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Abstract 

Rapid urban expansion in many parts of the world is leading to increased exposure to natural hazards, 

exacerbated by climate change. The use of physics-based models of natural hazards in risk-informed 

planning and decision-making frameworks may provide an improved understanding of site-specific 

hazard scenarios, allowing various decision makers to more accurately consider the consequences of 

their decisions on risk in future development. We present results of physics-based simulations of 

flood, earthquake, and debris flow scenarios in a virtual urban testbed. The effect of climate change, 

in terms of increasing rainfall intensity, is also incorporated into some of the considered hazard 

scenarios. We use our results to highlight the importance of using physics-based models applied to 

high-resolution urban plans to provide dynamic hazard information at the building level for different 

development options. Furthermore, our results demonstrate that including building elevations into 

digital elevation models is crucial for predicting the routing of hazardous flows through future urban 

landscapes. We show that simulations of multiple, independent hazards can assist with the 

identification of developing urban regions that are vulnerable to potential multi-hazard events. This 

information can direct further modelling to provide decision-makers with insights into potential multi-

hazard events. Finally, we reflect on how information derived from physics-based hazard models can 

be effectively used in risk-sensitive planning and decision-making.  

 

Keywords: natural hazards, physics-based modelling, risk-sensitive urban planning 
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1. Introduction 

Urban areas are often hotspots of natural-hazard disaster risks due to their growing populations, 
ageing and inadequate infrastructure, rising inequality, rapid expansion, and poor spatial planning 
(e.g., Rosenzweig and Solecki, 2014). For example, an analysis conducted by Gu (2019) assessed 
exposure and vulnerability to six different natural hazards for 1,860 cities with 300,000 inhabitants or 
more; 1087 of these cities have a high level of exposure to at least one natural hazard, and 45 cities 
are highly exposed to three or more natural hazards. Considering multiple hazards is crucial for urban 
development, as failing to do so can lead to underestimation of the overall impacts and associated 
risk (e.g., Kappes et al., 2012). Multiple hazards should be considered from the spatial planning 
perspective when choosing suitable areas for development, as different hazards can affect different 
areas within an urban region (e.g., Bathrellos et al., 2017). This includes both the expansion and 

renewal of an urban area, as both can provide an opportunity for reducing disaster risks and 
introducing new risks. Therefore, risk-informed planning and decision making is considered a 
prerequisite for safer and more resilient urban futures (Galasso et al., 2021, Cremen et al., 2022b).  

 Modelling natural hazards can provide city planners, municipalities, and communities with 
information on potential hazard scenarios, enabling effective urban design and decision-making that 
can reduce physical, social, and economic impacts in future urban settings. This information is often 
presented to stakeholders in the form of hazard maps that display quantitative predictions of 
susceptibility and/or site-specific intensities of future hazards, for example: landslide susceptibility; 
peak-ground acceleration or other ground-motion features (e.g., spectral acceleration, significant 
duration) from earthquakes; maximum flood depth or velocity and flood duration; thickness of 
volcanic ash deposits; peak wind speeds during storms. Hazard maps are useful for land-use planning 
and urban design, as they allow urban growth plans to account for threats posed by natural hazards 
(e.g., Bathrellos et al., 2011; Mesta et al., 2022). However, the use of hazard maps in risk-sensitive 
urban planning is typically limited to single hazards or multiple independent hazards that do not 
dynamically interact (Barrantes, 2018). Yet, Global South cities, which account for most global urban 
growth (e.g., UN Habitat, 2020), will continue to be disproportionally exposed and vulnerable to 
natural hazards and their interactions. Among other reasons, this is due to a lack of risk-sensitive urban 
planning (e.g., Galasso et al., 2021; Johnson et al., 2021; Cremen et al., 2022b). Therefore, integrating 
models of natural hazards within risk-sensitive urban planning and decision-making frameworks may 
effectively reduce disaster risk to vulnerable future communities (e.g., Cremen et al., 2022c, This 
special issue).  

Hazard models can broadly be divided into two primary categories: physics-based and non-physical 
models, including empirical and stochastic methods (e.g., Tilloy et al., 2019). Understanding the 
advantages and limitations of these model types is crucial, allowing multiple stakeholders to gain the 
most appropriate information when designing and selecting risk-sensitive urban plans. Non-physical 
methods apply statistical approaches to observational datasets to estimate broad-scale features of 
natural hazards. For example, Rickenmann (1999) compiles common empirical relationships between 
debris flow volume, peak discharge, mean flow velocity and run-out length. These models often have 
functional forms that are, even if in a simple manner, informed based on physical considerations. 
Although these and other empirical models are helpful in many applications of hazard assessment, 
non-physical models are limited when spatiotemporal hazard information on high-resolution urban 
topography is required. For example, an empirical description of flow inundation calibrated for a 
particular topography cannot reliably predict inundation where the flow is perturbed by interactions 
with buildings whose configuration can vary widely in different global cities and future urban layouts. 
For effective risk-sensitive planning of future urban environments, asset-scale (i.e. at the scale of 
individual buildings, bridges, roads and other infrastructure) information of hazard intensities and 
their physical/social impacts is required to reduce disaster risk and increase resilience. In this work, 
we define ‘physics-based’ models as methods that simulate the dynamics of natural-hazard events by 
solving partial differential equations (PDEs) that enforce physical conservation laws (e.g., energy, 
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mass, momentum). Note that physics-based models often incorporate empirical relationships within 
the system of governing equations. Furthermore, empirical data is often used to prescribe poorly 
defined aspects of simulation domains. For example, empirical data can be used to define seismic 

velocity-depth relationships in the absence of a rigorous velocity model (see §3). Physics-based 
simulations can be applied to high-resolution topography to provide detailed information on hazards 
in time and space and account for interactions with the built environment on hazard propagation. One 
advantage of using physics-based models for assisting with future urban planning is that the 
parameters contained within these models have a physical meaning (e.g., slope angle, basal drag 
coefficient, rock density, etc.). Hence, changes to these physical parameters in future scenarios can 
be theoretically accounted for. Conversely, it is difficult to interpret the non-physical parameters that 
feature in empirical and stochastic models (e.g., Tilloy et al., 2019) and predict how these parameters 
will evolve with future urban development, climate change, and other physical processes.  

Purely stochastic and empirical methods cannot typically provide accurate time-dependent 
information due to their simplification of the physical processes that control natural hazards. In 
addition, it is difficult to calibrate empirical and stochastic methods for the largest magnitude events 
due to their scarcity in historical records. For example, ‘giant’ earthquakes (moment magnitude, Mw 

≥ 9) can have a recurrence interval of hundreds to thousands of years (e.g., Usami et al., 2018), 
meaning that empirical ground-motion models (GMMs) are often calibrated with more frequent, 
small-intermediate magnitude earthquakes better represented in empirical databases. This, 
combined with the simplified empirical representation of physical processes (e.g., fault rupture, 
seismic wave propagation/attenuation, near-surface soil response), limits the ability of GMMs to 
provide accurate hazard information that can allow cities to plan for the most hazardous earthquakes 
(e.g., Freddi et al., 2021). Empirical and stochastic methods often require large quantities of site-
specific data, meaning that they are typically less geographically transferable. This can also be a 
problem for some physics-based models sensitive to spatial parameter variations. For example, 
physics-based modelling of earthquake-induced ground motions requires location-specific velocity 
models of the subsurface. In contrast, empirical GMMs, in some instances, may be more transferable 
once calibrated for a specific region (e.g., Douglas & Edwards 2016). Furthermore, empirical and 
stochastic methods are typically less suitable for urban planning, as data in undeveloped areas is often 
unavailable or poorly resolved in space and time.  

Despite the various advantages discussed above, a critical limitation of physics-based models is that a 
degree of specialist knowledge is required to set up and calibrate physics-based hazard simulations. 
In addition, physics-based models can be computationally intensive (e.g., Cui et al., 2013; Vasconcellos 
et al., 2021). As risk-sensitive planning can require iterating through successive urban plans/designs 
(e.g., Cremen et al., 2022c, this special issue), the computation time of physics-based methods could 
be a limiting factor relative to other methods. This can be mitigated by using surrogate models or 
emulators, calibrating against physics-based simulations or real observations to provide 
computationally efficient, data-driven approximate solutions (e.g., Sarri et al., 2012). While we use 
this article to outline the importance of physics-based models in advancing effective risk-sensitive 
planning decisions for future urban development, we also recognise that empirical and stochastic 
models can also make useful contributions to well-defined components of planning frameworks, such 
as probabilistic hazard assessment for building code calibration (e.g., Ellingwood 2001). In summary, 
by understanding the benefits and limitations of the methods outlined above and used below, risk to 
future communities can be mitigated by using the most appropriate models to simulate natural 
hazards and their impacts.  

We adopt the United Nations Office for Disaster Risk Reduction’s (UNDRR) definition of ‘multi-hazard’ 
to mean “(1) the selection of multiple major hazards that the country faces, and (2) the specific 
contexts where hazardous events may occur simultaneously, cascadingly or cumulatively over time, 
and taking into account the potential interrelated effects” (UNDRR, n.d.). Below, we primarily consider 
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the first part of this definition at the urban scale (i.e., multiple hazards that do not occur coincidentally 
or dynamically interact). Specifically, in this study, we use physics-based models to simulate multiple 
independent natural hazards in a virtual urban testbed to elucidate the advantages and challenges of 
using these models for risk-sensitive urban planning. We simulate multiple natural hazard scenarios 

featuring earthquakes (§3), fluvial and pluvial flooding (§4), and debris flows (§5). All scenarios 

presented here are simulated in ‘Tomorrowville’, a virtual urban testbed introduced below in §2. In 

§6, we synthesise our results and reflect on the identification of potential multi-hazard events. Finally, 
we reflect on the challenges researchers/modellers, stakeholders, and city planners face in using 
physics-based models for risk-sensitive urban planning and decision making. We outline how the 
Tomorrow’s Cities Decision Support Environment (TCDSE) design and implementation can limit these 
challenges.  

  

2. Overview of Tomorrowville  

Tomorrowville is a virtual urban testbed which has been designed to represent typical physical and 

socio-economic aspects of evolving cities in the Global South (Menteşe et al., 2022, this special issue). 

In this special issue, an interdisciplinary group of researchers use Tomorrowville as a platform to 

develop and test the Tomorrow’s Cities Decision Support Environment (see this special issue papers: 

Cremen et al., 2022c; Filippi et al., 2022; Gentile et al., 2022). In this work, we simulate multiple 

hazards in the present-day (i.e., initial) urban development configuration of Tomorrowville (denoted 

as TV0). More details on various configurations of Tomorrowville can be found in Menteşe et al. (2022, 

this special issue). The underlying landscape of Tomorrowville comprises a valley floor and terraced 

slopes that separate two high-elevation plateaux (Figure 1). An active river channel is located at the 

base of the valley floor. During intense rainfall, ephemeral channels develop in incised valleys. 

Settlements are located on the eastern plateau and clustered in the central valley region. For the 

purpose of this analysis, we assume that the region is affected by three types of hazards: flooding, 

debris flows, and earthquakes.  

The topographic domain of Tomorrowville is derived from a 2 m resolution digital surface model (DSM) 
of a ~6 km2 section of the Kathmandu Valley (KTMV), derived from tri-stereo Pleiades satellite imagery. 
This area of the KTMV was selected to represent Tomorrowville due to several key considerations: 
principally, community engagement identified three natural hazards (earthquakes, flooding, and 
debris flows) that impact this area; this area is covered by a high-resolution digital elevation model 
(DEM) that can be used for high-resolution urban flooding and debris flow simulations; we have access 
to lithological/sedimentological data which can be used to determine model parameters. To assess 
the DEM’s vertical accuracy, we coregister and compare the Tomorrowville elevation model to 
available ICESat (Ice, Cloud,and land Elevation Satellite)-2 altimetry data (Neumann et al., 2020) over 
slopes less than 10°. The Normalised Median Absolute Deviation (NMAD) (Höhle and Höhle, 2009) and 
Root Mean Square Error (RMSE) between the two datasets were 0.46 m and 0.75 m, respectively. By 
comparison, the RMSE for globally available 30 m resolution DEM products commonly used for flood 
modelling, such as the Shuttle Radar Topography Mission (SRTM) or ALOS World 3D (AW3D30), is 
typically 5 – 10 m (e.g. Uuemaa et al., 2020). Stochastic simulations that produce multiple topographic 
realisations using spatially correlated DEM errors are required to fully quantify the influence of DEM 
error on flow routing (e.g. Endreny and Wood, 2001; Watson et al., 2015). Surface features (e.g., 
buildings and trees) present in the original KTMV DSM were removed using LAStools software ground 
classification before the elevations corresponding to the building layout of TV0 were added. The 
inclusion of building elevations in Tomorrowville’s DEM can influence the routing of hazardous flows 

through settlements (see §4).  
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Figure 1: Digital elevation map (DEM) of TV0 with boxes indicating the location of zoomed in Figures 

in §4 and §5. 

 

In the scenarios presented here, several assumptions were made in developing the physics-based 

models. For example, in a real landscape, model parameters would have to be calibrated and validated 

against observed historical events to ensure appropriate accuracy. In the absence of reliable historical 

data commonly used to calibrate the models, it would be essential to explicitly define the bands of 

uncertainty associated with uncalibrated models. Because of the nature of this research, where the 

models have been developed for a virtual urban testbed for demonstration purposes of the TCDSE 

concept, the calibration of model input parameters and source conditions and validation of model 

output against observations has not been carried out for Tomorrowville. Instead, this study presents 

comparative scenarios for each hazard, with scenario intensities selected to represent typical hazards 

that affect Global South cities (see below). These scenarios are subsequently used to demonstrate the 

importance of modelling multiple hazards and incorporating climate change projections when 

designing risk-sensitive future urban plans. For the TCDSE, various hazard scenarios would be 

simulated for each hazard to produce a database of dynamic intensity maps. These can be, in turn, 

used within the TCDSE’s ‘Physical Infrastructure Impact’ module to assess impacts from natural 

hazards on the built environment, for instance, through appropriate fragility (i.e., the probability of 

various damage levels as a function of a hazard intensity measure) and consequence models (e.g., 

Gentile et al., 2022; Cremen et al., 2022c, this special issue). 

 

3. Earthquake hazard 

Earthquakes produce damaging shaking, which globally has caused billions of dollars of economic 

losses and almost one million fatalities so far in this century (e.g., EM-DAT 2021). In earthquake-prone 

regions, understanding the potential for strong ground shaking is a critical constraint for the design of 

new structures and the performance assessment of existing structures and infrastructure components 

within the built environment. This has led to the development of a range of methods to assess seismic 

hazard (e.g., Cornell 1968; Kramer 1996; Baker, Bradley and Stafford 2021). Seismic hazard analysis 
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relies on two main components: (i) modelling potential rupture scenarios in the vicinity of the region 

of interest; and (ii) estimating the ground-motion properties (or local intensities) caused by a given 

scenario rupture. Compilations of ground-motion records from past earthquakes of different sizes 

across an area have led to a series of empirical GMMs – based on regression analysis – estimating the 

probability distributions of ground-motion intensity measures at a site, given an earthquake of a 

certain magnitude occurring at a nearby location. Specifically, these models relate the magnitude and 

style of a seismic event, the distance from the source, and other site-specific parameters (e.g., local 

soil properties) to the amplitude and other features (e.g., significant duration) of the expected shaking 

and its variability at a given target site (e.g., Douglas and Aochi 2008; Douglas and Edwards 2016; 

Douglas 2017). While providing a systematic and effective method for estimating ground-motion 

parameters, such ground-motion modelling suffers from several critical shortcomings. First, the 

paucity of high-magnitude/high-intensity shaking recordings at small distances requires extrapolation 

of the models into the most important parts of the domain. The scarcity of instrumental recordings, 

particularly in the Global South where urban expansion is concentrated, often requires the import of 

GMMs into areas for which their efficacy is questionable and where validation is not always possible. 

Finally, nonlinear time-history analysis of engineered systems arguably represents the most advanced 

procedure for structural seismic performance assessment and fragility analysis (e.g., Gentile and 

Galasso, 2021; Silva et al., 2019). Such analysis procedures require reliable ground‐motion time series 

to investigate structural response to dynamic loading. Generally, the input ground-motion time series 

for nonlinear structural analysis are selected (and eventually scaled) from a database of existing 

records to represent target seismic characteristics at a given location (e.g., Iervolino et al., 2010). As 

discussed above, the inherent scarcity or total absence of suitable recorded ground motions for some 

specific scenarios (e.g., large-magnitude strike-slip events recorded at close source-to-site distances) 

makes the use of alternative options unavoidable. 

In particular, physics-based ground-motion simulation has emerged as a complementary and possibly 

alternative approach to empirical ground-motion modelling, addressing the abovementioned 

challenges (Bradley et al., 2017). This method utilises a representation of the earthquake source using 

dynamic or kinematic rupture models and solves the wave propagation equation to simulate the 

shaking time series at the surface of the Earth (e.g., Komatitsch et al., 2004; Aagaard et al., 2008; 

Stupazzini et al., 2009; Graves and Pitarka, 2010; Taborda and Bielak, 2013; Paolucci et al., 2015; Roten 

et al., 2012; Razafindrakoto et al., 2018). These physics-based simulated ground motions can capture 

complex source features (such as spatially variable slip distributions, rise-time, and rupture velocities); 

path effects (geometric spreading and crustal damping); and site effects (wave propagation through 

basins and shallow site response), providing a valuable supplement to recorded ground motions. 

Hence, in the specific context of high-resolution hazard modelling for urban planning, physics-based 

ground-motion simulations can provide estimates of full ground-motion time series, enabling an 

improved assessment of the complete range of ground-motion features. Moreover, these waveforms 

can be coupled with advanced nonlinear structural models to perform nonlinear time-history analysis 

of buildings and infrastructure components and derive sophisticated, numerical models of structural 

fragility (e.g., Gentile et al., 2022, this special issue). In this way, physics-based ground-motion 

simulations provide risk modellers and decision-makers with a scientifically rigorous basis for 

estimating the likely impacts of strong shaking at the scale of individual assets.  

Below, we present simulations from physics-based and empirical GMMs to compare the advantages 

and limitations of these methods and to provide insight into how physics-based simulation can assist 

in urban planning and decision-making. We examine the potential of a physics-based set of earthquake 

simulations to expose some invariants of the shake distribution for a series of idealised events around 

Tomorrowville. We demonstrate that the relative amplitude of local shaking is strongly constrained 
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by the near-surface velocity structure and identify robust patterns of relative amplitudes of ground 

shaking that permit detailed predictions of spatial distributions of relative shaking amplitude 

regardless of the fault mechanism, locations, directivity or even magnitude of the event.  

 

3.1 Model setup  

3.1.1 Geological setting 

We first construct a simple but reasonable velocity structure for the crust below our testbed area. 3D 

crustal models (often referred to as ‘velocity models’) provide the 3D domain over which the wave 

equation is solved. The crustal model provides the 3-D variation of geophysical and geotechnical 

parameters required for wave propagation calculations. The principal parameters to describe the 

model are the P- and S-wave velocities, density, and anelastic attenuation - additional parameters are 

needed if nonlinearities are considered. 

Tomorrowville, similarly to many areas slated for urban development, is located around a river 

channel, under which a deeper sedimentary layer is assumed. Soft sedimentary layers influence 

earthquake-induced ground motions (e.g., Roten et al., 2012; Maufroy et al., 2015; Razafindrakoto et 

al., 2018; Smerzini and Pitilakis, 2018); hence, their explicit consideration in the model is crucial. Figure 

2 presents the extent of the river channel within the wider basin, the location of Tomorrowville, and 

the shear-wave speed (Vs) for the entire simulation domain. 

The depth-dependent velocity structure of the simulation domain, including density (𝜌), the shear 

wave speed, Vs, primary-wave speed, Vp, and anelastic attenuation factors (Qs and Qp), is generated 

based on the values assumed for Vs at the surface for the river channel, basin interior, and basin 

exterior (see Table 1). We use Brocher (2005; equation 9) to relate Vp to Vs for the basin exterior 

region. Note that in the absence of site data, the use of an empirical velocity model is essential to 

enable the estimation of ground motion using physics-based simulations. We assume that anelastic 

attenuation is given by 𝑄𝑠 = 𝑉𝑠/20 and 𝑄𝑝 = 2𝑄𝑠. In addition, we introduce some stochastic 

variability in the underlying crust by perturbing the velocity at each point, producing a fractal spatial 

correlation in the velocity structure. Currently, this perturbation has an arbitrary amplitude 

proportional to the velocity at any point but provides realistic spatial correlations consistent with 

observations in deep boreholes (e.g., Bean and McCloskey, 1993). These choices are unlikely to 

significantly alter the main conclusions of this paper. 

 

Figure 2: a) Geometry of the river basin sedimentary sequence (blue) and the deeper basin in which it 

is situated. The grey rectangle indicates the surface location of Tomorroville within this basin. b) Extent 

of the river channel and larger basin and the 3D distribution of shear-wave speed for the entire 

simulation domain. 
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Table 1: Velocity structure of the earthquake simulation domain  

 

3.1.2 Seismic sources 

We now explore the shaking modelled across Tomorrowville due to different earthquake events. Here, 

we compute the shaking at every node of the surface of the computational domain so that we can 

compute the peak spectral accelerations at each point for each event. We simulate 14 Mw = 6 events, 

illustrated in Figure 3a; and 10 Mw = 5 events, illustrated in figure 3b. As shown in Figure 4, the slip 

distribution remains the same for each magnitude. Still, the strike, dip, rake and hypocentral depth 

vary, producing a wide range of expected source directivity for any location. The aim of considering 

these two sets was to scrutinise the effect of the underlying geological structure on the spatial ground-

motion intensity measures for a range of modelled events. Two simulation cases (scenario EQ1 from 

the Mw 5.0 set and scenario EQ2 from the Mw 6.0 set) are used to assess the utility of physics-based 

ground-motion simulations for risk-informed urban planning (see §3.3). Kinematic rupture models for 

the considered scenarios in Figure 4 are generated based on the model developed by Liu et al. (2006) 

and Schmedes et al. (2013), in which the correlation between the slip, rise time, peak time and rupture 

velocity in the neighbouring sub-faults are considered based on a large ensemble of dynamic 

simulations. Figure 4 presents the moment release across the rupture for the Mw 6.0 and Mw 5.0 

scenario events. 

River channel Basin interior Basin exterior 

 

Mean 𝑉𝑠 at the surface (𝜇) [m.s-1] 

350 550 1800 

 
𝑉𝑠 variation factor (𝛿) 

100 150 200 

 
𝑉𝑠 profiles [m.s-1] 

𝜇 + 𝛿𝑟 + 15√𝑧 𝜇 + 𝛿𝑟 + 15√𝑧 𝜇 + 𝛿𝑟 + 20√𝑧 

 

𝑉𝑝 profiles [m.s-1] 

1.87∙ 𝑉𝑠 1.87∙ 𝑉𝑠 𝑉𝑝 = 𝑎0 + 𝑎1𝑉𝑠 − 𝑎2𝑉𝑠
2 + 𝑎3𝑉𝑠

3 − 𝑎4𝑉𝑠
4 

𝑤𝑖𝑡ℎ 𝑎0 = 940, 𝑎1 =  2094.7, 𝑎2 = 820.6, 
𝑎3 = 268.3, 𝑎4 = 25.1 

 

Density profiles [103 kg.m-3] 

(0.00174 ∙ 𝑉𝑝)
0.25

  (0.00174 ∙ 𝑉𝑝)
0.25

 (0.00174 ∙ 𝑉𝑝)
0.25
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Figure 4: Moment release in the kinematic rupture models generated for the considered Mw 6.0 (a); 
and 5.0 (b) scenarios. 

3.1.3 Simulation methodology  

 

Simulations are performed using the spectral element approach for solving the wave-propagation 

equations. The resulting ground motions at the surface of the domain are extracted using SPEED 

(SPectral Elements in Elastodynamics with Discontinuous Galerkin approach), an open-source package 

developed by Mazzieri et al. (2013). Using the p- and h-adaptivity of the spectral element method, the 

solution to the wave propagation problem in a large domain can be found in a computationally 

efficient way by varying element size and spectral degrees. A critical factor in the numerical solution 

of the 3-D wave equation with comprehensive physics is that the maximum frequency that can be 

modelled is a function of the model spatial resolution (i.e., grid spacing). Considering the minimum Vs 

of 250 m/s, the smallest element size of 200 m, and a spectral degree of 4 (to constrain the simulation 

Figure 3: Location and geometrical attributes of the Mw 6.0 (a); and 5.0 (b) scenarios. The stars show the rupture 

initiation points (I.e., hypocenters) on the rupture planes, and the coloured planes display the spatial distribution of the 

moment release as shown in Figure 4.  
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from a computational cost perspective), the simulations are valid for vibration periods larger than 0.8 

s. Given the domain size and the resolution of the simulation, small-scale topographic variation of the 

Tomorrowville region is neglected in our earthquake simulations.  

 

3.2 Results 

The results are presented in Figure 5 for 5%-damped pseudo-spectral accelerations (pSAs) at the 

vibration period of 1.0 and 2.5 s. These periods can capture the medium- and long-period ground-

motion amplitudes relevant for the physical-damage assessment of any mid- and high-rise buildings 

in Tomorrowville. The geometrical mean of the two horizontal ground-motion intensity measures is 

shown only for the Tomorrowville region. Figure 5 shows that the soft sedimentary layer near the river 

channel and the basin interior amplify the ground shaking significantly for both Mw 6.0 (i.e., Figure 

Figure 5: Geometrical mean of the pSA[1.0 s] and pSA[2.5 s] for the : a-b) Mw 6.0 EQ2 event; and c-d Mw 5.0 EQ1 

event. 

Figure 6: median of pSA[1.0] calculated based on an empirical ground motion 

model for Mw 6.0 EQ2 scenario Displayed for the full (100x100 km) empirical 

simulation domain (a); and zoomed in for Tomorrowville (b). Note that we 

overlay panel (b) on the empirical domain (a) to illustrate the location of TV0. 
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5a-b) and Mw 5.0 (Figure 5c-d) scenarios relative to the terraced slopes and upper plateau regions. It 

is noted that the event EQ1 of the Mw 5.0 ensemble is located exactly underneath the soft 

sedimentary basin. In contrast, the EQ2 event of the Mw 6.0 ensemble is located in the stiff basin 

exterior region with backward directivity towards the basin. Regardless of the rupture direction and 

energy content released by the two events, both result in large-amplitude high-duration motions in 

the basin region. 

Figure 6 presents the counterpart results from an empirical ground-motion model (e.g., Lanzano et 

al., 2019) for the Mw 6.0 event EQ2. These results are presented in the Tomorrowville region as well 

as a 100x100 km extent to reveal the general trend in estimates from empirical models. It is noted 

that the empirical results are produced for a Vs30 = 300 m/s which is the Vs30 value in the basin and 

river channel region (with no variation due to the specific depth sampling considered in the adopted 

velocity model). The intensity measure estimates follow a general race-track pattern. These results, 

which are representative outputs of empirical models, do not reproduce the small-scale, site-specific 

spatial variation that can be simulated using physics-based models (Figures 5 and 7). 

Figure 7 presents the median pSA(1.0s) and pSA(2.5s) maps calculated based on the 10 and 14 event 

realisations considered, respectively, for Mw 6.0 and Mw 5.0 scenarios. As shown, the spatial pattern 

of the median (and other percentiles not shown here for brevity) intensity honours the main geological 

features of the region (i.e., sedimentary basin), which cannot be adequately addressed by empirical 

models in a site-specific fashion (Figure 6). Bradley (2017) discusses the ongoing challenges in physics-

based ground motion prediction, namely: continued validation against recorded earthquakes to 

demonstrate the predictive capability of such methods and most efficiently identify avenues for 

improvement; theoretical developments in source, path, and site modelling within ground motion 

simulation; the explicit consideration of modelling uncertainties. 

4 Flooding hazard  

4.1 Model setup 

Flood events can be classified as fluvial, where the river banks are breached, pluvial, where rainfall 

runoff is the primary driver of the flood, or combined pluvial-fluvial floods. In urban areas, particularly 

where flash flooding occurs, it is essential to choose a numerical model which can consider the latter, 

i.e., combined pluvial-fluvial flood simulations (e.g., Muthusamy et al., 2019). All flood simulation 

outputs presented here are in the form of inundation maps.  

Figure 7: median of pSA[1.0] and pSA[2.5] calculated based on the 14 and 10 event realizations considered 

respectively for: a-b) Mw 6.0; and c-d) Mw 5.0 scenarios. 
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In this study, all flood simulations are generated using Caesar-Lisflood, a landscape evolution model 

(LEM) that combines the hydrological and surface flow model, Lisflood-FP (Bates et al., 2010), with the 

CAESAR landscape evolution model (Coulthard et al., 2013). Lisflood-FP is a local inertial model derived 

from the full shallow water equations (Bates et al., 2010) that can model pluvial-fluvial flooding. It has 

been tested widely for use in rural and urban flood modelling, including as part of a European-wide 

flood study (Dottori et al., 2021; Feeney et al., 2019; Malgwi et al., 2021).  Neal et al. (2012) showed 

that the Lisflood model can significantly reduce computational time while maintaining accuracy within 

10% of full shallow water models in many applications, including flow over a floodplain. The model 

has some limitations for rapidly varied flows. For example, Lisflood cannot fully reproduce sharp wave 

fronts associated with dam break flows due to strong numerical diffusion. Using a fast flood model 

can allow us to simulate multiple hazard maps for different combinations of rainfall events and urban 

layouts while minimising computational effort. These hazard maps can then be used within the TCDSE 

to improve risk-informed urban planning and decision making. Another advantage of using a fast 

numerical scheme is that it can be used in combination with a high-resolution DEM. Although high-

resolution DEMs increase computational time significantly, they can improve the representation of 

building footprints, river tributaries, and ephemeral channels and enhance flow routing accuracy 

through a domain (Muthusamy et al., 2020). Thus, the Caesar-Lisflood model was chosen for this study 

because it can be used to model both fluvial and pluvial flooding in combination with high-resolution 

DEMs in relatively short computational times, and it can also include sediment transport and erosion 

and deposition of the river channel (morphodynamics). Although no sediment dynamics are presented 

in the flood modelling in this paper, using Caesar-Lisflood allows scope for extending the research, 

with relative ease, to include interacting multi-hazard modelling, where sediment outputs and 

morphological changes generated from landslide and debris flow models, such as LaharFlow (see §5), 

can be incorporated into flood modelling. A detailed description of Caesar-Lisflood can be found in 

Coulthard et al. (2013).  

All flood scenarios discussed here are assumed to occur during a monsoon season. It is assumed that 

the soil is fully saturated by pre-monsoon rainfall so that, during the monsoon season, all rainfall 

becomes surface runoff. Although some runoff may be diverted to stormwater drainage systems, it is 

reasonable to assume that during the intense rainfall events presented in this study, typical urban 

drainage systems would reach capacity quickly, and the majority of rainfall would contribute to surface 

runoff. The TOPMODEL m parameter (Beven and Kirkby, 1979), required to calculate rainfall runoff in 

the Caesar-Lisflood model, is chosen to be small (m = 0.003) to represent this reactive rainfall-runoff 

system. In the absence of detailed information about land cover, sediment grain size, and bedforms, 

a uniform Manning’s coefficient (which characterises any surface roughness that impacts water flow) 

of 0.04 (m1/3s-1) is used in all flood scenarios presented here (Chow, 1959). In a real urban landscape, 

a spatially distributed Manning’s coefficient could be calibrated to improve the accuracy of flow-

routing through a domain with multiple land cover and channel types. 

Jo
urn

al 
Pre-

pro
of



Revised manuscript— submitted to IJDRR 

13 
 

For the flood simulations, the discharge and rainfall time series are generated based on moderate to 

peak daily data based on recorded data from the Department of Hydrology and Meteorology, Nepal. 

In this way, the flood simulations are consistent with the Tomorrowville topography (extracted from 

the Kathmandu valley DEM, see §2). Three scenarios are presented: a fluvial flood event with a return 

interval of approximately 25 years (scenario F1), (discharge input from runoff in the upper catchment 

of the region), a fluvial-pluvial flood with an estimated recurrence interval of approximately 25 years 

(scenario F2), and a fluvial-pluvial flood with an estimated recurrence interval of 100 years (scenario 

F3). These events were chosen because analysis of projected future rainfall in Kathmandu has shown 

that a current 100-year return interval event could be equivalent to a 25-year event in the near future 

(Shrestha et al., 2022, this special issue). Therefore, using these two discharge hydrographs and rainfall 

time-series data allows us to explore the potential impact of climate change on future flooding hazard 

in Tomorrowville.  

The initial conditions for all three scenarios are identical, with an initial water depth in the river reach 

only and no water on the floodplains. The discharge hydrographs shown in Figure 8 are applied at the 

upstream boundary for all scenarios. For scenarios F2 and F3, as well as a discharge hydrograph, an 

hourly rainfall time series (mm/hr) of an estimated 1-in-25 year and 1-in-100 year rainfall event, 

respectively, is applied to every cell in the model domain (Figure 8). Because of the size of the 

catchment (~6 km2), we use a uniform rainfall distribution across the catchment. An open boundary 

condition is used at the outlet of the river (Figure 9). 

 

4.2 Results 

Maps of maximum flood inundation for each of the three scenarios are shown in Figure 9. For all 

scenarios, overbank flooding occurs along certain parts of the river, inundating a small number of 

buildings with up to 1-2 m of water. In Figure 9a, where intense rainfall is neglected (F1), it can be 

seen that the flood inundation is confined to the region close to the river bank. Comparing the results 

of Figure 9a-c, the flood inundation across the catchment increases when localised rainfall is 

considered. This highlights the need to use a combined fluvial/pluvial model to generate appropriate 

flood maps in urban regions prone to flash flooding. In addition, because of the terraced nature of the 

landscape, in Figure 9b-c, the ephemeral rivers channel rainfall runoff to certain low-lying parts of the 

Figure 8: Discharge hydrograph (inlet and outlet) and rainfall timeseries for two scenarios 
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catchment. Not only does this increase the number of buildings in the catchment that are inundated, 

but runoff from the hills can results in some built-up areas becoming surrounded by flood depths in 

excess of 2 m. This is a crucial consideration in land-use planning because rainfall storms in 

Tomorrowville could result in people being isolated from essential services for the duration of the 

flood.  

To test the effect of building footprints on the flow routing, we ran one additional scenario for the 1-

in-25 year combined flood event using the 2 m DEM, which did not have TV0 building heights 

embedded. The results are shown in Figure 10. For the overall catchment, the inundation pattern is 

similar. However, when we zoom in on the built-up areas (e.g., Figure 10), we can see that the flood 

pattern is different, and the flood depths are greatly reduced when buildings are not considered (less 

than 0.4 m compared to depths more than 1 m to 1.5 m when TV0 buildings are included). The 

presence of the building footprints in the DEM acts as an obstacle to the flow, causing it to be routed 

down certain streets and lanes between buildings. Because the flow cannot ‘spread out’ as it does in 

Figure 10b, flow depths increase, potentially leading to increased flood damage (e.g., Gentile et al., 

2022, this special issue). This emphasises the importance of using physics-based flood simulations with 

high-resolution DEMs that include future urban footprints because the flood hazard is affected by both 

the urban landscape and the intensity of the rainfall/flood event. Note that the buildings are modelled 

as solid structures assuming that no flow enters the buildings. A model which allows buildings to be 

represented as porous or open structures may result in reduced flood depths, as the buildings provide 

additional volume for the flow to occupy (e.g., Wüthrich et al., 2018). Therefore, models that neglect 

the flooding of building interiors are likely to overestimate flood depths in some locations. However, 

to the authors’ knowledge, no open-source software with the ability to model building inundation is 

available at the time of writing, particularly for the scale of the urban zone being modelled in this 

study.  
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Figure 9: Flood inundation maps for three scenarios, (a) fluvial flood; (b) 1-in-25 year 

pluvial-fluvial flood; (c) 1-in-100 year fluvial-pluvial flood. Inlet and outlet boundaries 

of the river are shown in Figure 2(a) in red. 

Figure 10: Inundation depth at low lying residential area (outline shown in red in Figure 1) for 1-in-25 

yr flood event for two different DEM scenarios: (a) TV0 building footprints are embedded into the DEM; 

and (b) TV0 building footprints are not embedded in the DEM.  
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5 Debris flow hazard 

Rainfall-driven debris flows and flash floods are energetic flows that often feature strong erosion and 

deposition (collectively referred to as morphodynamics). Their flow dynamics are inherently coupled 

to morphodynamics by: increasing or decreasing the mass of the flow through erosion or deposition 

of sediment, respectively; modifying the topography over which present and future flows are routed; 

and modifying the magnitude and form of basal drag. Debris flows damage buildings via inundation 

and by exerting dynamic forces on structures. When hydrodynamics forces are neglected, these forces 

are approximated by the hydrostatic pressure in the flow, allowing for the flow depth to be used as a 

proxy to estimate building damage resulting from debris flows, lahars, flash floods and other shallow 

overland flows (see Gentile et al., 2022, in this special issue, for a detailed discussion on appropriate 

fragility models).  

5.1 Model setup  

We simulate rainfall-driven debris flows using the LaharFlow dynamic hazard model (Phillips et al., 

2018; Langham et al., 2021). Previously LaharFlow has been used to simulate two-phase, overland 

flows that feature strong morphodynamics, such as lahars, flash floods, and debris flows in arid-urban 

environments (Tierz et al., 2017; Hogg, 2018; Phillips et al., 2018). LaharFlow, as with many other 

models that simulate surface flows, utilises a shallow-layer formulation which assumes that the 

pressure distribution is hydrostatic and flow properties are vertically averaged. The model comprises 

a coupled system of partial differential equations that enforce conservation of mass and momentum 

in both the fluid and solid phases (Langham et al., 2021). These equations are solved numerically over 

a 2 m resolution DEM of the target area in which building elevations are embedded. Note that in 

conserving mass in the fluid and solid phases separately, the model explicitly solves for the solids 

concentration of the flow, which is allowed to vary with morphodynamics. The model adopts well-

established closures for morphodynamics: the erosive flux is proportional to the excess Shields stress 

(Meyer-Peter and Muller, 1948) and an erosion rate coefficient that is a function of the flow 

concentration. This smooth, monotonic function (hyperbolic tangent) accounts for the 

phenomenology that, for a given momentum flux, granular flows are more erosive than dilute flows. 

The depositional flux is calculated using a hindered settling law that accounts for the suppression of 

deposition as sediment concentration increases (Soulsby, 1997; Richardson and Zaki, 1954). 

LaharFlow utilises a novel drag formulation to capture different basal stress modes present in flows 

across the entire range of sediment concentrations, from dilute, fluid-dominated flows to 

concentrated granular flows. Each of these limits utilises a widely adopted drag law: dilute flows use 

a Chézy drag formulation (e.g., Shalaby, 2018), whereas concentrated flows adopt a Coulomb law with 

a velocity-dependent friction coefficient (Forterre and Pouliquen, 2008). A smooth, monotonic 

weighting function is used to determine the magnitude of basal drag for intermediate values of 

sediment concentration. Note that in the absence of morphodynamics at the dilute limit, the system 

of equations reduces to the familiar shallow water equations.  

The source condition must be carefully chosen to ensure that the resulting debris flow is realistic. The 

domain is split into broadly three sub-domains that are approximately north-south oriented: a central 

river and low-relief zone separate two high-relief plateaux. Debris flows and other rainfall-driven 

overland flows require topographic focusing of surface runoff during high-intensity rainfall. The 
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eastern plateau contains several valleys that are eroded by ephemeral channels that transport water 

and sediment to lower relief areas. We select a single valley (catchment area ~ 0.2 km2) as a location 

for the source of scenarios because the selected valley, and associated micro-catchment, is sufficiently 

large to focus a hazardous volume of surface runoff during intense rainfall, potentially inundating an 

area that could be deemed suitable for urban development. In contrast, smaller valleys/catchments 

are less likely to produce hazardous flows. 

Debris flows are initiated by a volumetric flux distributed over a circular region with a radius of 50 m 

(location indicated in Figure 12). This source area is chosen to be sufficiently large to ensure that flow 

in the source region respects the shallow-layer assumptions by preventing flow velocities and erosion 

in the source region from being unrealistically strong. We also ensure that flow is only introduced in 

the intended valley by selecting a source area smaller than the valley’s width. The volumetric flux is 

calculated by multiplying the catchment area (0.2 km2) by a time series hydrograph of rainfall intensity 

(m.s-1). In our assumptions, we neglect infiltration and other water sinks during strong surface runoff 

promoted by the steep slopes in the source region. 

We use peak rainfall intensities of 10, 50, and 150 mm hr-1 for low-, medium-, and high-intensity debris 

flow scenarios, respectively. Note that the rainfall used to initiate debris flow scenarios is more intense 

(i.e., higher hourly rate) and of shorter duration than used for pluvial flooding scenarios. We find that, 

for the topography present in the target valley, short-duration, extreme intensity rainfall is required 

to erode and entrain non-negligible amounts of sediment necessary for these flows to be classified as 

debris flows. We base our source conditions on empirical intensity-duration thresholds for rainfall 

events that triggered recorded debris flows and landslides (Guzzetti et al., 2008). Despite the different 

hourly rainfall rates used for pluvial flooding and debris flow scenarios, the cumulative rainfall used to 

initiate these flow hazards is similar. As climate change will likely increase the frequency and intensity 

of extreme rainfall events in the case study area (e.g., Sheikh et al., 2015), considering a broad range 

of source rainfall intensities also allows us to account for a range of potential future climatic conditions 

in Tomorrowville. The source fluxes for these scenarios are summarised in Figure 11. In each scenario, 

we impose the following source conditions: 

1.  The source flux linearly increases from 0 (m3/s) to the maximum value over the first 500 

seconds. The maximum flux is maintained for 50 minutes and then linearly removed over a 

period of 100 seconds. Linearly ramping the source up and down assists with model stability 

Figure 11: Volumetric hydrographs used to initiate debris flows for low- (lightest blue), medium- (mid 
blue), and high-intensity (darkest blue). The sediment concentration in the volumetric source is 
indicated by the dashed red line. 
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and limits the formation of artificial fronts in the flow, which sharp changes in the source flux 

can introduce. Note that in the absence of historical observations or flow data, the simple 

structure of an idealised hydrograph allows for a simpler interpretation of the resulting flow 

relative to more complex hydrographs.  

2. The debris flow is initiated by setting the sediment concentration in the source flux to 10 % 

solids (by mass). The addition of sediment allows for equilibrium between erosion and 

deposition to be established at earlier times. The addition of sediment to the source also 

accounts for sediment that is likely to be entrained whilst being routed from catchment to 

source. The sediment concentration is linearly ramped up to and down from its maximum 

value of 10 %, as described for the volumetric source flux. 

3. We continue running the simulation for an hour after the source is removed. This ensures that 

hazard maps include locations where the topography has focused the flow after removal of 

the source (typically furthest downstream). 

The source condition is varied in all scenarios, and all other parameters are fixed (summarised in Table 

2). Given that Tomorrowville is a virtual urban testbed, model parameters are selected to be 

consistent with values in the literature for similar magnitude debris flow events. The erosion 

parameters listed in Table 2 were tuned to yield erosion depths (tens of cm) consistent with direct 

measurements of erosion from debris flows (Berger et al., 2011). Although stronger erosion has been 

observed from debris flows (> 1 m), we limit erosion to a maximum depth of 1 m to ensure we are not 

capturing extreme behaviour. As discussed above, LaharFlow utilises a novel drag law that is a smooth 

function of solids concentration. Table 2 summarises the end member drag limits: a dimensionless 

Chézy drag coefficient of 0.04 lies within the range of calibrated field events studies (e.g., Rickenmann 

et al., 2006). The minimum and maximum Pouliquen slope values correspond to the tangents of the 

angles at which a granular layer will begin and cease flowing, respectively (e.g., Pouliquen and 

Forterre, 2002). The Voellmy switch value can be interpreted as the sediment concentration (20 %) at 

which granular effects begin dominating basal shear stress. Finally, the switch rate is tuned to control 

the sharpness of this transition.  

Parameter Value 

Water density 
  

1000 kgm-3 

Sediment density 2000 kgm-3 

Solids diameter  0.01 m  

Bed porosity 0.35 

Maximum packing fraction 0.65 

    

Maximum erosion depth 1 m 

Critical Shields Number  0.055 

Fluid Erosion Rate  10-4 

Granular erosion rate 0.1 

    

Chézy drag coefficient 0.04 

Pouliquen Minimum Slope 0.1 

Pouliquen Maximum Slope 0.4 

Voellmy switch rate  3.0 

Voellmy switch value 0.2  

Table 2: Parameters used in LaharFlow simulations of debris flows.  
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5.2 Results 

We represent the hazard from debris flow scenarios using maps of maximum flow depth (see Figure 
12). In all scenarios, debris flows are routed through a single channel in the valley downstream of the 
source before spreading on the valley floor; partially inundate the settlement located on the valley 
floor; transport water and sediment into the river after following a channel to the north of the 
settlement. When simulating debris flow scenarios, we do not actively model fluvial transport of 
water/sediment that enters the river channel. Therefore, when debris flows enter the river channel, 
conservation of mass and momentum leads to the artificial development of expanding lakes (see 
Figure 12). In reality, fluvial transport would likely prevent lake formation by advecting material 
downstream. Given that, in all simulations, these lakes never inundate any settlements or individual 
buildings, this assumption is unlikely to significantly impact debris flow routing through the urban 
settlement. Furthermore, we expect the effects from backward (i.e., upstream) propagation of the 
flow from these lakes to be limited, as these lakes mostly develop after the occurrence of maximum 
flow depth in the urban settlement. The strength of the source condition determines the severity of 
inundation in the settlement. Figure 12 demonstrates that as the source intensity increases, the extent 
(i.e., number of assets affected) and depth of inundation increase. For higher intensity scenarios, an 
additional channel, located towards the southern extent of the settlement, becomes active, 
propagating the flow through the domain (Fig 12b&c). In moderate to low scenarios, some ephemeral 
channels never become active. Given the large volume of material that can be deposited into the river 
for high-intensity scenarios, there is scope for considering multi-hazard interactions between fluvial 
flooding and debris flows (see below). 

Figure 12: Hazard maps displaying maximum depth of debris flow for low- (a); medium- (b); and high-
intensity (c) scenarios. Note the location of these panels within Tomorrowville is indicated by a black 
rectangle in Figure 1. 
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6 Discussion and conclusions 

Our results demonstrate that physics-based models can be used to effectively simulate multiple 

independent hazards that impact an urban area. We now discuss the utility of these methods when 

developing risk-sensitive urban plans that consider multiple natural hazards. Physics-based models 

can produce high-resolution spatially distributed maps of hazard intensity for a range of scenarios. 

These can help decision makers identify regions of the landscape exposed to one or multiple hazards, 

from district level to individual buildings. When considering future urban development, the dynamic 

nature of the landscape and the hazards and the dynamic interactions between hazards and 

landscapes must be accounted for. For example, as the urban landscape evolves, the construction of 

new assets or the demolition of others can change the routing of flows (e.g., flood, debris flows, fire, 

etc.) through the landscape, thus changing the spatial intensity of flow hazards. This can be achieved 

using physics-based simulations only. We demonstrated this in the flood hazard modelling scenarios. 

When building footprints were incorporated into the DEM directly, the flood inundation increased in 

certain regions of Tomorrowville (Figure 10). These features associated with the high-spatial-

resolution mapping of building layouts are unlikely to be captured in empirical models that are not 

calibrated at this resolution. Physics-based models can also account for changes to flow behaviour and 

source conditions that arise from changes to surface runoff characteristics (e.g., from the construction 

of paved roads and new buildings). In addition, when considering future urban development, it is 

essential to account for the effects of climate change. Physics-based models can account for 

perturbations to parameters and source conditions likely to be caused by climate change. We 

demonstrated this in §4, where we incorporated rainfall projections from Shrestha et al. (2022) into 

our flooding scenarios to demonstrate how climate change may alter flood hazard in Tomorrowville 

in the near future. This highlights the need to base future risk-sensitive urban plans on predicted 

rainfall events or projected climate scenarios and not only on return intervals produced from historical 

events. Physics-based models can be used to develop hazard maps for combinations of different 

physical urban layouts and hazard intensities when exploring potential future urban spaces. 

The spatial correlations of hazards occur due to their dynamic behaviour and the physical 

characteristics of the domain. Most notably, settlements in the vicinity of the river channel are most 

vulnerable to future hazards due to: (a) overbanking of the river (fluvial flooding); (b) damage from 

debris flows and pluvial floods that are routed onto the valley floor; (c) maximum shaking from 

earthquakes occurs due to the soft sediments that surround the river channel and due to the basin 

geometry. Our results demonstrate that physics-based models can identify regions within 

Tomorrowville that are vulnerable to multiple independent hazards. Furthermore, using empirical 

GMMs as an example (Figure 6), we demonstrate that empirical methods cannot resolve local-scale 

variations that contribute to the spatial correlation of hazards. It is important to identify multi-hazard 

interrelationships, as the cumulative impact of multiple interacting hazards can be greater than the 

sum of their individual impacts (e.g., Kappes et al., 2012; Terzi et al., 2019). This ‘amplification’ of 

impact can be caused by dynamic interactions between coincident hazards, and also by the 

accumulation of damage in the built environment from successive hazards (e.g., Ganesh Prasad & 

Banerjee, 2013; Gentile et al., 2022). This study presented intensity maps for three independent 

hazards at the same physical locations. However, in a real landscape, interacting or cascading hazards 

could increase the exposure of the urban environment and vulnerability of its elements (e.g., including 

physical, social, and economic components); rapid urban expansion could further increase the 

susceptibility to certain multi-hazard interactions. For example, in a landscape like Tomorrowville, 

which is comprised of terraced slopes, a valley floor and upper plateau regions, the pressure on the 

land from urban expansion could lead to increased construction on steeper, unstable slopes. 

Earthquakes are known to trigger mass movements, including debris flows and landslides (e.g., Gill 
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and Malamud, 2014). Earthquakes may weaken hillslopes to the extent that they fail more readily 

when triggered by other mechanisms, such as intense rainfall (ibid.). Landslides, debris flows and 

floods can be considered as compound or cascading hazards, depending on the sequence of events 

(for an overview of possible hazard interrelationships, refer to Gill and Malamud, 2014; Tilloy et al., 

2019, De Angeli et al., 2022). In §5, we demonstrated that debris flows could potentially deposit 

sediment and water into the river. Under certain geographic conditions, this can alter river flooding 

by fully or partially damming rivers and increasing the volume of transported material (e.g., Costa and 

Schuster 1988). 

The multi-hazard framework of Gill and Malamud (2014) identifies four key sequential stages: (1) 

hazard identification and comparison; (2) hazard interactions; (3) hazard coincidence; (4) dynamic 

vulnerability. A challenge lies in establishing the existence or types of multi-hazard interactions using 

separate physics-based models that simulate different hazard scenarios. As the models used in this 

study are not dynamically coupled, risk-sensitive plans will not account for the complex physical 

behaviour that occurs when hazards interact. Developing dynamically coupled models capable of 

simulating multiple interrelated hazards could provide a more complete representation of possible 

future multi-hazard events for use in risk-sensitive urban planning. In practice, examples of the 

integration of multi-hazard interrelationships remain limited (e.g., Komendatova et al., 2014, Cremen 

et al., 2022a). We have shown that independent physics-based hazard simulations, in combination 

with the literature and stakeholder knowledge, can be used to assist with the identification and 

location of multi-hazard prone regions. For Tomorrowville, we identify – at least qualitatively – 

potential multi-hazard interactions from simulations of individual hazards. In addition, for applying 

the TCDSE in an actual location, we also envisage a process of compiling and analysing a database of 

previous hazard and multi-hazard events from community knowledge, municipal government, risk 

management and media records. The resulting simulations should utilise DEMs that account for future 

urban designs (i.e., that represent future distributions of assets and populations). Several challenges 

exist in developing physics-based models to simulate natural hazards in an urban environment, 

including the identification of major hazards and their potential interactions, the choice of hazard 

intensity scenarios, the choice of model parameters, and the uncertainty associated with all of the 

above (e.g., Tilloy et al., 2019). However, using state-of-the-art physics-based models of multiple 

hazards can help to identify areas in a rapidly expanding urban landscape which are highly sensitive 

to multiple hazards. Understanding how different hazards interact with a landscape can help 

modellers, urban planners, policymakers and communities to identify areas more suitable for 

residential, industrial, leisure, and other land uses and for planning/designing future infrastructure 

systems. 

Validation of physics-based models is essential to understand their accuracy and capability. In the case 

of a physics-based model for earthquake-induced ground motions, the appropriateness of input 

models describing the source rupture, 3D crustal structure, and shallow site conditions are complex 

and regionally varying. Hence, the accuracy of ground-motion simulations is region- and even site-

specific. Furthermore, as ground-motion time series are complex transient signals, the power of 

simulations to adequately capture the relevant features of these signals varies depending on the 

specific focus of the analysis. Oberkampf et al. (2002) discuss verification (i.e. assessing the accuracy 

of the solution of a computational model) and validation as a formal process for developing predictive 

capability in computational modelling. Bradley et al. (2017) use those concepts to develop guidance 

on using earthquake-induced ground-motion simulation in engineering practice. Validation exercises 

involve testing simulations against observed data from past events. A generally favourable comparison 

of recorded and simulated intensities should provide confidence to stakeholders and decision-makers 
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in using the proposed simulation method and its specific modelling components, particularly for future 

events.  

When modelling natural hazards for risk-informed planning purposes, numerous sources of 

uncertainty must be understood and accounted for. Such modelling uncertainty is due to inaccuracies 

and idealisations made in the physics-based model formulations and the choices of source conditions 

and input parameters. While a detailed discussion of uncertainties in physics-based hazard simulations 

is beyond the scope of this work (and is also hazard- and method-dependent), we provide some 

general discussion and a few illustrative examples here. Specifically, three principal sources of 

modelling uncertainty in physics-based hazard models must be communicated to and considered by 

decision makers, including: errors in the physical domain; errors in the parameters contained within 

the governing equations; errors in the source/input conditions used to propagate hazards throughout 

the domain. Some of these issues can be addressed by thoroughly calibrating and validating the model 

using past events. However, it is impossible to calibrate and validate future projected hazards that 

depend on the urban layout (e.g. floods, mass movements, fires) that occur in regions that have yet 

to be developed. This is especially important for modelling the routing of hazardous flows since 

climate change, and alterations to the physical environment caused by urbanisation will significantly 

affect modelling outputs, as discussed above. Physics-based models can simulate these physical 

changes by carefully selecting model parameters and source conditions based on future land use and 

climate projections. Moreover, different hazard models (and different modelling 

approaches/methods) will have different levels of uncertainty. Therefore, decision makers must be 

aware of, and adequately account for, those uncertainties when attempting to reduce risk in future 

urban environments. When using simulation-based risk-reduction frameworks, uncertainties—

including those related to hazard intensities—should be propagated through to the relevant impact 

metrics. For instance, the simulation-based framework for earthquake risk-informed and people-

centred decision making in future urban planning proposed by Cremen et al. (2022b) explicitly 

accounts for uncertainties in the future projections of underlying variables (e.g., asset location and 

structural or non-structural features, building fragility, age and income profile of inhabitants). Monte 

Carlo sampling is extensively used to capture uncertainties in end-to-end calculations, from hazards 

to impacts and risk. 

To illustrate some of these issues further, let us now consider uncertainties related to the domain of 

flow hazard simulations. A large source of error when simulating present-day flow hazards in urban 

environments is caused by artefacts in the DEM, such as: trees and vehicles, which provide obstacles 

to flow, and bridges over river channels, which can act as dams. These errors can be accounted for in 

present-day simulations by carefully processing the DEM to identify and remove these artefacts. 

However, the eventual layout of future urban environments is typically unknown precisely. Given that 

we have demonstrated the importance of incorporating future building layouts into the domains of 

flow simulations (see §4), decision-makers must recognise that perturbations to future urban plans 

can effectively alter future flooding hazard and therefore acts as a source of uncertainty in the risk-

informed modelling process.   

Some uncertainties associated with the limitations of individual physics-based models can be 

effectively communicated to stakeholders and decision-makers by leveraging a combination 

(ensemble) of different models for a given risk assessment. However, this approach requires an 

accepted protocol for ranking and aggregating models. The uncertainty associated with input 

parameters and source conditions can be accounted for in the planning process by simulating a range 

of scenarios co-produced with local stakeholders and decision-makers. For example, in the absence of 

historical flood maps from satellite imagery or maps developed as part of a post-disaster survey, 
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communities can work with modellers to identify areas prone to flooding (e.g., Mulligan et al., 2019) 

as communities experiencing frequent natural hazards are known to have a wealth of local knowledge 

which can inform the modelling process (Sakic Trogrlić et al., 2021). Indeed, a key aspect of the TCDSE 

is to reduce risk in future cities by engaging with a broad spectrum of stakeholders throughout the 

planning stage through a process of co-production (Galasso et al., 2021).  

In summary, we use a case study of a virtual urban testbed to highlight the importance of using 

physics-based models to simulate multiple natural hazards when designing risk-sensitive urban plans. 

We present simulations of independent earthquake, flood, and debris flow scenarios which we use to 

reflect on the process of integrating hazard models into risk-sensitive planning frameworks. We 

demonstrate that physics-based methods can be used to assist with the identification of urban areas 

that are vulnerable to multi-hazard events. We also show that including building elevations in high-

resolution DEMs of future urban topography is necessary for planning that accounts for the routing of 

hazardous flows. We conclude by recommending that future risk-sensitive planning frameworks 

include physics-based models that can dynamically simulate coupled multi-hazard events that are 

identified through advanced modelling and co-production with local stakeholders. 
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