic segmentation 15. Some studies started using deep learning for measuring and analyzing forest attributes. For 
instance, Ref. 16 used a segmentation technique to isolate tree crowns, and a neural network (NN) to classify species 
based on point distribution. Reference 17 showed estimating improvements from 98.2% to 99.5% accuracy of three-
dimensional (3D)-printed polymer using both support vector machine (SVM) and CNNs. 

The purpose of this study is to test whether CNNs are available for measurement of stand volume under different 
environmental conditions such as variance in the wavelength of satellite imagery or geospatial information and to identify 
the minimum portion of the training data set for estimating the total amount of stand volume in South Korean forest. 
 
 

2 Materials and Methods 
 

2.1 Study Area 
This study covered the whole of South Korea, which is in the midlatitude region (33°N to 38°N) in East Asia. The forest 
in South Korea is generally covered with a temperate forest; however, subtropical evergreen forests are found on the 
southern coast. Although the Korean peninsula has a very high rate of urbanization, forests still account for the highest 
land coverage (>60%) 18. Figure 1 shows the study area and the distribution of forest cover in South Korea. 
 

2.2 Satellite Imageries and Geospatial Information for CNNs Model 
 

2.2.1 National Forest Inventory data 
Estimation models using remote sensing must be accompanied by field data 19. The IPCC Good Practice Guidance also 
suggests the need for accurate field survey data for estimating stand volume through remote sensing 20. NFI data are 
field survey data from South Korea, which has been used for various studies to estimate stand volume 21. The fifth 
NFI has been conducted annually for all forest areas in South Korea from 2006 to 2010. These data were collected 
by dividing the grid into 4 km units and placing systematic sampling points at the intersection points. Approximately 
6200 plots were created for the entire South Korean terrestrial area, and ∼4000 plots have been placed in the forest area 
since 1973. The NFI data provide a calculated stand volume from the measured data, such as tree height, DBH, and 
forest density (Nha). NFI data use the tree height curve and stand characteristics according to the stratified sample points 
based on the sample point research data to calculate the stand volume. 
 



  
 

 
Fig. 1 The boundary of the study area including forest cover in South Korea. 

 

The fixed sample point is composed of four subplots as a cluster plot. Additional sampling points are arranged in three 
directions: north (0 deg), 120 deg, and 240 deg, which are located 50-m away, centered on the origin of the sampling 
point (Fig. 2). The stand volume per unit area was calculated by classifying the basic research investigator (0.04 ha) by 
subplot and the large tree investigator (0.08 ha). 
 

 
 

Fig. 2 Plot systems for the fifth NFI (modified from the original by Ref. 5). 
 

 
The field surveyed data from neighboring subplots 2, 3, and 4 are stored in subplot 1 (fixed point) to represent the 

stand volume of the sample point. Within the sample point, DBH is measured only in timbers >6 cm. On the other 
hand, the height of the trees (h) is measured in the selected timber from the dominant tree species. The value of the stand 
volume was considered with the correlation between DBH and the tree height values. 
 

2.2.2 MODIS imageries 
We used MODIS version 6 products (MOD13A1: 16-day interval with the 250-m resolution, and MCD15A2H: 8-day 
interval with 500-m resolution), specifically the blue, red, NIR, and MIR reflectance, to reflect the effect of the 
wavelength on stand volume. Additionally, we used vegetation indices, which represent vegetation greenness, such as 
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), the combined fraction of 
photosynthetically active radiation, and leaf area index (LAI) to increase the accuracy of stand volume estimation. Table 
1 lists the MODIS data set used in this study. As NFI data were surveyed from 2006 to 2010, MODIS data were also 
collected from the same period. To reflect the effect of seasonal differences in stand volume estimation, we collected 720 
imageries (eight layers × two times per month × 12 months × 5 years), which were averaged monthly. 



  
 

 
2.2.3 Geospatial information 

Topographic factors and forest types were used to reflect the effect of geospatial information on stand volume 
(Fig. 3). A digital map (1:5000) provided by the National Geographic Information Institute produced an elevation 
(digital terrain model) and slope map with 500-m spatial resolution. The area of broad-leaf, needle-leaf, and mixed 
forests was extracted using the land cover map provided by the Korean Ministry of Environment (ME). In the case of 
forest cover, the needle-leaf forest composition is dominated by Pinus densiflor, Pinus koraiensis, Larix kaempferi 
(Lamb.) Carriere, and Pinus rigida. On the other hand, the broad-leaf forest is mostly composed of Quercus, Populus, 
and Castanea crenata. 

 
Table 1 Specification of MODIS data sets. 

MODIS product Layer name Units Spatial resolution Data type 

MOD13A1 

NDVI Dimensionless 

250 m 16-bit signed integer 

EVI 
Blue band 

Reflectance Red band 
NIR band 
MIR band 

MCD15A2H LAI Dimensionless 500 m 16-bit signed integer 
 

 

 
 

Fig. 3 Topographic factors and forest cover map: (a) elevation, (b) slope, and (c) forest cover. 
 

 
2.3 Data Processing 

 
2.3.1 Algorithms of convolutional neural networks 

ANNs are biologically-inspired variants of multilayer-perceptron type NN s where the individual neurons respond to 
overlapping regions in the visible field 22. This ANN is a model composed of multiple nested models using linear 
regression, such as SVM. NNs are typically composed of input layers, hidden layers, and output layers. CNNs, 
similarly layer-structured with typical NNs, are largely different in the way that the form of data used as input is 
specialized for the image. 

The basic concept of CNNs is to allow each element of the filter, that is a matrix to be trained automatically for suitable 
data processing. CNNs receive data in the form of a matrix, so the form of the image is preserved 22. Instead of creating all 
connections between layers, CNNs are only partially connected (sparse weight), and instead of updating the weight 
individually, certain weight groups share parameters so that the weight values within the group are always the same 
(parameter sharing). CNNs aim to enable automatically learning in selecting filters that maximize classification 
accuracy. 

CNNs add a layer called a convolutional layer and a pooling layer in front of the fully connected layer. This is the way 
the model is trained to filter the original image using kernels before classification operation 23. The convolutional layer 



  
 

extracts the features of the input data by applying the kernel to the input image, and the pooling layer converts the 
calculated matrix values into one representative scalar value (the average of each element value of the matrix) to 
reduce the size of the image. Image data can be expressed as a 3D matrix (or “tensor”) of height, width, and 
channels. In the data that have gone through padding, the parts including the certain features are shown in relatively 
large values, while the those without the features are shown as values close to 0. The activation function (rectified linear 
unit, ReLU) performs the task of changing the features, which turns out to be the output of the final convolution layer. 

Figure 4 shows our CNNs configuration. we used four convolutional layers with the receptive field size of 3 × 3 and stride 
1. The number of the channels was increased to 16, 32, 64, and 128 for the first to fourth channels, respectively. The 
batch normalization and max-pooling were performed between each step, and finally, the channel size was reduced to 64, 
16, and 8 flattened to obtain the final output. 
 

 
 

Fig. 4 Configuration of CNNs. 
 

 

The CNNs algorithm was uniquely coded in python without any supplementary programming software. The main 
packages and versions used in python are Keras v.2.3.0 (Dense, Dropout, Activation, Flatten, Conv2D, 
MaxPooling2D, BatchNormalization, LSTM, and AveragePooling2D), TensorFlow v2.0, NumPy v.1.17.0. 
 

2.3.2 Identifying the characteristics by Moran’s I statistical analysis 
and hotspot analysis 

Stand volume was estimated using various satellite imageries and geospatial information. Stand volume estimates using 
CNNs algorithm were calculated by reflecting the correlation of factors used; however, identifying the cluster of errors 
should be a priority to determine the reason for the errors. Thus, in this study, clusters of pixel-based errors were 
obtained through Moran’s I statistical analysis. Moran’s I is a quantitative index that compares the attributes of the target 
and neighboring objects to the mean of the overall data set as a statistic to measure the similarity of neighboring objects 
24. The range of the Moran’s I value is from −1 to 1 [Eq. (1)]. A value >0 indicates that the spatial distribution of the 
analyzed target is a clustered pattern, <0 indicates a dispersed pattern, and closer to 0 indicates a random pattern. In this 
study, Moran’s I value was calculated to identify the variance of the error in each pixel for the results of 17% training 
with 83% validation of the field survey data (NFI). In Eq. (1), wi;j represents the spatial weight between feature i 
and j, while n represents the total number of features 

   (1) 
 

The causes of errors were analyzed according to the spatial distribution patterns of errors in stand volume estimates. 
Hotspot analysis reveals where the errors are clustered, and statistically compares the DBH at the location to determine 
why the error appears. Hotspot analysis is a statistical technique developed by Ref. 25 and is a method of expressing 
environmental variables spatially in clustered or dispersed regions 26,27. Gi in Eq. (2) is the expression used to calculate the 
z-score for the error of stand volume estimation. 

In Eq. (2), X represents the population mean of the error of stand volume estimation. S indicates the standard deviation for 



  
 

the population mean, n represents the total number of errors, and  xj, j, wi;j represent the space weight between i and j. 
Besides, a value of Z-score >1.65 (p-value < 0.10) indicates a hotspot and a value of Z-score <−1.65 (p-value < 0.10) 
indicates a coldspot. 

  (2) 
 

The diameter class extracted from the NFI was used to analyze the spatial pattern of places where errors are concentrated 
for stand volume estimation. The diameter of stands was expressed as “diameter class” (small DBH: 0 to 16 cm, 
medium DBH: 16 to 30 cm, large DBH: over 30 cm). 
 
 

3 Results and Discussion 
 

3.1 Stand Volume Estimation Using CNNs Model in South Korea 
We assigned an ID to each pixel to run the CNNs model. After that, the pixels were classified into a training data set for the 
learning, a validation data set for tuning hyperparameters and validating the model, and a test data set for testing the 
model after an initial inspection of the model with validation. In this study, data was split using 
“sklearn.neural_network” considering that all the data from a single plot should be part of a single data set (training, 
validation, or test data set) (Sec. 6.1). 

 

 
 

Fig. 5 The results of pixel-based stand volume map: (a) NFI data, (b) 90% training, 10% validation and test, 
(c) 80% training, 20% validation and test, (d) 70% training, 30% validation and test, (e) 60% training, 
40% validation and test, (f) 50% training, 50% validation and test, (g) 40% training, 60% validation and 
test, (h) 30% training, 70% validation and test, (i) 20% training, 80% validation and test, and (j) 10% 
training, 90% validation and test. 

 

In the field surveyed data (the NFI data), the stand volume distribution of all forests in Korea was on average 
127.85 m3 ha−1, with a maximum of 275.71 m3 ha−1, a minimum of 21.47 m3 ha−1, and a total stand volume of 
727.42 Mm3. In this study, we assumed that the NFI data based on the field survey is the true value of the stand 
volume. The results of the analysis revealed that validation accuracy exceeded 92% when trained over 20% as 
shown in Figs. 5(a)–5(i) and all the test accuracy was >95%. However, when 10% was used for training and 90% was 
used for validation as shown in the red box in Fig. 5(j), the estimated total stand volume was 563.44 Mm3 and the 
validation accuracy dramatically decreased to 57% (Fig. 6, Sec. 6.2). In this study, as we tried to determine the 
minimum percentage of training data required to estimate the forest stand volume of South Korea, the CNNs 
model was run at 10% to 20% training at 1% increment. When using 17% NFI data for training, the stand volume 
distribution was calculated to be 124.62 m3 ha−1 with a total stand volume of 709.04 Mm3 at 96% of validation 
accuracy, while using 16% NFI data for training showed 61% of validation accuracy (Fig. 7). Thus, stand volume 



  
 

estimates for the entire forest is found assessable if a field survey including 1.1 million ha of the forest is conducted, 
considering that the forest area of South Korea is about 6.4 Mha 28. 

 
3.2 Forest Statistics Trends through Clustering Analysis 

We performed cluster analysis on the results of 17% training to estimate which part of growth characteristics could 
affect the stand volume. Moran’s I value for the entire forest in South Korea was 0.16, which indicates that errors for stand 
volume estimates are clustered. Given the z-score of 33.14, there is a <1% likelihood that this clustered pattern could 
be the result of a random chance 29. The distance threshold of spatial autocorrelation analyzed through Moran’s I 
statistical analysis was applied at 14,423.65 m. Figure 8 shows the results of a hotspot analysis that indicates where the 
distributed errors are concentrated considering spatial autocorrelation. The meaning of a hotspot in this study is that 
the error is underestimated, and a coldspot indicates that the error is overestimated. In the forests of South Korea, while 
hotspots are distributed in a relatively sparse forest, coldspots are highly distributed in the northeastern Taebaek 
Mountains, where forests are concentrated. 

The effects of diameter class on hotspot-concentrated areas are presented in Table 2. In the small class (0 to 16 cm of 
DBH), hotspots and coldspots of error accounted for the highest rate, with 86.46% and 77.33%, respectively. It 
demonstrates the concentration of error because the boundary of tree crowns in the satellite images is not divided; 
there is information about the texture of trees, but not about height. Also, it could be the reason that the tree was too 
small to be reflected from stand-level forests in the two-dimensional satellite imageries. 

 

 
 

Fig. 6 Comparison of accuracy results according to training, validation and test data set ratios I: 
(a) 90% training, 10% validation and test, (b) 80% training, 20% validation and test, (c) 70% training, 30% 
validation and test, (d) 60% training, 40% validation and test, (e) 50% training, 50% validation and test, (f) 
40% training, 60% validation and test, (g) 30% training, 70% validation and test, (h) 20% training, 80% 
validation and test, and (i) 10% training, 90% validation and test. 

 



  
 

 
 

Fig. 7 Comparison of accuracy results according to training, validation and test data set ratios II: 
(a) 19% training, 81% validation and test, (b) 18% training, 82% validation and test, (c) 17% training, 83% 
validation and test, (d) 16% training, 84% validation and test, (e) 15% training, 85% validation and test, (f) 
14% training, 86% validation and test, (g) 13% training, 87% validation and test, (h) 12% training, 88% 
validation and test, and (i) 11% training, 89% validation and test. 

 
 

 
 

Fig. 8 Hotspot of stand volume estimation errors, from 17% training and 83% estimation. 
 



  
 

 
Table 2 Distribution of hotspots and coldspots by DBH class. 

Class Range 

The number of 
underestimated values 

(number of error hotspots/ 
total number of error 

hotspots) 

Rate of 
hotspot 

distribution 
(%) 

The number of 
overestimated values 

(number of error coldspots/ 
total number of error 

coldspots) 

Rate of 
coldspot 

distribution 
(%) 

DBH 
(cm) 

0 to 16 249/288 86.46 249/322 77.33 
16 to 30 38/288 13.19 70/322 21.74 
∼30 1/288 0.35 3/322 0.93 

 
 

4 Discussion 
The CNNs model, which was applied to estimate stand volume based on NFI and other satellite data, needs to be 
validated through the previous literature. Because the overall spatial characteristics were analyzed through the clustering, 
the value of stand volume also should be the range of other stand volume estimations. Therefore, the other estimated value 
of stand volume from other estimations using satellite imagery and other spatio-temporal modeling were compared. 
Some study sites had many field studies as well as modeling results of stand volume, so we could compare the 
results with them directly. Even though the satellite imageries or geospatial information used in each research may be 
different, the accuracy of stand volume estimation can be directly compared by methodologies. Therefore, the R2 values 
were adopted to understand our modeling results. When we compared our results with the satellite-based previous 
literature, R2 for stand volume estimates were calculated from 0.53 to 0.81, depending on the learning rate of CNNs 
(Table 3). Furthermore, when using 17% NFI data for training, the total stand volume of South Korea was distributed as 
709.04 Mm3 (R2 ¼ 0.96). 
 

Table 3 Comparing CNNs model and previous literature. 

Category Model Value Sources Locations 

Estimated R2 

CNNs 0.93 to 0.96 This study South Korea 
Direct linear regression 0.53 

Ref. 30 Hunan, China 

Logarithmic regression 0.60 
Quadratic regression 0.60 

Exponential regression 0.58 
Water-cloud analysis regression 0.61 

Multivariable regression 0.67 
CNNs, Nonlinear mixed effects 

regression 0.81 Ref. 31 Daxing’anling, 
China 

Stand volume 
(m3 ha−1) 

CNNs 124.62 to 127.85 This study 
South Korea CBM-CFS3 125.6 Ref. 32 

Forest growth 126.73 Ref. 33 
 

Reference 30 estimates stand volume using the synthetic approach radar images. Direct linear, logarithmic quadratic 
exponential, water-cloud analysis, multivariate regression models were used as methodologies with R2 results of 0.53 
to 0.67. 

Reference 31 used CNNs to estimate stand volume after performing species classification, with R2 derived up to 0.81. 
Besides, using the nonlinear mixed-effects model, to solve the interface of the mixed forest and the interspecies effect 
on the stand volume estimation. 

Stand volume derived from this study was found to be in a fairly similar range, 126.73 and 125.6 m3 ha−1, respectively, 
in the study using the forest growth model and the CBM-CFS3 model 32,33. 

This study is meaningful in that it can be estimated stand volume using deep learning for forests in South Korea. We 
have identified the minimum portion of the forest field survey area required to estimate the entire stand volume. Some 
studies in Table 3, the accuracy of the model (R2) and the amount of estimated stand volume were improved by using 



  
 

LiDAR and RADAR; however, in this study, it is meaningful in that the accuracy of the model was improved only with 
optical images and geospatial information. Also, it was estimated to be similar to the model performance of the other 
studies. If additional information, such as satellite images with a hyper-spectral sensor and height information, are used in 
the CNNs model, the estimated accuracy for stand volume will increase. However, it is difficult to estimate the 
underground biomass by using only remotely sensed data. Thus, to estimate the total biomass for the entire forest, more 
spatial information in terms of underground forests should be further considered. 

Forest stand volume is increased from 20.57 to 239.85 Tg C in the past five decades in South Korea 34. In South Korea, 
forest statistics at the county level have been estimated based on the NFI field data. Because the NFI data were 
designed for the national-level inventory, only generalized or limited forest statistics are available for the small areas 
based on the NFI field data. CNNs can support more specific information at the local scale, it is common to conduct 
an additional field survey or use a complicated data analysis procedure 35. Small-area estimation forest inventory is a 
statistical approach for the estimation of characteristics without additional field surveys for a small subpopulation that 
was not specifically targeted in the sampling design 36. For small-area estimation, calibration techniques use samples 
surveyed outside an area of interest to produce estimates for the area of interest. 

This result proves the CNNs algorithm for stand volume map based on 17% training with 83% validation has relatively 
high accuracy. This method indicates the higher the training sample increases the quality of the map and as well as the 
high accuracy of forest stand volume estimation of large-scale Forest inventories. The estimates of the present study 
indicate considering a large training sample enhances the accuracy as it is based on a function of stand volume density for 
the entire forest of South Korea. Therefore, CNNs may also be able to address the issue of forest inventories, especially 
for individual tree segmentation. CNNs have been enormously effective at segmenting objects from photographic and 
video imagery. Most CNN-based segmentation algorithms work by identifying potential bounding boxes of objects and 
then analyzing the interior of those bounding boxes to assess their validity. We believe that a similar algorithm 
could be adapted to identify the 3D bounding boxes of individual trees. Another CNN-based segmentation method 
known as semantic segmentation seeks to isolate individual pixels that represent the desired object 37. 
 

5 Conclusions 
We found that using CNNs model based on satellite imageries and geospatial information is considered to be suitable 
for estimating the national level of stand volume. Compared with previous studies, our estimate provides another means 
of assessing forest stand volume by using a deep learning algorithm in South Korean forests. Although there are 
uncertainties in the estimates, these are expected to decrease as more accurate field survey data become available and 
remote sensing technologies are developed. Besides, further research is needed to understand the weight of input data to 
minimize the cost of collecting uninfluential data. This study is meaningful in that we (1) estimated the stand volume 
with a deep learning algorithm, (2) identified the minimum training rate of the CNNs model to estimate the stand 
volume of the entire South Korean forest, and (3) identified the effect of diameter class on error hotspots in stand 
volume estimates through clustering analysis. 
 
  



  
 

 

6 Appendix A 
 

6.1 Scenarios Considering the Percentage of Training, Validation, 
and Test Data Set for CNNs Model 

Training, validation, and test rate used in the CNNs model for each scenario was presented in Table 4. 
 

Table 4  Detailed percentage of the CNNs model's training, validation, and 
test data set. 

 

Scenario Training rate (%) Validation rate (%) Test rate (%) 

1 90 5 5 

2 80 10 10 

3 70 15 15 

4 60 20 20 

5 50 25 25 

6 40 30 30 

7 30 35 35 

8 20 40 40 

8-1 19 40.5 40.5 

8-2 18 41 41 

8-3 17 41.5 41.5 

8-4 16 42 42 

8-5 15 42.5 42.5 

8-6 14 43 43 

8-7 13 43.5 43.5 

8-8 12 44 44 

8-9 11 44.5 44.5 

9 10 45 45 

 
  



  
 

 

6.2 Statistics of Forest Stand Volume in South Korea 
Table 5 shows average, maximum, minimum, total stand volume, and standard deviation of the results for CNNs model 
based on training rate. 
 
 

Table 5  Detailed CNNs model statistics by training rate. 
 

Trainin
g rate 

Average 
stand volume 

Maximum 
stand volume 

Minimum 
stand volume 

Standar
d 

 

Total 
stand volume 

(%) (m3 ha−1 ) (m3 ha−1 ) (m3 ha−1 ) (m3 ha−1 ) (Mm3 ) 

100 127.85 275.71 21.47 35.16 727.42 

90 127.07 279.99 22.10 34.58 722.98 

80 127.25 274.76 21.81 33.85 724.01 

70 127.92 278.58 19.46 33.44 728.10 

60 128.56 276.91 22.03 32.78 731.46 

50 128.03 274.28 15.41 33.06 728.44 

40 126.58 277.69 22.34 31.53 720.19 

30 125.36 278.23 21.62 34.87 713.25 

20 125.93 280.18 13.24 37.98 716.50 

19 125.84 269.01 25.49 34.00 715.98 

18 124.57 274.69 26.55 30.76 708.75 

17 124.62 275.43 26.42 30.77 709.04 

16 115.32 257.03 20.88 31.01 656.13 

15 110.07 252.27 14.90 32.14 626.26 

14 108.93 251.97 11.63 33.13 619.77 

13 109.01 252.63 10.36 32.59 620.23 

12 107.16 256.72 14.78 34.32 609.70 

11 105.71 247.92 8.97 32.40 601.45 

10 103.26 247.74 
 
  

12.75 33.40 587.51 
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