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Scenarios of demographic distributional aspects of health 
co-benefits from decarbonising urban transport
Chenxi Lu, W Neil Adger, Karyn Morrissey, Shaohui Zhang, Sergey Venevsky, Hao Yin, Taochun Sun, Xuanren Song, Chao Wu, Xinyu Dou, 
Biqing Zhu, Zhu Liu

Summary
Background There is limited knowledge on the distribution of the health co-benefits of reduced air pollutants and 
carbon emissions in the transport sector across populations.

Methods This Article describes a health impact assessment used to estimate the health co-benefits of alternative land 
passenger transport scenarios for the city of Beijing, China, testing the effect of five transport-based scenarios from 2020 
to 2050 on health outcomes. New potential scenarios range from implementing a green transport infrastructure, to 
scenarios primarily based on the electrification of vehicle fleets and a deep decarbonisation scenario with near zero 
carbon emissions by 2050. The health co-benefits are disaggregated by age and sex and estimated in monetary terms.

Findings The results show that all the alternative mitigation scenarios result in reduced PM2·5 and CO2 emissions 
compared to a business-as-usual scenario during 2020–50. The near zero scenario achieves the largest health co-benefits 
and economic benefits annually relative to the sole mitigation strategy, preventing 300 (95% CI 229–450) deaths, with 
health co-benefits and CO2 cost-saving an equivalent of 0·01% (0·00–0·03%) of Beijing’s Gross domestic product 
in 2015 by 2050. Given Beijing’s ageing population and higher mortality rate, individuals aged 50 years and older 
experience the greatest benefit from the mitigation scenarios. Regarding sex, the greatest health benefits occur in men.

Interpretation This assessment provides estimates of the demographic distribution of benefits from the effects of 
combinations of green transport and decarbonising vehicles in transport futures. The results show that there are 
substantial positive health outcomes from decarbonising transport in Beijing. Policies aimed at encouraging active 
travel and use of public transport, increasing the safety of active travel, improving public transport infrastructure, and 
decarbonising vehicles lead to differential benefits. In addition, disaggregation by age and sex shows that the health 
impacts related to transport pollution disproportionately influence different age cohorts and genders.
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Introduction
It is well established that there are considerable benefits 
of tackling transport pollution for both climate change 
and more localised pollutant concentrations. Carbon 
emissions in the transport sector are rising faster than 
emissions from other sectors and are projected to be 
80% higher than current levels by 2030.1 At the same 
time, urban air pollution from the transport sector has 
been linked to about 800 000 deaths per year globally, 
with a further 1·2 million deaths per year due to road 
traffic accidents and 1·9 million deaths per year due to 
physical inactivity.2 The differential impact of air 
pollution across exposed populations is also widely 
recognised.3,4 For example, children, older people, and 
those with predisposed respiratory and cardiovascular 
disease are known to be more susceptible to the health 
impacts of air pollution due to their increased biological 
sensitivities and different exposure patterns.5–7 From a 
socioeconomic perspective, the distributional impacts of 
air pollution are amplified by historical patterns of land 

use in cities8 and the ability to afford cleaner technologies.9 
Therefore, promoting a transition to low-carbon transport 
is a priority for climate change mitigation as well as for 
reducing the disproportionate risks faced by many 
individuals and communities.

Greenhouse gas mitigation measures in the transport 
sector include decreased use of motor vehicles, 
electrification of vehicles, increased levels of active travel 
(eg, walking and cycling), and increased use of public 
transport.5,10 Recent research has examined several 
mitigation measures or potential mitigation scenarios in 
the transport sector regarding energy consumption, 
greenhouse gas emissions, atmospheric pollution, and 
public health.11–13 Reductions in each of these factors will 
have direct and indirect positive impacts on human 
health.14 Referred to as health co-benefits,15 improvements 
in health outcomes from transport mitigation measures 
might include a reduction in mortality and morbidity 
attributable to air pollution exposure; a reduced burden 
of obesity and chronic, non-communicable diseases 
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through increasing physical exercise from active travel; 
and reduced danger from road traffic.12,16

Wang and colleagues, in 2020,11 studied vehicle 
emission control measures in China from 2000 to 2015 
and found that, without these control measures, vehicular 
emissions during 1998–2015 would have been 2–3 times 
larger. Furthermore, in 2015, the average concentration 
of PM2·5 would have been higher by 11·7 μg/m³ and the 
average concentration of O3 would have been higher by 
8·3 parts per billion; the number of deaths attributable to 
air pollution in 2015 would have been higher by 500 000 
(95% CI 360 000–730 000). Liang and colleagues, in 2019,17 
developed multiple scenarios by considering various 
penetration levels of electric vehicles in China and found 
that higher fleet electrification ratios can deliver 
improved air quality, with resultant climate and health 
benefits. They estimated that the electrification of 27% of 
private vehicles could reduce the number of annual 
premature deaths nationwide by 17 500 (10 656–22 160).

To accommodate the transport needs of the current 
population of Beijing (22 million),18 the energy 
consumption of the transport sector is increasing year on 
year,14,18 while rapid socioeconomic development resulted 
in a 146% increase in personal motor vehicle ownership19 
from 2005 to 2019. The rapid increase of passenger 
vehicles increases energy consumption and greenhouse 
gas emissions,20 as well as exacerbating traffic congestion 
and air pollution. Particulate pollution, in particular high 
concentrations of PM2·5 pollution, have been the foremost 
environmental problem for Beijing.21 In response, the 
Beijing Government has implemented transport policy 
packages to tackle these problems (appendix p 1). Most 
mitigation studies in China to date have assessed benefits 
solely in terms of their effects on pollutant emissions at 

the national13,22 or local level23,24 and a few studies have 
evaluated the impact of vehicular emissions on air quality 
across the country.25,26 In this Article, we provide 
comprehensive insights into the impact of transport 
mitigation measures on population health, and on the 
distributional impact of such measures on different 
subpopulations. We also investigate the economic 
benefits of mitigation measures in the transport sector 
in China.27

To optimise the social and economic benefits of 
transport mitigation strategies and address environ-
mental injustice, it is necessary to investigate the health 
co-benefits of mitigation measures across different 
populations. Accordingly, the objective of this Article is 
to explore potential emissions reductions and health 
co-benefits by age and sex, as well as quantifying the 
monetary benefits of four urban land passenger 
mitigation scenarios for Beijing compared with the 
business-as-usual (BAU) scenario from 2020 to 2050. 
We apply an integrated assessment model that consists 
of a grey forecasting model, a low-carbon traffic 
development model, the Greenhouse Gas and Air 
Pollution Interactions and Synergies (GAINS)-ASIA 
model, a global exposure mortality model (GEMM), and 
a health economic model. We analysed the research 
results at a spatial resolution of 0·1°0·1° (about 1 km²) 
across Beijing’s central area to provide detailed insights 
into the potential benefits of transport mitigation 
strategies in China at the city level. This analysis also 
enables policy makers to compare different transport 
mitigation strategies for decarbonisation and health 
co-benefits. The age–sex distributional analysis 
provides insights into some of the policy needs of 
different segments of the population.

Research in context 

Evidence before this study 
We searched Web of Science, Google Scholar, and references from 
relevant articles using the search terms “climate mitigation” 
(or “mitigation measures” or “decarbonizing”), “scenario study”, 
“health co-benefits”, “transport sector” (or “urban transport” or 
“decarbonizing”), “passenger transport”, and “economic benefits” 
in the title or abstract. We searched for articles published between 
Jan 1, 2001, and March 1, 2021, in English or Chinese. Most 
studies on traffic pollution mitigation in China or other countries 
have assessed benefits solely in terms of their effects on pollutant 
emissions at the national or local level and a few studies have 
evaluated the effect of vehicular emissions on air quality in China. 
There is sparse evidence on the economic benefits of mitigation 
measures in the transport sector. Moreover, impact assessment 
on transport mitigation measures on health is still deficient.

Added value of this study 
This study builds on previous studies and provides information 
on multiple outcomes from different urban transport 

mitigation scenarios, also stratified by age and sex, in the 
passenger transport sector in Beijing: energy consumption, 
CO2 emissions, PM2·5 concentrations, and health co-benefits, 
in 2020–50 compared with a business-as-usual scenario. As 
such, this study provides evidence showing that a combination 
of green transport and decarbonising vehicles will have major 
health benefits.

Implications of all the available evidence 
The results show that there are substantial benefits from 
decarbonising the transport sector in Beijing, especially through 
the application of more green transport (ie, active travel and 
public transport). Policies aimed at encouraging active travel 
and use of public transport, increasing the safety of active 
travel, improving public transport infrastructure, 
and decarbonising vehicles lead to differential benefits. 
In addition, disaggregation by age and sex shows that the 
health impacts related to transport pollution disproportionately 
influence different age cohorts and genders.

See Online for appendix
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Methods
Integrated assessment model
This study applies an integrated assessment model that 
combines a grey forecasting model, a low-carbon traffic 
development model, the GAINS-ASIA model, a health 
assessment model (ie, GEMM), and a health economic 
model (figure 1).

The grey forecasting model is used to forecast resident 
trips in the central area of Beijing per year, from 2020 
to 2050 (appendix p 2). The low-carbon traffic development 
model is applied to calculate travel distances and energy 
consumption of different travel modes. The GAINS-ASIA 
model estimates future air pollutant emissions using 
data on energy consumption, industrial production, and 
proposed environmental regulations under different 
scenarios. The GEMM model is used to examine PM2·5-
related mortality and avoided deaths attributable to 
ambient PM2·5 related to regional production and con-
sumption activities. Finally, the health economic model is 
used to evaluate the economic benefits from saving lives 
because of mitigation measures in transport.

Scenario description and research scope
Due to data availability from the Beijing Transport Annual 
Report,19 the research area for this study is the central area 
of Beijing, China, including the Dongcheng, Xicheng, 
Chaoyang, Haidian, Shijingshan, and Fengtai districts 
(appendix p 3). The transport sector was divided into 
freight, intercity passenger, and urban passenger trans-
port according to the classification of national statistical 
systems.28 Data were used on urban land passenger 
transport, which was defined as public passenger 
transport (ie, buses, subway, walking, and cycling) and 
private passenger transport (ie, private cars and taxis). The 
year 2015 was selected as the base year for this study.

A BAU scenario is used as the reference scenario, with 
four alternative mitigation scenarios proposed: increased 
green transport (IGT), more electric vehicles (MEV), both 
IGT and MEV scenarios (IGT_MEV), and near zero CO2 
emissions (we set scenarios according to climate mitigation 
measures for the transport sector from the Beijing City 
Master Plan [2016–35];29 table; appendix pp 4–6).

The BAU scenario takes account of transport structure 
improvement over time as well as any energy structure 
improvements in the transport sector. The historical share 
of different land passenger travel modes in Beijing 
from 2007 to 2019 is shown in the appendix (p 7). The IGT 
and MEV scenarios refer to policies associated with 
Beijing’s transport development, outlined in the Beijing 
City Master Plan (2016–35).29 The IGT scenario emphasises 
increasing the share of green transport (ie, walking, 
cycling, and public transport) in Beijing, to more than 75% 
by 2020 and not less than 80% by 2035.29 The MEV scenario 
emphasises the decarbonisation of vehicles, which will 
affect their fuel consumption. In this study, two types of 
passenger cars are considered—gasoline cars and electric 
cars. There are three major types of electric car used by 

consumers in Beijing—battery electric vehicles, plug-in 
hybrid electric vehicles, and range-extended electric 
vehicles.30 In this study, we assume all electric vehicles are 
carbon-free electric vehicles, such as battery electric 
vehicles and range-extended electric vehicles, under the 
five relevant scenarios (appendix p 8). The IGT_MEV 
scenario aggregates the IGT and MEV scenarios.

In 2020, China pledged to become carbon neutral 
by 2060.31 To align with the goals of the Paris Agreement 
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Figure 1: Research framework for assessment of health and economic outcomes of different transport 
scenarios for Beijing
BAU=business as usual. GAINS=Greenhouse Gas and Air Pollution Interactions and Synergies. GEMM=global 
exposure mortality model. IGT=increased green transport. IGT_MEV=increase green transport and more electric 
vehicles. MEV=more electric vehicles.

Description

BAU Improve transport and energy infrastructure; increase the share of green transport (including 
walking, cycling, subway, and buses) in the central area of Beijing to 75% by 2020 (per the 
2020 Beijing Transport Annual Report19); reduce share of passenger cars and taxis

IGT Increase share of green transport in the central area of Beijing, to more than 75% by 2020 and 
not less than 80% by 2035 (per the Beijing City Master Plan 2016–3529)

MEV Based on BAU, focus on decarbonising motor vehicles; increase diffusion of electric cars 
according to Beijing Municipality regulations on quantifying the number of passenger cars and 
restricting usage of gasoline cars (per the Beijing City Master Plan 2016–3529)

IGT_MEV A scenario that aggregates the IGT and MEV scenarios

Near zero Based on the IGT_MEV scenario, achieve 100% electrification of passenger vehicles in Beijing 
by 2050; eliminate gasoline cars over time, reducing their total number and the number of 
total passenger vehicles

BAU=business as usual. IGT=increase green transport. MEV=more electric vehicles. IGT_MEV=increase green transport 
and more electric vehicles.

Table: Principal features of different transport scenarios for Beijing
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and the China Government pledge, we also developed a 
near zero CO2 emissions scenario. This scenario is based 
on the IGT_MEV scenario, but it goes further by 
promoting 100% electrification of Beijing’s passenger 
transport, including passenger cars, taxis, and buses 
by 2050. To compare results between different scenarios, 
five common assumptions are used (appendix p 10).

Modelling air pollutant emissions, scope of travel 
modes, and PM2·5 concentration
The low-carbon traffic development model is used to 
calculate the travel distance of each travel mode under 
the five scenarios, multiplying the energy intensity of 
different fuel vehicles. We used the bottom-up approach 
of the Intergovernmental Panel on Climate Change (2006) 
for calculating greenhouse gas emissions.32 The equation 
for calculating the energy consumption of different travel 
modes is in the appendix (p 11).

The GAINS-ASIA model is applied for estimating air 
pollutants, greenhouse gas emissions, and PM2·5 concen-
trations on the basis of the energy consumption (Ei,t,s,f) of 
different fuels (in PJ). Additional pollutants, such as 
particulate matter from tyre wear and braking of vehicles 
during driving, are not considered in these estimates, 
which might therefore be conservative and lower-bound 
estimates of actual pollution levels. Emissions are 
calculated through a combination of three data categories: 
activity pathways, emission vectors, and control strategies 
and associated costs. On the basis of the detailed spatial 

and sectoral GAINS emissions inventory, the GAINS 
model computes fields of ambient PM2·5 concentrations 
with the help of source–receptor associations derived 
from an atmospheric chemistry transport model called 
EMEP. The EMEP model runs on a 0·1°0·1° grid. The 
PM2·5 concentration is presented in the appendix (p 11).

PM2·5-related health impact assessment
This study considers the effect of long-term exposure 
to PM2·5 concentration on mortality, which is modelled 
by a more recent GEMM that incorporates recent 
epidemiological evidence, including that from a cohort 
study on outdoor PM2·5 pollution in China.4 There are two 
versions of GEMM: one is GEMM NCD+LRI, which 
covers risks from non-accidental non-communicable 
diseases and lower respiratory infections; and another 
one is GEMM 5-COD, which comprises five causes of 
mortality: ischaemic heart disease, stroke, chronic 
obstructive pulmonary disease, lung cancer, and lower 
respiratory infections. In this study, we apply these 
two versions to assess the mortality of different scenarios; 
we define deaths from additional non-accidental, non-
communicable diseases via subtracting the five causes of 
mortality in GEMM 5-COD from GEMM NCD+LRI. 
PM2·5-attributable mortality under different scenarios are 
measured by sex (female and male) and age group 
(25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 
65–69, 70–74, 75–79, and 80+). The equation for the 
PM2·5-related health impact assessment is in the 
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Figure 2: Energy consumption of passenger land travel modes in Beijing in 2015 and in the future under five scenarios
BAU=business as usual. IGT=increased green transport. IGT_MEV=increase green transport and more electric vehicles. MEV=more electric vehicles. 

For the EMEP model see 
http://webdab.emep.int/

http://webdab.emep.int/
http://webdab.emep.int/


Articles

www.thelancet.com/planetary-health   Vol 6   June 2022 e465

appendix (p 16). The uncertainty analysis and sensitivity 
test can be found in the appendix (pp 20–21).

Benefits from decarbonising urban land passenger 
transport
To better understand and compare different mitigation 
scenarios, we calculated two types of benefits for the 
four mitigation scenarios compared with the BAU 
scenario. These benefits are health co-benefits related to 
PM2·5 pollution and benefits of reducing CO2 emissions 
(appendix p 19). It was estimated that the social cost of 
carbon in China was US$24 (4–50) per tCO2 in 2015.33

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Energy consumption, air pollution emissions, and PM2·5 
concentration
In 2015, the total energy consumption of eight fuel types 
of vehicle was 110 PJ (figure 2). Energy consumption for 
privately owned gasoline cars is much higher than that of 
other vehicles, accounting for 76% (84 PJ) of the total 
energy consumed, followed by gasoline taxis. In general, 
less energy is consumed for different scenarios than for 
BAU during study years; the near zero scenario consumes 
the least amount of energy annually.

Under the BAU and MEV scenarios, the energy 
consumption of passenger vehicles increases compared 
with the three other scenarios. In comparison with BAU 
(191 PJ), energy consumption decreases by 77% (–146 PJ) 
with IGT, 28% (–53 PJ) with MEV, 78% (–149 PJ) with 
IGT_MEV, and 80% (–152 PJ) with near zero by 2050; 
and the difference in energy consumption between BAU 

and the other scenarios gets larger each year. Under all 
scenarios, energy consumption from gasoline cars is 
projected to decrease; for the IGT, IGT_MEV, and near 
zero scenarios, energy consumption from gasoline cars 
no longer dominates, ranging from 65% (89 PJ) in 2020 
to 0% in 2050. Only under the MEV scenario does the 
energy consumption of gasoline cars become dominant 
(65% [89 PJ] in 2050). Starting in 2030, the energy 
consumption of electric cars becomes more pronounced 
under MEV, IGT_MEV, and near zero (when the 
percentage of kilometres travelled by electric cars takes 
up more than 20% of the total distance travelled by cars 
in the central area of Beijing [appendix p 14]); for example, 
from 2030 to 2050, the percentage of energy consumed 
by electric cars rises from 3% (3 PJ) to 5% (4 PJ) under 
IGT_MEV. But under IGT_MEV and near zero, the 
percentage of energy consumption of electric cars is less 
in 2050 than in the previous year due to the increasing 
share of public buses and subway transit. At the same 
time, the percentage of energy consumed by public buses 
and the subway (green transport) gradually increases 
under all scenarios. By 2050, the energy consumption of 
public buses and the subway is the top consumer for 
each travel mode under IGT, IGT_MEV, and near zero.

Emissions, including PM2·5 and CO2, for each scenario 
are shown in the appendix (p 22). Estimates of PM2·5 

emissions range from 0·8 kt to 0·9 kt (+13%) under 
BAU; from 0·8 kt to 0·6 kt under IGT (–29%); from 
0·8 kt to 0·7 kt (–4%) under MEV; from 0·8 kt to 0·5 kt 
(–29%) under IGT_MEV; and from 0·8 kt to 0·5 kt (–29%) 
under near zero, during the 2020–50 period. In 2050, the 
ranking of PM2·5 emissions under different scenarios is 
BAU with the highest emissions, followed by MEV, then 
IGT, then IGT_MEV, which is equal, in terms of 
emissions, with near zero. Compared with the BAU 
scenario, CO2 emissions from buses and cars decrease by 
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96% (–10·2 PJ) with IGT, 40% (–4·3 PJ) with MEV, 
97% (–10·4 PJ) with IGT_MEV, and 100% (–10·6 PJ) with 
near zero in 2050, which means the near zero scenario 
achieves zero carbon emissions regarding urban 
passenger transport. Under the IGT, IGT_MEV, and near 
zero scenarios, CO2 emissions of cars and buses decrease 
over time, whereas they increase over time in a BAU 
scenario. Under the MEV scenario, CO2 emissions 
increase before 2035, but decline from 2035 onwards.

In 2015, the average population-weighted PM2·5 concen-
tration in the central area of Beijing was 79·4 [SD 13·2] 
μg/m³, according to the GAINS-Asia model. Most of the 
population in the study area is exposed to more than the 
average PM2·5 concentration, located in the southeast area 
of Beijing (appendix p 23). A downward trend of PM2·5 
concentrations exists under all scenarios except for the 
BAU scenario (appendix p 23). However, none of the 
scenarios meet China’s Ambient Air Quality Standard 
level II (35 μg/m³),34 if other sectors (ie, not urban 
passenger transport) keep the same structure as they have 
in 2015 (as assumed in this study). Compared with 
the BAU scenario, annual PM2·5 concentrations under 
each of the four scenarios are lowest with near zero 
(–0·45% or –0·36 PJ]), followed by IGT (–0·45% or –0·35 PJ), 
then IGT_MEV (–0·43% or –0·34 PJ), and then finally 
MEV (–0·01% or –0·01 PJ) from 2020 to 2050. In general, 
the trend in PM2·5 concentrations for a particular scenario 
is mostly consistent with the trend in PM2·5 emissions.

Mortality attributed to PM2·5 exposure
Under all scenarios, total mortality increases annually 
(figure 3A). However, there are fewer deaths under the 
four mitigation scenarios from 2020 to 2050 than with 
the BAU scenario, with near zero recording the lowest 
number of deaths annually (eg, 72 900 deaths [95% CI 
66 100–79 300] in 2050). The MEV scenario has the most 

deaths among the four mitigation scenarios from 
2030 onwards.

Ischaemic heart disease represents around 32·5% 
(95% CI 31·5–34·0) and additional non-accidental, 
non-communicable diseases represent around 32·5% 
(26·0–34·0) of the total annual deaths, followed by lower 
respiratory infections (23·0% [20·1–26·4]), lung cancer 
(10·4% [9·3–11·2]), and stroke (0·9% [0·8–1·0]; figure 3B). 
However, mortality caused by lower respiratory infection 
(19·3–30·2%) increased fastest among all five specific 
causes annually, followed by stroke (17·0–31·0%). Men 
with chronic obstructive pulmonary disease, lung cancer, 
lower respiratory infection, stroke, or additional non-
accidental, non-communicable diseases have a greater 
mortality than women, but women with ischaemic heart 
disease (after 2040) have a greater mortality than men 
(figure 3B). For example, under the near zero scenario 
in 2050, men with ischaemic heart disease account for 
17% (n=12 171) of the total deaths, while men and women 
with stroke each account for 0·5% (n=366).

Economic benefits under mitigation scenarios
Compared with the BAU scenario, 0 (95% CI 0–13) 
deaths are estimated to be avoided with the IGT scenario, 
5 (0–32) with the MEV scenario, 7 (0–36) with IGT_MEV, 
and 7 (0–36) with near zero by 2020; 30 (0–100) deaths 
with IGT, 26 (0–98) with MEV, 48 (2–137) with IGT_MEV, 
and 53 (6–150) with near zero by 2030; 102 (38–210) with 
IGT, 68 (12–161) with MEV, 130 (64–257) with IGT_MEV, 
and 164 (90–295) with near zero by 2040; and 
292 (215–436) with IGT, 117 (53–229) with MEV, 
296 (218–441) with IGT_MEV, and 301 (229–450) with 
near zero by 2050 (figure 4A). Among the four mitigation 
scenarios, IGT_MEV and near zero save the most lives 
over time; the effect of the IGT scenario on saving lives 
gets more pronounced while the effect of the MEV 
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scenario on saving lives gets less pronounced than the 
other three scenarios (figure 4A).

The population older than 50 years gains the 
greatest health benefits (>84%) annually under the 
four mitigation scenarios (figure 4B–C). Moreover, with 
time, the older population gains more health benefits 
than the younger population. For example, in 2025, the 
group aged 80 years and older accounts for 23% (3/13; 
showing 3 people aged 80 or older saved from the death 
of 13 total avoided deaths) of the total health benefits 
under IGT, 20% (3/15) under MEV, 24% (6/25) under 
IGT_MEV, and 24% (6/25) under near zero individually; 
while in 2050, the same age group accounts for 
54% (158/292) under IGT, 59% (69/117) under MEV, 
54% (160/296) under IGT_MEV, and 54% (164/301) 
under near zero individually (figure 4C). On the 
other hand, younger groups (ie, those younger than 

50 years) gradually avoid more deaths with time 
(figure 4B–C).

Men obtain more health co-benefits than women 
across the study timeframe under each scenario and 
cumulatively, with men avoiding more deaths than 
women under the four scenarios. However, in the group 
aged 80 years and older, women would sometimes gain 
more health co-benefits under the four mitigation 
scenarios from 2020 to 2050, due to the effect of 
demographic changes (ie, more women than men in this 
age group; appendix p 18) outperforming mortality rates 
(figure 4B; appendix p 17).

The economic benefits measured by sex and age show 
the same trend as avoided deaths. Economic benefits will 
get larger annually and the near zero scenario provides 
the largest economic benefits compared with the other 
three. People older than 50 years and men gain the most 
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benefit (figure 5A). For instance, under the near zero 
scenario, men would cumulatively gain $4970 more than 
women through avoided mortality during 2020–50. 
Figure 5B lists two types of benefits under the four 
mitigation scenarios. Monetary health co-benefits 
contribute the most to the total benefits. Although the 
CO2 reduction value is small, it increases annually 
(figure 5B). In 2050, under the near zero scenario, the 
total value from mitigation is equal to 0·01% (0–0·03%) 
of Beijing’s Gross domestic product in 2015 ($369 billion). 
Under the IGT, IGT_MEV, and near zero scenarios, 
economic benefits rise annually.

Discussion
Previous transport mitigation studies for China13,14,22–26 or 
other countries12,16 have focused on a specific outcome, 
primarily estimates of changes in pollution or CO2 
emissions. This study builds on those and provides 
information on multiple outcomes, according to sex and 
age, for different urban transport mitigation scenarios in 
the passenger transport sector in Beijing. Hence, this 
study shows that a combination of green transport and 
decarbonising vehicles could have substantial positive 
benefits, with implications for policy to realise these 
benefits. The near zero scenario achieves the largest 
health co-benefits and economic benefits annually 
relative to other mitigation scenarios; in 2050, an 
estimated 300 (95% CI 229–450) deaths are averted, with 
$37 million (17–100) in economic benefits from better 

health outcomes and $255 000 (43 000–532 000) in 
economic benefits from CO2 cost savings. This study 
indicates cumulative benefits from combining actions, 
such as electrifying vehicles, reducing motor vehicle use, 
and achieving aggressive reductions in carbon emissions 
by the middle of this century in the transport sector. This 
finding is consistent with scenarios for other cities, such 
as London (UK) and Delhi (India), which showed that a 
combination of active travel and lower-emission motor 
vehicles result in the largest benefits (7500 disability-
adjusted life-years in London and 13 000 in Delhi).12

There is previous evidence on the implications of 
shifting private transport to electric vehicles.17,35,36 This 
study indicates that increasing the share of green public 
transport and active travel can provide more benefits 
compared with electrification of private vehicles alone. 
The IGT scenario saves an estimated zero lives (95% CI 
0–13) in 2020 and 292 lives (215–436) in 2050, with the 
share of green transport increasing from 75·4% in 2020 
to 99·4% in 2050 (increase of 32%). The MEV scenario, 
by contrast, is estimated to save five lives (0–32) in 2020 
and 117 lives (53–229) in 2050, with the percentage of 
cars that are electric rising from 0·7% (36·7) to 40·5% 
(326·7) during 2020–50. Comparing the IGT scenario 
with the IGT_MEV scenario, the effects of increasing 
electric cars are most visible before 2050, with avoided 
mortality from the swap to electric cars decreasing when 
the share of green transport reaches 99·4%. Furthermore, 
comparing the IGT_MEV scenario with the near 
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zero scenario, we find that, by 2050, when the share of 
green transport has reached 99·4%, only five additional 
lives are saved under the near zero scenario with 
100% electrifi cation in private passenger cars compared 
with 40·5% electrification under the IGT_MEV scenario.

These findings suggest that when green transport 
already accounts for a large share of resident trips, then 
further electrification of vehicle fleets provides a small 
marginal reduction in pollution and its associated health 
burden. Other scenario studies in Beijing also conclude 
that public transport development should be given 
priority over new energy and clean energy vehicles.37 
In 2016, He and Qiu27 concluded that the largest reduction 
of pollution emission would occur by increasing the use 
of both public buses and cycling. Several studies have 
noted that a shift from private vehicle use to active 
transport is a key intervention for improving public 
health, physically and psycho logically.38–40

For health outcomes, although studies have found that 
women are more at risk for negative health impacts from 
air pollution,41 in our study, the health co-benefits are 
marginally greater for men than for women across all 
scenarios. This finding is explained by the higher male 
population in Beijing and the relatively higher incident 
rates of each of the five disease categories for men 
compared with women (appendix pp 17–18). Proposed 
explanations for the so-called male–female health-survival 
paradox include biological differences, behavioural differ-
ences such as risk-taking and reluctance to seek and 
comply with medical treatment, methodological challenges 
such as selective non-participation and under-reporting of 
health problems, and delayed seeking of treatment.42

The results show that populations aged 50 years and 
older and women aged 80 years and older in Beijing 
benefit more from transport mitigation owing to the 
structure of the ageing population and the vulnerability 
and increased risk of older groups exposed to air 
pollution.6 This finding is in line with several studies5,21,41,43 
that suggest older populations are particularly affected by 
long-term exposure to air pollution41 so that they gain 
more health co-benefits when making mitigation 
changes. This study also finds that, as well as obtaining 
health co-benefits via decarbonising the transport sector 
in Beijing, there could be substantial benefits through a 
reduction in CO2 mitigation costs. This finding is in line 
with a study finding that stringent penetration of electric 
vehicles can reduce the carbon mitigation cost generated 
by the 2 °C climate stabilisation target.35 It also implies 
that transport-based mitigation also has an overall 
positive economic impact.

Previous research suggests that the electrification of 
vehicles improves air quality for disadvantaged neigh-
bourhoods and thus meets social and equity goals 
through reducing atmospheric pollution loading in 
vulnerable communities, particularly for those located 
near congested streets and highways.44 However, fossil 
fuel-powered plants are normally far from urban areas, 

which means that increased usage of electric vehicles 
disproportionally benefits city dwellers (as cities contain 
the highest concentration of electric vehicles). On the 
other hand, those who are exposed to pollution from 
electricity generation predominantly reside in rural 
areas, which are downwind of fossil fuel power plants.44 
In 2015, Ji and colleagues found that electric vehicles 
could increase inequality in terms of the health impacts 
of pollution in China; around 77% (41–96%) of emission 
inhalation attributable to urban electric vehicles is 
distributed to rural communities whose incomes are on 
average lower than those for city residents who use urban 
electric vehicles.45 In addition, another study suggests 
that electrification of transport without the replacement 
of fossil-fuel power plants leads to an increase in CO2 
emission.35 These previous studies suggest that a scenario 
for city transport based primarily on electrification does 
not address the fundamental issue of pollution 
generation; rather it displaces the pollution exposure to 
other areas, often outside the city. Hence, low-carbon 
power as a means to decarbonise power generation has a 
key role in electrifying the transport sector.35 In China, 
the percentage of renewable generation (including 
hydropower, nuclear, wind, and solar power) was 
32·1% of the total power generation in 2020, and the 
annual rate of increase of low-carbon power was around 
10% during 2015–20 (appendix p 24). These figures 
suggest that there is a major challenge to achieve 100% 
low-carbon power generation by 2060 for China.

There are uncertainties in our assessment. Through our 
uncertainty and sensitivity analysis, we found that health 
assessments using an integrated exposure–response 
model might underestimate the PM2·5-related health 
co-benefits without considering additional non-accidental 
non-communicable diseases, which can be around 
two-fold or three-fold less than the results from GEMM in 
this study. Furthermore, the monetarised avoided deaths 
of mitigation scenarios could be around 1·8–2·8 times 
larger if using the invariant value per statistical life. If 
different segments of the population were reduced 
by 50%, under the near zero scenario, PM2·5-related 
mortality can reduce by 50% in 2050, showing that the 
population size is proportional to mortality in this 
integrated assessment and that PM2·5-related deaths  are 
sensitive to the distribution of future subpopulations.

The integrated method used in this study can be easily 
applied to similar or broader research in different 
research areas and can be compatible with setting 
different future transport mitigation scenarios. This 
research has limitations common to many scenario 
studies: data availability, underestimation of compre-
hensive health impacts, and various sources of 
uncertainty: (1) health impacts from increasing physical 
activity are not considered; (2) other sources of air 
pollution aside from PM2·5 are not considered; and (3) 
technology improvement and innovation in the future. 
More details and results of the sensitivity analysis can be 
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found in the appendix (pp 25–29). Regardless of these 
limitations, the findings obtained in this study can be 
used to inform sustainable transport planning for Beijing 
as well as for other megacities (appendix p 30) if they 
vigorously adopt sustainable transport.

Conclusion and policy implication
Comparing different pollution mitigation measures in the 
urban land passenger sector, this study shows that a 
combination of green transport and the adoption of 
electric vehicles generate the largest health co-benefits. 
The study also provides evidence that developing green 
transport measures outperforms the electrification of 
passenger transport. Increases in green transport are 
progressive and are consistent with environmental justice: 
they improve access and increase health benefits for 
disadvantaged populations and those who have more 
limited travel options.46 Examining the impact of transport-
based mitigation on health across different age and sex 
groups, this study reveals some of the ways in which the 
benefits of decarbonising Beijing’s transport system 
would be distributed across society. This study shows that, 
in the context of Beijing’s geography and demographic 
make-up, men benefit more across all mitigation 
strategies. Although older people receive the greatest 
benefits from decarbonisation in terms of avoidance of 
premature death, younger groups have a higher relative 
risk when exposed to air pollution. Our research also 
shows a reduction in CO2 mitigation costs via transport 
electrification, restricted vehicle using, and phasing out 
internal combustion engine vehicles. The comprehensive 
results suggest that stakeholders, including transport 
planners, energy experts, policy makers, and economists, 
should develop a joint strategy for transport electrification 
to reduce CO2 emissions quickly and effectively due to the 
effectiveness of transport electrification policy.35

There are substantial benefits to Beijing authorities 
prioritising green transport development policies as 
outlined in the 13th Five-Year Plan.47 However, the 
effectiveness of these green transport strategies partly 
depends on the demand for green and public transport. An 
avoid–shift–improve approach48,49 could focus on reducing 
the need to travel, which can be achieved by refocusing 
urban planning: the so-called 15-min city concept, for 
example, seeks to increase active travel by locating services 
and employment within active travel distance of where 
people live,50,51 as well as promoting teleworking.48 Transport 
modal shift from cars to walking, cycling, and public 
transport48 can be promoted by cultivating citizens’ travel 
habits to adopt more green transport, through providing 
incentives and information on the health benefits.52 Such 
incentives are widely implemented in cities throughout 
the world to increase car ownership costs, limit car access 
in city centres, and increase investment for walking and 
cycling infrastructure.53–55

The sensitivity analysis suggests that the geographical 
distribution of the population has a fundamental effect 

on health burden: radical interventions, such as 
relocating vulnerable groups to less polluted areas, could 
therefore potentially reduce aggregate exposure. The 
results also suggest that relying solely on mitigation in 
passenger transport cannot achieve air quality standards 
within China’s Ambient Air Quality Standard level II 
(35 μg/m³),34 even with deep decarbonisation measures. 
Consequently, comprehensive mitigation actions across 
all polluting sectors are urgently required.
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