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A Bayesian approach for the estimation of weight
matrices in spatial autoregressive models

Tamás Krisztin a and Philipp Piribauer b

ABSTRACT
We develop a Bayesian approach to estimate weight matrices in spatial autoregressive (or spatial lag)
models. Datasets in regional economic literature are typically characterized by a limited number of time
periods T relative to spatial units N. When the spatial weight matrix is subject to estimation severe
problems of over-parametrization are likely. To make estimation feasible, our approach focusses on
spatial weight matrices which are binary prior to row-standardization. We discuss the use of hierarchical
priors which impose sparsity in the spatial weight matrix. Monte Carlo simulations show that these priors
perform very well where the number of unknown parameters is large relative to the observations. The
virtues of our approach are demonstrated using global data from the early phase of the COVID-19
pandemic.

KEYWORDS
estimation of spatial weight matrix, spatial econometric model, Bayesian Markov chain Monte Carlo
(MCMC) estimation, Monte Carlo simulations, COVID-19 pandemic
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1. INTRODUCTION

Spatial econometrics deals with the study of cross-sectional dependence and interactions among
(spatial) observations. A particularly popular spatial econometric model is the spatial autoregres-
sive (or spatial lag) specification, where spatial interdependence between observations is governed
by a so-called spatial weight matrix. The spatial weight matrix is typically assumed non-negative,
row-standardized and exogenously given, with spatial weights based on some concept of neigh-
bourhood. Geographic neighbourhood is often preferred due to exogeneity assumptions. How-
ever, when relying on geographical information, several competing approaches exist for
constructing the weight matrix (for a thorough discussion, see LeSage & Pace, 2009). Recently,
Kelejian and Piras (2014), Qu and Lee (2015), Han and Lee (2016), and Hsieh and Lee (2016)
use alternative measures, such as (socio-)economic proximity. Another strand of the literature
focuses on the uncertainty associated with the choice of neighbourhood structures by selecting
or combining alternative weight matrices (e.g., Debarsy & LeSage, 2018; Piribauer & Cuaresma,
2016).
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Since direct estimation of a spatial weight matrix requires estimating at least (N − 1)N par-
ameters (ignoring the other model parameters), only few approaches target direct estimation of
spatial weight matrices. Recently, Ahrens and Bhattacharjee (2015) and Lam and Souza (2020)
tackled this problem through Least Absolute Shrinkage and Selection Operator (LASSO)-based
approaches (Tibshirani, 1996), which involve (a priori) expert knowledge about the interactions
between spatial units, while allowing the final estimates of the spatial weights to slightly deviate
from it.1 However, for regional economic panels, where the time dimension T is often limited
relative to the number of spatial observations N , estimation results in a deleterious proliferation
of the number of parameters.

In this paper we describe a novel and flexible Bayesian approach for estimation of spatial
weight matrices. Our definition of spatial weight matrices fulfils the typical assumptions
employed in the vast majority of the spatial econometric literature. The resulting spatial weight
matrices are assumed non-negative and specific requirements to identification of the parameters
can be easily implemented in a Markov chain Monte Carlo (MCMC) sampling strategy.
Although our primary focus is on row-standardized spatial weight matrices, weights without
row-standardization are also implementable. To make our estimation approach applicable to
spatial panels where the number of time periods T is limited as compared with the number of
spatial units N , we focus on spatial weight matrices which are binary prior to potential row-
standardization.

In this paper we primarily focus on scenarios where no a priori information on the spatial
structure is available. However, we also discuss how a priori spatial information can be
implemented in a very simple and transparent way. For cases where the number of unknown par-
ameters is large relative to the number of observations, we discuss hierarchical prior set-ups
which impose sparsity in the weight matrix. In a Monte Carlo study, we show that these sparsity
priors perform particularly well when the number of spatial observations N is large relative to the
time periods T .

We show that our approach can be implemented in an efficient Gibbs sampling algorithm,
which implies that the estimation strategy can be easily extended to other spatial econometric
specifications. Among several others, such extensions include shrinkage estimation to avoid over-
parameterization (Piribauer & Cuaresma, 2016), more flexible specifications of the innovation
process (LeSage, 1997), controlling for unobserved spatial heterogeneity (Cornwall & Parent,
2017; Piribauer, 2016), or allowing for non-linearity in the slope parameters (Basile, 2008; Krisz-
tin, 2017). Moreover, it is worth noting that the proposed approach can be easily adapted to
matrix exponential spatial specifications (LeSage & Pace, 2007), spatial error specifications
(LeSage & Pace, 2009), or local spillover models (Vega & Elhorst, 2015).

The rest of the paper is organized as follows. The next section outlines the panel version of
the considered spatial lag model. The following section discusses the Bayesian estimation
approach of the spatial weights along with several potential prior set-ups. The next section pre-
sents the Bayesian MCMC estimation algorithm and also discusses how to efficiently deal with
the computational difficulties when updating the spatial weights in the MCMC sampler. The
accuracy of the sampling procedure via a Monte Carlo simulation study is assessed in the follow-
ing section. Next, we illustrate our approach using data on global infection rates of the very first
phase of the recent COVID-19 pandemic. The final section concludes.

2. ECONOMETRIC FRAMEWORK

We consider a panel version of a global spillover spatial autoregressive model (SAR) of the form:2

yt = rWyt + m+ tt + Ztb0 + 1t , t = 1, . . . , T (1)
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where yt denotes anN × 1 vector of observations on the dependent variable measured at period t;
m and tt represent parameters associated with fixed effects for the N spatial units and T time
periods, respectively; Zt is an N × q0 full rank matrix of explanatory variables, with correspond-
ing q0 × 1 vector of slope parameters b0; and 1t is a standard N × 1 disturbance term
1t � N (0, s2IN ).

The N ×N matrix W denotes a spatial weight matrix and r is a (scalar) spatial dependence
parameter.W is non-negative with wij . 0 if observation j is considered as a neighbour to i, and
wij = 0 otherwise. A vital assumption is also that wii = 0, in order to avoid the case that an
observation is assumed as a neighbour to itself. A frequently made assumption amongst prac-
titioners is thatW is row-stochastic with rows summing to unity. In this paper we mainly present
results relating to row-stochastic weight matrices. However, as the decision on row-standardiz-
ing W depends on the empirical application, it is worth noting that the proposed approach may
be easily adapted to problems without row-standardization of W .3

The reduced form of the SAR model is given by:

yt = (IN − rW )−1(m+ tt + Ztb0 + 1t), (2)

where (IN − rW )−1 = ∑1
r=0 r

rW r is a so-called spatial multiplier matrix. To ensure that
(IN − rW ) is invertible, appropriate stability conditions need to be imposed. For row-stochastic
spatial weight matrices, a sufficient stability condition for the spatial autoregressive parameter
often employed is r [ (−1, 1) (e.g., LeSage & Pace, 2009).

In most cases, the elements of W are typically treated as known. In the spatial econometric
literature, there are various ways to construct such a spatial weight matrix. In this study we focus
on the estimation of weight matrices which are binary prior to row-standardization. We there-
fore assume that the typical element of our spatial weight matrix can be obtained from an
unknown N ×N spatial adjacency matrix V (with typical element vij).

4 We therefore define
W = f (V), where f ( · ) denotes the row-standardization function:5

wij = vij/
∑N
j=1

vij if
∑N
j=1

vij . 0

0 otherwise.

⎧⎪⎨⎪⎩ (3)

The elements of the adjacency matrix V are assumed as unknown binary indicators, which are
subject to estimation. It is worth noting that the assumption of a binary V covers a wide
range of specifications commonly used in the literature such as contiguity, distance band or near-
est neighbours (e.g., LeSage & Pace, 2009).

To alleviate further notation, we collect the respective dummy variables associated with the
fixed effects along with the explanatory variables in an N × q matrix Xt with corresponding
q × 1 parameter vector b. Moreover, define Y = [y

′
1, . . . , y

′
T ]

′
, X = [X

′
1, . . . , X

′
T ]

′
and

S = IT ⊗ (IN − rW ) and D = {Y , X } denotes the data. The Gaussian likelihood p(D|†) is
then given by:

p(D|†) = 1

(2ps2)NT
|S| exp − 1

2s2
(SY − Xb)

′
(SY − Xb)

[ ]
. (4)

When the elements of the spatial weight matrix are subject to estimation, the number of
unknown parameters is likely much larger than the number of observations. Since spatial econ-
omic panels often feature limited T relative to N , the proposed estimation approach has to
address the issue of over-parametrization. We discuss different ways to tackle this problem.
First and foremost, one may reduce the dimensionality of the problem by imposing a priori
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information on spatial weights or assuming symmetry of the spatial neighbourhood structure.
Alternatively, we consider hierarchical prior set-ups which impose sparsity in the weight matrix.

When estimating spatial weights in addition to the spatial and slope parameters, identifi-
cation issues are more complicated as compared with models assuming exogenous spatial
weights. We therefore follow De Paula et al. (2019), who provide a thorough discussion on par-
ameter identification for rather general SAR model specifications. As mentioned above, we con-
sider spatial weight matrices which are non-negative and wii = 0 for all i. Further standard
assumptions include

∑N
j=i |rwij | , 1 ∀i, |r| , 1 and ||W || , C for some positive C [ N, as

well as b0r = 0. As an additional identifying assumption, it is important that the main diagonal
elements of W 2 are not proportional to a vector of ones.6 Sufficient conditions for global identi-
fication are fulfilled if we make the additional assumption of r . 0 (De Paula et al., 2019, cor-
ollary 3). Without this additional restriction on r, De Paula et al. (2019) show that a strongly
connected spatial network for global identification is needed. Since strong a priori information
on the spatial weight matrix is often not available (or desired), we therefore assume r [ (0, 1)
and only consider positive spatial autocorrelation, which is a typical assumption for empirical
applications.7

3. BAYESIAN ESTIMATION OF W

In this paper we use a Bayesian estimation approach to obtain estimates and inference on the
unknown quantities r, b, s2, as well as the elements of V. After eliciting suitable priors for
the unknown parameters, we employ a computationally efficient MCMC algorithm.

Let p(vij = 1) denote the prior belief in including the ijth element of the spatial weight
matrix. Conversely, for a proper prior specification the prior probability of exclusion is then
simply given by p(vij = 0) = 1− p(vij = 1). With V−ij denoting the elements of the neigh-
bourhood matrix without vij , the posterior probabilities of vij = 1 and vij = 0 conditional on
all other parameters are given by:

p(vij = 1|V−ij , b, s
2, r, D)/ p(vij = 1)|S1| exp − 1

2s2
(S1Y − Xb)

′
(S1Y − Xb)

[ ]
p(vij = 0|V−ij , b, s

2, r, D)/ p(vij = 0)|S0| exp − 1

2s2
(S0Y − Xb)

′
(S0Y − Xb)

[ ]
,

(5)

where S1 and S0 are given by S through updating the spatial weight matrixW via setting vij = 1
and vij = 0, respectively.8 Using the law of total probability, it is straightforward to show that the
resulting conditional posterior for vij is Bernoulli:

p(vij |V−ij , b, s
2, r, D) � BER

�p(1)ij

�p(0)ij + �p(1)ij

( )
, (6)

with �p(1)ij = p(vij = 1|V−ij , b, s
2, r, D) and �p(0)ij = p(vij = 0|V−ij , b, s

2, r, D) given in
equation (5). Since the conditional posterior follows a convenient and well-known form, efficient
Gibbs sampling can be employed.

A Bayesian estimation framework requires elicitation of a prior onV. Obvious candidates are
independent Bernoulli priors on the unknown indicators vij :

p(vij) � BER( p
ij
), (7)
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where p
ij
denotes the prior inclusion probability of vij , p(vij = 1) = p

ij
. Conversely, the prior

probability of exclusion then simply takes the form p(vij = 0) = 1− p
ij
.

A natural prior choice would involve setting p
ij
= p = 1/2 for i = j, and 0 otherwise, which

implies that each off-diagonal element in V has an equal prior chance of being included. How-
ever, in many cases a researcher has possible a priori information on the underlying structure of
the spatial weight matrix. The following stylized examples demonstrate how to incorporate such
information in a flexible and straightforward way.

Figure 1 illustrates the flexibility of prior elicitation for V in the case of a ‘linear city’ with
N = 15 equidistant regions. Case A shows a prior specification without any prior uncertainty
on the elements of W by setting p

ij
= 1 if i and j are considered as neighbours and 0 otherwise.

Figure 1. Some stylized prior examples for W in a linear city.
Notes: Alternative prior set-ups for a linear city of N = 15 spatial observations. Case A shows a prior
specification without any prior uncertainty on the spatial links. This set-up implies an exogenous W
and no estimation of the weights is involved. Case B involves no spatial prior information and each
element has a prior probability of inclusion p

ij
= 1/2∀i = j. Case C shows uncertainty of the linkages

in W only within a certain spatial domain. Case D is a stylized prior specification considering uncer-
tainty among two (or more) weight matrices, with setting pij = 1 in regions where the two matrices
overlap.

A Bayesian approach for the estimation of weight matrices in spatial autoregressive models 5
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In this case, no estimation on the spatial links is involved and the model reduces to a standard
SAR model with an exogenously given W (in this example, a distance band specification).

Case B depicts the opposite case where no prior spatial information is available. Specifically,
this case considers full estimation of all N 2 −N potential links with respective prior inclusion
probability p

ij
= 1/2 for i = j.

Subplots C and D in Figure 1 depict prior set-ups where a priori spatial information is avail-
able to the researcher, but associated with uncertainty. Case C illustrates a prior where the gen-
eral spatial domain is assumed as being a priori known, but uncertainty over specific linkages
exists. In empirical practice, spatial weight matrices based on geographical information are
often viewed as being preferable due to exogeneity assumptions to (socio-)economic data. The
illustrated prior specification follows this idea by still allowing for uncertainty and flexibility
among the spatial neighbourhood.

Recent contributions to spatial econometric literature propose selecting (Piribauer & Cuar-
esma, 2016) or combining (Debarsy & LeSage, 2018) multiple exogenous spatial weight
matrices. Case D follows a similar idea by depicting a mixture of a distance band and a contiguity
matrix (i.e., neighbourhood if regions share a common border). The intersecting elements of the
two spatial structures (resulting in a contiguity matrix) are assumed as being included by setting
pij = 1.

3.1. Hierarchical prior set-ups and sparsity
The prior structure in equation (7) involves fixed inclusion probabilities p, which implies that the

number of neighbours of observation i follows a Binomial distribution
∑N−1

l=1 vil �
BN (N − 1, p) with a prior expected number of neighbours of (N − 1) p. However, such a

prior structure has the potential undesirable effect of promoting a relatively large number of
neighbours. For example, when p = 1/2, the prior expected number of neighbours is

(N − 1)/2, since combinations of vij resulting in such a neighbourhood size are dominant in

number.
To put more prior weight on parsimonious neighbourhood structures and therefore promote

sparsity in the adjacency matrix, one may explicitly account for the number of linkages in each
row of the adjacency matrix vi = [vi1, . . . , viN ]

′
. We consider a flexible prior structure on

the number of neighbours
∑

vi that corresponds to a beta-binomial distribution
BB(N − 1, av, bv) with two prior hyperparameters av, bv . 0. The beta-binomial distribution
is the result of treating the prior inclusion probability p as random (rather than being fixed) by
placing a hierarchical beta prior on it. For vij , the resulting prior can be written as follows:

p(vij)/ G(aw +
∑

vi)G(bv + (N − 1)−
∑

vi), (8)

where G( · ) denotes the Gamma function, and av and bv are prior hyperparameters.
In the case of av = bv = 1, the prior takes the form of a discrete uniform distribution over the

number of neighbours. By fixing av = 1, we follow Ley and Steel (2009) and anchor the prior
expected number of neighbours m via bv = [(N − 1)− m]/m.

4. BAYESIAN MCMC ESTIMATION OF THE MODEL

This section presents the BayesianMCMC estimation algorithm for the proposed modelling fra-
mework. Estimation is carried out using an efficient Gibbs sampling scheme. The only exception
is the sampling step for the spatial (scalar) autoregressive parameter r, where we propose using a
standard Griddy–Gibbs step.9 The sampling scheme involves the following steps:

6 Tamás Krisztin and Philipp Piribauer
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. Set starting values for the parameters (e.g., by sampling from the prior distributions).

. Sequentially update the parameters by subsequently sampling from the conditional posterior
distributions presented in this section.

The second step is repeated for B times after discarding the first B0 draws as burn-ins.

4.1. Sampling b and s2

For the slope parameters b and the error variance s2 we use common Normal and inverted
Gamma prior specifications, respectively. Specifically, p(b) � N (0, V b) and
p(s2) � IG(as2 , bs2 ), where V b, as2 and bs2 denote prior hyperparameters.

The resulting conditional posterior distribution is Gaussian and of well-known form (e.g.,
LeSage & Pace, 2009):

p(b|s2, r, V, D) �N (bb, V b)

bb = s−2V bX ′SY

V b = (s−2X ′X + V−1
b )−1

.

(9)

The conditional posterior of s2 is inverted Gamma:

p(s2|b, r, V, D) � IG(�as2 , �bs2 )

�as2 = as2 + NT/2

�bs2 = bs2 + (SY − Xb)′(SY − Xb).

(10)

4.2. Sampling r
For the spatial parameter r, we use a standard Beta distribution (LeSage & Pace, 2009, p. 142).
The conditional posterior is given by:

p(r|b, s2, V, D)/ p(r)|S| exp − 1

2s2
(SY − Xb)

′
(SY − Xb)

[ ]
. (11)

Note that the conditional posterior for r does not follow a well-known form and thus requires
alternative sampling techniques. We follow LeSage and Pace (2009) and use a Griddy–Gibbs
step (Ritter & Tanner, 1992) to sample r.10

4.3. Sampling the elements of the adjacency matrix V
As discussed in the previous section, we propose two alternative prior specifications for the
unknown indicators of the spatial weight matrix vij . First, an independent Bernoulli prior struc-
ture with fixed inclusion probabilities (7). Second, a hierarchical prior structure which treats the
inclusion probabilities as random (8). After eliciting the prior, the binary indicators vij can be
sequentially sampled in random order from a Bernoulli distribution with conditional posterior
given in (6).

4.4. Fast computation of the determinant terms
For the Bayesian MCMC algorithm, it is worth noting that repeated sampling from equation (6)
is required. However, this requires evaluating the conditional probabilities p(vij = 1| · ) and
p(vij = 0| · ) in equation (5). The main computational difficulty lies in the calculation of the
determinants |S0| and |S1|, which has to be carried out per Gibbs sampling step for the
N 2 −N unknown elements of the spatial adjacency matrix. The computational costs associated
with direct calculation of these determinants steeply rises with N – in fact by a factor of O(N 3).

A Bayesian approach for the estimation of weight matrices in spatial autoregressive models 7
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This makes direct evaluation of the determinant prohibitively expensive, especially for large
values of N . To avoid direct evaluation, we provide computationally efficient updates for the
determinant, allowing for estimation of models with larger sample sizes.

It is worth noting that it is not necessary to directly calculate the determinant of the
NT ×NT matrix Sz (with z [ {0, 1}). Only the determinant of the N ×N matrix
Az = IN − rWz needs to be updated, since |Sz| = |IT ⊗ Az| = |Az|T . Here, Wz denotes the
spatial weight matrix obtained by setting vij = 1 and vij = 0, respectively.

Direct evaluation of |Az| can be largely avoided, since updating vij changes only the i-th row
of A, if we do not restrict V to be symmetric (we will address this case shortly). To illustrate, let
V(c) denote the current – to be updated – spatial adjacency matrix, andW (c) the associated spatial
weight matrix with determinant |A(c)| = |IN − rW (c)|. Using the so-called matrix determinant
lemma, we can efficiently calculate:

|Az| = |A(c) + nid
′
i| = {1+ d

′
i(A

(c))
−1
ni}|A(c)|.

Where ni is an N × 1 vector of zeros, except for its i-th entry, which is unity. The N × 1 vector
di contains the differences between the i-th row of Az and the i-th row of A(c).

It becomes clear that equation (12) provides a computationally cheap way for updating the
determinant |Az|, conditional on |A(c)| and (A(c))−1. This implies that during the MCMC pro-
cedure, for each update of vij , we have to keep track of the determinant (for which equation
12 provides a simple update) and the inverse of Az. Direct evaluation of A−1

z is – similar to direct
evaluation of the determinant – prohibitively expensive for moderate to largeN , since it has to be
carried out for each unknown element of V. However, we can rely on the so-called Sherman–
Morrison formula to avoid direct evaluation of the matrix inverse:

A−1
z = (A(c) + nid

′
i)
−1 = (A(c))−1 − (A(c))

−1
nid

′
i(A

(c))
−1

1+ d
′
i(A

(c))
−1
ni

. (13)

Combining the formulas in equations (12) and (13) thus provides a numerically cheap and viable
way to update the elements of the spatial adjacency matrix.11

The binary nature of vij can be exploited for additional computational gains. Either A0 or A1

always exactly equals A(c) and thus its determinant and inverse is already known. This only
necessitates calculating |Az| and (Az)

−1 for only z = 1 or for z = 0, but not both.
If a symmetric spatial adjacency matrix V is assumed, the update process remains generally

the same, however the determinant and matrix inverse updates have to be performed iteratively.
In this case, both vij and v ji (for i = j) are set to either 1 or 0. Thus, both the i-th and the j-th
row of Az differ from A(c). Following the notation in the non-symmetric case, let us denote the
differences between these rows as di and dj . To obtain an update of |Az| and A−1

z , we first evaluate
equations (12) and (13), based on di, ni, |A(c)|, and (A(c))−1. Using the resulting determinant and
matrix inverse, as well as nj , and dj , we again evaluate equations (12) and (13), which yield |Az|
and A−1

z .

5. SIMULATION STUDY

To assess the accuracy of our proposed approach, we evaluate its performance in a Monte Carlo
study. Our benchmark data generating process comprises two randomly generated explanatory
variables, as well as spatial unit and time fixed effects:

ỹt = r̃W̃ ỹt + m̃+ t̃t + Z̃tb̃0 + 1̃t .

To maintain succinct notation, we denote the simulated values in the Monte Carlo study with a

8 Tamás Krisztin and Philipp Piribauer
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tilde. The matrix of explanatory variables Z̃t is defined as Z̃t = [z̃1t , z̃2t], where both z̃1t and z̃2t
are normally distributed with 0 mean and variance of 1, q0 = 2. The corresponding vector of
coefficients is defined as b̃0 = [− 1, 1]

′
. The vector of residuals 1̃t is generated from a normal

distribution with 0 mean and s̃2 = 0.5. The fixed effects parameters m̃ and t̃t are randomly gen-
erated from a standard normal distribution.

The row-stochastic spatial weight matrix W̃ is based on an adjacency matrix Ṽ, which is gen-
erated from an N/20 nearest neighbour specification, by additionally assuming symmetry of the
weight matrix prior to row-standardization.12 The nearest-neighbour specification is based on a
randomly generated spatial location pattern, sampled from a normal distribution with 0 mean
and unity variance. In the Monte Carlo study we vary T [ {10, 40} and N [ {20, 100}.
Additionally, we vary the strength of spatial dependence r̃ [ {0.3, 0.5, 0.8}.

For the Monte Carlo simulation study, we compare the following prior set-ups:

. Fixed ( p = 1/2) prior, which corresponds to the fixed Bernoulli prior specification in equation
(7), where we set p = 1/2.

. Sparsity (m = (N−1)/2) prior, which is analogous to the prior set-up in equation (8), with
av = bv = 1. This prior set-up corresponds to a discrete uniform distribution over the num-
ber of neighbours.

. Sparsity (m = N/10) prior set-up, which corresponds to equation (8), with av = 1 and
bv = [(N − 1)− m]/m. We set the number of a priori expected neighbours to m = N/10.
This prior set-up thus imposes more sparsity in V as compared with the former.

For all prior specifications under scrutiny, we consider two alternative estimation set-ups by
assuming that the adjacency matrix is either symmetric or non-symmetric.13 We moreover report
the predictive performance of two alternative specifications using exogenous weight matrices. In
these cases the employed weights are based on the true (symmetric) adjacency matrix by fixing the
accuracy to the 99% and 95% level, respectively. We simulate such cases by randomly switching
1% and 5% of the elements in the true binary adjacency matrix Ṽ, respectively. The resulting
exogenous adjacency matrices thus result in exactly 99% and 95% overlap in the binary obser-
vations with the true adjacency matrix, while maintaining the same level of sparsity.

The prior set-up for our remaining parameters is as follows. We assume a Gaussian prior for
b with 0 mean and a variance of 100. We use an inverse gamma prior for s2 with rate and shape
parameters 0.01. The prior for the spatial autoregressive parameter r is a symmetric Beta speci-
fication with shape and rate parameters equal to 1.01. The chosen priors can thus be considered
highly non-informative.

In Table 1 we use several criteria to evaluate the performance of the alternative specifications.
For the spatial autoregressive and the slope parameters we report the well-known root mean
squared error (RMSE). For assessing the ability to estimating the spatial adjacency matrix, we
use the measure of accuracy. The accuracy measure is defined as the sum of correctly identified
unknown elements, divided by the number of total elements to be estimated. This measure is
calculated separately for each posterior draw. The reported value is an average over all posterior
draws and Monte Carlo iterations.

Table 1 summarizes the results of our Monte Carlo simulation. For all combinations ofN , T ,
r̃ under scrutiny, it presents the respective RMSE for both the slope coefficients b and the spatial
autoregressive parameter. The third block shows the accuracy of the estimated adjacency matrix
V. Lower values in terms of RMSEs indicate outperformance. Conversely, for accuracy in V
higher values indicate outperformance. The best performance among the three employed prior
scenarios within a subgroup is highlighted in bold. In addition, the last two columns in Table
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Table 1. Monte Carlo simulation results.

N T r̃ Non-symmetric Symmetric Exogenous

Fixed Sparsity Sparsity Fixed Sparsity Sparsity W

p = 1/2 m = N/2 m = N/10 p = 1/2 m = n/2 m = n/10 0.99 0.95

RMSE(b) 20 40 0.3 0.193 0.161 0.163 0.162 0.163 0.164 0.168 0.176

0.5 0.172 0.173 0.172 0.170 0.169 0.171 0.179 0.216

0.8 0.169 0.169 0.169 0.165 0.166 0.167 0.287 0.553

10 0.3 0.234 0.207 0.198 0.203 0.182 0.181 0.192 0.204

0.5 0.257 0.210 0.206 0.189 0.191 0.190 0.206 0.253

0.8 0.217 0.216 0.217 0.205 0.204 0.206 0.371 0.658

100 40 0.3 0.098 0.099 0.097 0.099 0.099 0.098 0.079 0.080

0.5 0.144 0.088 0.083 0.145 0.114 0.076 0.084 0.086

0.8 0.154 0.087 0.088 0.073 0.081 0.081 0.089 0.141

10 0.3 0.111 0.112 0.111 0.111 0.111 0.112 0.092 0.093

0.5 0.135 0.118 0.104 0.135 0.136 0.118 0.088 0.094

0.8 0.346 0.143 0.140 0.254 0.102 0.102 0.100 0.151

RMSE(r) 20 40 0.3 0.199 0.029 0.031 0.030 0.029 0.030 0.034 0.060

0.5 0.035 0.040 0.042 0.035 0.035 0.035 0.039 0.083

0.8 0.021 0.021 0.022 0.018 0.018 0.018 0.084 0.177

10 0.3 0.237 0.152 0.094 0.291 0.147 0.106 0.058 0.080

0.5 0.155 0.060 0.054 0.109 0.053 0.051 0.059 0.114

0.8 0.027 0.032 0.032 0.028 0.028 0.029 0.097 0.179

100 40 0.3 0.280 0.283 0.277 0.279 0.283 0.287 0.027 0.033

0.5 0.447 0.109 0.101 0.446 0.353 0.220 0.021 0.054

0.8 0.148 0.044 0.047 0.049 0.024 0.024 0.034 0.097

10 0.3 0.242 0.256 0.268 0.245 0.252 0.274 0.050 0.062

0.5 0.373 0.176 0.141 0.371 0.391 0.404 0.041 0.074
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0.8 0.473 0.106 0.110 0.169 0.141 0.137 0.044 0.105

Accuracy V 20 40 0.3 0.648 0.930 0.954 0.963 0.982 0.983 0.990 0.950

0.5 0.983 0.988 0.989 0.998 0.998 0.998 0.990 0.950

0.8 0.995 0.995 0.995 0.999 1.000 0.999 0.990 0.950

10 0.3 0.554 0.752 0.866 0.679 0.875 0.904 0.990 0.950

0.5 0.734 0.898 0.931 0.915 0.962 0.967 0.990 0.950

0.8 0.975 0.983 0.984 0.996 0.997 0.997 0.990 0.950

100 40 0.3 0.530 0.713 0.847 0.539 0.686 0.848 0.990 0.950

0.5 0.530 0.898 0.929 0.539 0.793 0.933 0.990 0.950

0.8 0.847 0.966 0.966 0.978 0.977 0.977 0.990 0.950

10 0.3 0.530 0.713 0.844 0.539 0.685 0.846 0.990 0.950

0.5 0.530 0.746 0.883 0.539 0.702 0.905 0.990 0.950

0.8 0.531 0.926 0.933 0.564 0.944 0.944 0.990 0.950

Note: Results are based on 1000Monte Carlo iterations. For each, the corresponding sampling algorithms are run using 500 draws, where the initial 500 were discarded as burn-in. The values
given for RMSE(b) and RMSE(r) correspond to the average root mean squared error over all Monte Carlo iterations. Bold values denote the best performing specification within a section
(symmetric or non-symmetric). The exogenous V specifications correspond to classic SAR models with randomly perturbed exogenous adjacency matrices, which have an accuracy of
99% and 95% compared with the true adjacency matrix. For RMSEs, lower values indicate outperformance. Conversely, for the accuracy indicators of V, higher values indicate
outperformance.
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1 show the results for the benchmark SAR models using exogenous randomly perturbed adja-
cency matrices with accuracy fixed at the 99% and 95% levels, respectively.

Intuitively, the precision of the estimation improves as the number of observations NT
increases in proportion to the number of unknown parameters.14 The results in Table 1 largely
confirm this intuition. The performance indicators for both r andV also clearly improve for high
levels of spatial autocorrelation (r = 0.8). In scenarios where the number of unknown parameters
is smaller than the number of observations our approach even manages to outperform both rather
hard benchmarks using exogenous spatial weight matrices close to the true Data Generating Pro-
cess (DGP). This relative outperformance appears particularly pronounced when the strength of
spatial dependence r is large. In these settings, symmetric specifications (which resemble the true
DGP) even manage to produce accuracy in the adjacency matrix close to unity.

Particularly interesting results appear in the most challenging Monte Carlo scenarios, where
the number of unknown parameters is particularly large relative to the number of observations
(N = 100 and T = 10). In these scenarios, the number of parameters to be estimated exceeds
the number of observations by a factor of more than 10. In these cases, prior specifications with-
out using shrinkage appear to fail estimating the underlying spatial structure by producing rather
poor accuracy measures. However, when employing sparsity priors, Table 1 reveals that our
approach still manages to produce relatively accurate predictive results. In the existence of pro-
nounced spatial autocorrelation, the sparsity specifications even manage to closely track the pre-
dictive performance of the rather tough exogenous benchmarks.

Note that the symmetric specifications (where we impose vij = v ji) typically outperform
their non-symmetric counterparts due to their resemblance to the true DGP. However, for set-
tings where the number of unknown parameters is smaller than the number of observations both
scenarios track each other closely. Among the alternative prior specifications under scrutiny,
Table 1 shows rather similar results (no clear best specification emerges) in scenarios where N
is small relative to T . However, for particularly over-parametrized settings (high N and low
T ) the proposed sparsity priors particularly outperform the fixed set-ups. Specifically, even in
the scenario with N = 100 and T = 10, the sparsity priors still perform comparatively well.15

6. EMPIRICAL ILLUSTRATION

To illustrate our proposed approach using real data, we estimate spatial panel specifications based
on country-specific daily infection rates in the very early phase of the coronavirus pandemic. We
use the COVID-19 data set provided by Johns Hopkins University (Dong et al., 2020). The
database contains information on (official) daily infections for a large panel of countries around
the globe. For the empirical illustration, we focus on the very beginning of the outbreak by using
data from 17 February to 20 April 2020.

The starting date of our sample marks the beginning of the pandemic in major countries, such
that large parts of Asia, Europe and North America can be included.16 The choice of the end date
is motivated by the results of Krisztin et al. (2020), where the degree of spatial dependence
among infections rates becomes insignificant after 20 April, when the majority of countries in
the sample implemented lockdown policies.

For the empirical application we use data for the following countries: Australia (AUS), Bah-
rain (BHR), Belgium (BEL), Canada (CAN), China (CHN), Finland (FIN), France (FRA),
Germany (DEU), Iran (IRN), Iraq (IRQ), Israel (ISR), Italy (ITA), Japan (JPN), Kuwait
(KWT), Lebanon (LBN), Malaysia (MYS), Oman (OMN), Republic of Korea (KOR), Russian
Federation (RUS), Singapore (SGP), Spain (ESP), Sweden (SWE), Thailand (THA), United
Arab Emirates (ARE), United Kingdom (GBR), United States of America (USA) and Viet
Nam (VNM).
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By including a biweekly time lag, our resulting panel thus comprises N = 27 countries across
the globe for a period of T = 19 days.17 We follow the work of Guliyev (2020), Krisztin et al.
(2020) and Han et al. (2021), among others, and use panel versions of a spatial growth specifica-
tion for the country-specific COVID-19 infections:

yt = m+ tt + rWyt−r + xt−14b+ Zt−14b0 + 1t , (14)

where yt = xt − xt−14, and xt is anN × 1 vector comprising the (logged) daily number of official
cases per 100,000 inhabitants per country for time period t = 1, . . . , T .18 m and tt represent
fixed effects for the countries and the time periods, respectively. W denotes the spatial weight
matrix with spatial autoregressive parameter r as defined before. We again primarily focus on
row-stochastic weight matrices. Results based on spatial weight matrices without row-standard-
ization are presented in the Appendix in the supplemental data online.

We also consider alternative model specifications using contemporaneous as well as temporal
lags of the spatial lag (Wyt−r with r [ {0, 14}). A plethora of recent studies exploit the contem-
poraneous spatial information (r = 0) for modelling the spread of COVID-19 infections (e.g.,
Guliyev, 2020; Han et al., 2021; Jaya & Folmer, 2021; Kosfeld et al., 2021; Krisztin et al.,
2020). Using contemporaneous spatial information appears reasonable when the primary interest
lies in quantifying spatial co-movements of infection rates. However, for many questions of
interest, a temporal spatial lag Wyt−r (r . 0) might be an interesting alternative since it reflects
the notion that the spatial process of virus transmission takes some time to manifest (Elhorst,
2021; Mitze & Kosfeld, 2022). Since our proposed estimation approach can be easily applied
to these alternative specifications, we provide estimates for both specifications.19

In addition to the Initial infections variable xt−14, matrix Zt−14 contains three explanatory
variables on a daily basis. Several studies emphasize the importance of climatic condition on
the COVID-19 virus spread. For a survey on the effects of climate on the spread of the
COVID-19 pandemic, see Briz-Redón and Serrano-Aroca (2020). We therefore use daily
data on the country specific maximum measured temperature (Temperature) and precipitation
levels (Precipitation) as additional covariates. Both variables stem from a daily database of

Table 2. Estimation results for benchmark specifications.
Wyt Wyt−14

Fixed Sparsity Fixed Sparsity

Mean SD Mean SD Mean SD Mean SD

Initial infections −0.8761 0.0117 −0.9244 0.0117 −0.9533 0.0126 −0.9911 0.0114

Stringency −0.4566 0.0736 −0.5661 0.0451 −0.2503 0.0858 0.0616 0.0410

Precipitation 0.0365 0.0339 −0.0444 0.0335 0.0541 0.0608 0.0483 0.0511

Temperature −0.0014 0.0015 −0.0016 0.0015 −0.0032 0.0026 −0.0017 0.0025

r 0.6319 0.0129 0.5592 0.0101 0.9618 0.0110 0.9481 0.0139

s2 0.0187 0.0013 0.0209 0.0014 0.0401 0.0034 0.0516 0.0036

Average no. of

neighbours

7.8370 3.6083 4.2849 2.8082

Fixed effects Yes Yes Yes Yes

N 27 27 27 27

T 19 19 19 19

Note: Posterior quantities based on 5000 MCMC draws, where the first 2500 were discarded as burn-ins. Values in bold
denote significance under a 90% posterior credible interval.
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country-specific data, which was compiled via the Dark Sky API.20 As a third variable, we also
include the well-known stringency index (Stringency) put forward by Hale et al. (2020), which
summarizes country-specific governmental policy measures to contain the spread of the virus. In
this application, we use the biweekly average of the reported stringency index. Since all these
influences arguably require some time to be reflected in the official infection figures, we use a
biweekly lag of 14 days (in accordance with r in alternative variants).21

Table 2 presents a summary of the estimation results. The left part shows results for specifications
using a contemporaneous spatial lagWyt , while the right part summarizes results for the caseWyt−14.

For each specification, the first rows contain the posterior mean and standard deviations for
the slope parameters followed by estimates of r and s2. Posterior quantities which appear signifi-
cantly different from zero using a 90% posterior credible interval are depicted in bold. Table 2

Figure 2. Posterior inclusion probabilities for benchmark specifications.
Note: Posterior inclusion probabilities of spatial links are based on 5000 MCMC draws. Inclusion prob-
abilities 0.50–0.75 (little evidence for inclusion) are coloured grey. Strong evidence for inclusion (>
0.75) coloured black.
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moreover presents the average posterior expected number of neighbours, which is given by the
average row sum of the matrix of posterior inclusion probabilities based on p(vij = 1|D). This
measure can be viewed as a measure of sparsity in the estimated matrix of linkages. All specifica-
tions moreover contain fixed effects for both N and T .22

Table 2 shows rather similar r and s2 posterior quantities for the flat and the sparsity prior.
However, there appear some marked differences between the specifications Wyt and Wyt−14. In
all cases, spatial dependence appears strong and precisely estimated, but appears particularly high
in the temporal lag specificationWyt−14. However, Table 2 similarly reveals higher estimates for
the nuisance parameter s2 for the temporal spatial lag models. It shows rather precise and nega-
tive coefficients for the initial infections variable, indicating conditional convergence patterns.
For most model variants, Table 2 moreover suggests a significant negative impact of the strin-
gency index on infection growth. The majority of the slope parameter estimates associated
with the variables temperature and precipitation appear more muted and insignificant. Overall,

Figure 3. Trace plots for benchmark specifications.
Note: Posterior draws are based on 5000 MCMC draws, where the first 2500 were discarded as burn-
ins.
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Table 2 moreover clearly demonstrates that a hierarchical prior set-up can enforce sparsity in the
resulting adjacency matrix. Both sparsity specifications result in an average number of neighbours
smaller than the models with fixed prior specifications.

Figure 2 depicts the posterior inclusion probabilities p(vij = 1|D) for the considered specifi-
cations. To better visualize the results we have reordered the countries by their longitudes, start-
ing with Canada and the United States and ending with Southeast Asian countries, Australia and
Japan. Clusters along the main diagonal thus roughly indicate geographic spatial linkages. For
the sake of visualization, we distinguish between negligible evidence for inclusion (, 0.50;
white colour), moderate evidence (0.50− 0.75; grey colour), and strong evidence (. 0.75;
black colour).

The two upper plots in Figure 2 depict posterior inclusion probabilities p(vij = 1|D) for the
specifications involving a contemporaneous spatial lagWyt , while the lower part shows temporal
spatial lag specificationsWyt−14. In both cases, the left subplots present results based on indepen-
dent prior inclusion probabilities of p = 1/2. The right plots are based on sparsity priors using
m = 7. The columns in the subplots indicate marginal posterior importance of the countries as
predictors of coronavirus infections in linked countries. Conversely, rows depict the countries to
be predicted. The results using sparsity priors generally produce similar patterns as the fixed prior
specifications and clearly demonstrate its ability of dimension reduction in the connectivity struc-
ture. For the contemporaneous spatial lag specification (upper plots), Figure 2 suggests a slightly
more pronounced regional dependency structure as compared with the temporal spatial lags.
Moreover, it reveals marked spill-out effects from Asian countries, as well as from Iran and
Italy.23

Results based on a biweekly temporal spatial lagWyt−14 show even more pronounced spill-out
effects from Asian countries (most notably China, Republic of Korea and Singapore).24 For
European countries, results similarly suggest Italy as a further important source country of spatial
virus transmission. The estimated spatial linkages are thus in close agreement with the actual ori-
gins of the overall virus transmission for the very early period of the global outbreak of the
pandemic.

To showcase convergence of the posterior MCMC chains, Figure 3 depicts trace plots for r,
s2, and slope parameters. Overall, the trace plots show rather good mixing and convergence
properties. Convergence of the chains have moreover been checked using the diagnostics pro-
posed by Geweke (1992) implemented in the R package coda (Plummer et al., 2006). Results
moreover appear rather robust concerning alternative modelling frameworks. Estimation results
of these alternative specifications are presented in the Appendix in the supplemental data
online.25

7. CONCLUSIONS

In this paper we propose a Bayesian approach for estimation of weight matrices in spatial econo-
metric models. A particular advantage of our approach is the simple integration into a standard
Bayesian MCMC algorithm. The proposed framework can therefore be adapted and extended in
a simple and computationally efficient way to cover a large number of alternative spatial specifi-
cations prevalent in recent literature. Our approach may thus be easily extended to cover inter alia
non-Gaussian models such as spatial probit (LeSage et al., 2011) or logit specifications (Krisztin
& Piribauer, 2021), local spillover models (Vega & Elhorst, 2015), or spatial error models
(LeSage & Pace, 2009).

Our approach does not necessarily rely on specific prior information for the spatial linkages.
Spatial information, however, can be easily implemented in a flexible and transparent way. We
moreover motivate the use of hierarchical priors which impose sparsity in the resulting spatial
weight matrix. These sparsity priors are particularly useful in applications where the number
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of unknown parameters exceeds those of the observations. The virtues of our approach comes at
the price that we focus on spatial neighbourhood structures which are binary (prior to row-stan-
dardization). However, this assumption is implicitly assumed in many spatial applications in the
regional economic literature where spatial weight matrices are constructed based on concepts of
contiguity, distance band or nearest neighbours.

Based on Monte Carlo simulations, we show that our approach appears particularly promis-
ing when the number of spatial observationsN is large relative to the time dimension T , which is
a rather common characteristic of data sets in the regional science literature. We moreover
demonstrate the usefulness of our approach using real data on the outbreak of the COVID-19
pandemic. The results of this empirical application corroborate the findings in the Monte
Carlo simulation study that the proposed approach performs well even in the cases of high
over-parametrization.
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NOTES

1 Ahrens and Bhattacharjee (2015) consider the case of sparsity in the spatial weights by
employing shrinkage towards the zero matrix.
2 We also consider specifications with a spatial lag of the temporally lagged dependent variable.
Sampling strategies for these cases are presented in the Appendix in the supplemental data
online.
3 For thorough discussions of the implications of row-standardization, see Plümper and Neu-
mayer (2010) and Liu et al. (2014).
4 Equation (3) implies some observations may have zero neighbours. However, priors on the
number of neighbours can be easily elicited to rule out such situations. Moreover, a researcher
might easily abstain from row-standardization by neglecting the transformation in equation (3).
5 The function f ( · ) may simply be dropped when considering models without row-standard-
ization of W .
6 The most obvious case where this assumption would be violated is a fully connected W with
wij = 1/N for all i = j.
7 These assumptions can be checked during estimation by using standard rejection sampling
techniques in the MCMC sampling steps (e.g., LeSage & Pace, 2009; Koop, 2003). Rejection
sampling rejects draws of parameter combinations that do not fulfil these assumptions.
8 To reduce the dimensionality of the parameter space, an interesting alternative might be the
assumption of a symmetric V, which halves the number of free elements in the spatial weight
matrix. This assumption can be imposed by simply simultaneously updating vij = v ji,
respectively.
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9 A random walk Metropolis–Hastings step for r might be employed as an alternative.
10 Since the support for r is limited, the Griddy–Gibbs approach (or sometimes inversion
approach) relies on univariate numerical integration techniques of the conditional posterior for
r and uses the cumulative density function for producing draws of r. A Metropolis–Hastings
step may be used as a standard alternative, but these typically produce less efficient draws with
poorer mixing properties (see also LeSage & Pace, 2009).
11 Note the implication that an update of r necessitates a direct evaluation of the determinant
|A| and the matrix inverse A−1, as in this case no convenient equations exist. An update of r,
however, has to be performed only once per Gibbs step, as opposed to the N 2 −N updates
necessary for V, thus justifying the relatively higher computational costs.
12 More specifically, Ṽ = (Ṽ

′

0 + Ṽ0)/2, where Ṽ0 is aN/20 nearest neighbour adjacencymatrix.
13 However, a direct comparison of the results between symmetric and non-symmetric specifi-
cations does not appear reasonable, since the adjacency matrix in the data-generating process is
assumed symmetric.
14 The number of unknown parameters amounts to N 2 + T + q0 + 2 and
N (N − 1)/2+N + T + q0 + 2 for non-symmetric and symmetric spatial weight matrices,
respectively.
15 Figure A4 in the Appendix in the supplemental data online illustrates the convergence prop-
erties of a randomMonte Carlo sample for the case ofN = 20 and T = 10. This case was chosen
because it is similar to the settings in the empirical applications.
16 Countries without any (official) infections in the starting period have been excluded from the
sample. Moreover, we exclude India as a clear outlier from the sample due to its particular small
(official) infection rates throughout the observation period.
17 With a biweekly time lag, the dependent variable thus captures data from 2 to 20 April
(T = 19). For a better comparison, we have fixed the time period captured by yt for all alternative
specifications. Moreover, it is worth noting that a notable earlier starting date would result in
relatively few (cross-sectional) observations. However, our results are rather robust when consid-
ering a longer time horizon.
18 The spatial growth regression in (14) may be alternatively specified in levels rather than in
log-differences by setting yt = xt . Results using this alternative specification are very similar
and are presented in the Appendix in the supplemental data online.
19 In the special case of r . 0, computational efficiency is tremendously increased, as no log-
determinant calculations are required in the MCMC algorithm. The sampling strategy for
these cases is presented in the Appendix in the supplemental data online.
20 See https://www.kaggle.com/datasets/vishalvjoseph/weather-dataset-for-covid19-predictions/.
21 As robustness checks, we also tried a shorter lag length of one week. The estimated spatial
structures appeared very similar to the biweekly benchmarks. All these additional robustness
checks, along with the R codes, are available from the authors upon request.
22 For the benchmark specifications, the number of unknown parameters and observations
amounts to 753 and 513, respectively.
23 The regional dependency structure appears particularly pronounced when a level specification
of the infection dynamics is imposed. Sensitivity checks based on this alternative specification are
presented in Figure A1 in the Appendix in the supplemental data online.
24 When comparing the results, it is important to note that for all specifications under scrutiny,
we have fixed the time period in the dependent variable (ytfrom 2 to 20 February, i.e., T = 19).
The biweekly temporal spatial lag specification thus inherently comprises spatial information
prior to the period in yt .
25 Estimates when using a smaller time lag of seven days also appear very similar. Results along
with the R codes used are available from the authors upon request.
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