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We assess the long-run growth effects of rising longevity and increasing the retirement age when growth is
driven by purposeful research and development. In contrast to economies in which growth depends on learning-
by-doing spillovers, raising the retirement age fosters economic growth. How economic growth changes in
response to rising life expectancy depends on the retirement response. Employing numerical analysis, we find
that the requirement for experiencing a growth stimulus from rising longevity is fulfilled by the USA, nearly
met by the average OECD economy, but missed by the European Union and by Japan.

INTRODUCTION

Rich countries have been facing unprecedented increases in life expectancy over the past
decades. For example, life expectancy in the USA increased from about 69 years in the
1950s to about 79 years in 2019, while it increased by even more in countries such as
France and Germany, from about 67 years in the 1950s to more than 80 years in 2019
(United Nations 2022). This development undoubtedly raises individual wellbeing (Kuhn and
Prettner 2016; Baldanzi et al. 2019; Frankovic et al. 2020; Bloom et al. 2021). However, it also
comes with certain economic concerns. If people live longer for a constant retirement age, then
the resulting increase in economic dependency could lead to a reduction in economic growth
and pose a threat to the sustainability of social security systems and pension funds (Gruber
and Wise 1998; World Economic Forum 2004; Economist 2009, 2011; Bloom et al. 2010).
Whether such adverse effects materialize, however, depends on the extent to which individuals
change their savings behaviour in response to increasing longevity and on the extent to which
retirement policies are adjusted to cope with demographic change (Bloom et al. 2007, 2010).

The economic effects of changing life expectancy and changing retirement policies have
been analysed, for example, by Futagami and Nakajima (2001), Heijdra and Romp (2009),
Bloom et al. (2007, 2014), Heijdra and Mierau (2011), d’Albis et al. (2012), Prettner and
Canning (2014), Kuhn et al. (2015) and Sánchez-Romero et al. (2016). Either these papers
assume a partial equilibrium perspective in which the interest rate and economic growth do
not react to individual decisions, or they are based on models in which growth is driven
by physical capital accumulation—either with decreasing returns to capital accumulation
à la Solow (1956), Cass (1965), Koopmans (1965) and Diamond (1965), or with constant
returns to capital accumulation due to learning-by-doing spillovers à la Romer (1986) and
Rebelo (1991). However, long-run economic growth in rich countries is driven mainly
by purposeful research and development (R&D) investments (Romer 1990; Aghion and
Howitt 1992; Jones 1995; Kortum 1997). To analyse the effects of rising life expectancy
and changing the retirement age for these economies, we therefore integrate a demographic
structure of overlapping generations in the vein of Blanchard (1985) into the endogenous
R&D-based growth model of Romer (1990) with a given retirement age.
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2 ECONOMICA [XXXX

In a first step, we show that increasing the retirement age raises economic growth and the
equilibrium interest rate because the positive growth effect of the larger workforce implied
by a longer working life overcompensates for the negative growth effect of reduced savings.
Thus raising the retirement age may be an appropriate policy response to the phenomenon of
secular stagnation in which economic growth is sluggish and the equilibrium interest rate is
stuck below zero (Eggertsson et al. 2019, 2020).

The savings channel—and the savings channel only—also features in Futagami and
Nakajima (2001) and Heijdra and Mierau (2011), who find that an increase in the retirement
age leads to a reduction of capital accumulation and therefore to a reduction of economic
growth in a Romer (1986) model in which growth is driven by capital accumulation with
learning-by-doing spillovers. While their results are highly relevant for economies with
exogenous technological progress (e.g. small economies adopting technologies from abroad),
our results imply the opposite effect in countries that drive the worldwide technological
frontier such as Germany, Japan and the USA. The opposing results are also interesting from
a theoretical point of view. It is sometimes argued that results based on endogenous growth
models with learning-by-doing spillovers (Romer 1986) are similar to the results based on
R&D-driven growth models (Romer 1990). While it is known that this is not necessarily
the case, our contribution shows yet another counterexample that arises when analysing
the implications of an increase in the retirement age. Thus from a policy perspective, it is
important to take the underlying structure of the economy into account when considering
retirement policies.

In a second step, we show that the extent to which economic growth changes in response
to rising life expectancy depends on the accompanying pension policies. This is because as
long as the boost to savings that is brought about by an increase in longevity is not very
strong, the increase in economic dependency that comes with greater longevity for a given

retirement age will typically lead to a reduction in R&D activity and economic growth. We
provide a necessary and sufficient condition for a positive growth impulse, requiring the
elasticity of the retirement age with respect to the increase in longevity to be sufficiently
large. We show further that an increase in the retirement age in proportion to an increase in
life expectancy is sufficient for longevity growth to stimulate economic growth.

Our analysis concludes with a set of numerical examples, studying how the USA, the
European Union (EU), Japan, and the average Organisation for Economic Co-operation and
Development (OECD) economy have fared in respect to the rise in longevity over the time
span 2000–2017. We find that only the USA has clearly benefited in terms of higher economic
growth, whereas the growth stimulus from the longevity increase was neutral for the OECD
and negative for the EU and Japan. Our numerical results suggest that a longevity-driven boost
to savings is much weaker than the effects that run through changes in labour participation.
We also find that quantitatively, both channels tend to be dominated by changes to R&D
productivity.

To allow for analytical results, our analysis relies on a number of simplifying assumptions,
namely: (i) an R&D production function that relies on labour; (ii) constant returns in the
production of R&D, and thus the presence of a scale effect; (iii) a stationary population and
a mortality rate that is uniform across all ages; (iv) the exogeneity of retirement; and (v) the
absence of investments in human capital. We show that our results are robust to (ii)–(v),
and argue that while the alternative lab-equipment approach would shut down the impact of
ageing on R&D through the savings channel, this seems at odds with evidence on the role of
financial markets for R&D-driven growth.

The paper is organized as follows. In Section I, we set up an overlapping generations
version of the R&D-based endogenous growth model of Romer (1990) with a fixed retirement
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2022] RISING LONGEVITY 3

age. In Section II, we derive our main results and discuss their relevance for actual retirement
policies carried out in different countries. In Section IV, we assess how our results change
depending on the underlying economic assumptions. Finally, in Section V, we draw our
conclusions. A number of mathematial derivations have been relegated to an Appendix.

I. THE MODEL

Household side Consider an economy in which individuals enter the labour market as adults
at time t0 and maximize the discounted stream of their remaining lifetime utility as given by

(1) U =
∫ ∞

t0

log(c) e−(ρ+μ)(t−t0) dt ,

where c is instantaneous consumption, ρ is the pure rate of time preference, and μ represents
the mortality rate. The latter augments the rate of time preference because the risk of death
constitutes a further reason to consume earlier in life rather than later. Individuals earn
non-capital income w (wages and lump-sum redistributions of profits from intermediate
goods producers) as long as they are not retired. Suppressing time arguments and following
Yaari (1965) in assuming that individuals save in terms of fair annuities that insure against
the risk of dying with positive capital holdings, the flow budget constraint reads

(2) k̇ = χw + (μ + r)k − c,

where k denotes the individual capital stock, and χ is an indicator function taking value 1
when working, and 0 when retired (Bloom et al. 2007; Prettner and Canning 2014). The
first term in the flow budget constraint relates to income earned on the labour market and
from receiving the lump-sum redistributions of profits (Kuhn and Prettner 2016). This term
becomes zero once an individual retires. The second term refers to the interest earnings on
capital holdings (rk ), which are augmented by the redistribution of capital from people who
die to those who survive, via the annuity market (μk ). If individuals have income higher
than their consumption expenditures at a given instant, then their capital stock accumulates
(k̇ > 0).

Solving the intertemporal maximization problem as represented by equations (1) and (2)
leads to the standard Euler equation (see Optimal consumption in Appendix)

(3) ċ = (r − ρ)c,

stating that consumption expenditure growth depends positively on the difference between
the interest rate and the rate of time preference.

The lifetime budget constraint is

(4)
∫ ∞

t0

e−(μ+r)(t−t0)
c(t0, t) dt =

∫
t0+R

t0

e−(μ+r)(t−t0)
w(t0, t) dt ,

where lifetime consumption expenditures (the left-hand side) have to equal lifetime income
(the right-hand side). In this expression, the working lifespan is denoted by R, such that the
age at retirement is given by t0 + R in the upper bound of the integral on the right-hand-side
that represents lifetime income. For a constant age at labour market entry t0, an increase in
R is tantamount to an increase in the retirement age.

Denoting the aggregate capital stock by K and aggregate consumption expenditures by
C , we have the following definitions to derive the corresponding variables (see, for example,
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4 ECONOMICA [XXXX

Blanchard 1985; Prettner 2013; Heijdra 2017, ch. 15):

K (t) ≡
∫

t

−∞
k(t0, t)N (t0, t) dt0,

C (t) ≡
∫

t

−∞
c(t0, t)N (t0, t) dt0,

where N (t0, t) denotes the size of the cohort entering the labour market at time t0 as of
date t , while k(t0, t) and c(t0, t) are the capital holdings and consumption levels of the
members of this cohort at time t , respectively. To rule out the counterfactual prediction of
hyper-exponential growth, we follow the crucial assumption in the underlying framework
of Romer (1990) that the population is stationary. In our setting, this implies that the
birth rate equals the death rate. In this case, the flow of labour market entrants is
N (t , t) = μ N (t), where N (t) = ∫

t

−∞ N (t0, t) dt0 ≡ N represents the adult population size,
and L(t) = ∫

t

t−R N (t0, t) dt0 is the labour force. Note that in our setting: (i) each adult cohort
is of size μN eμ(t0−t) at a certain date t > t0; (ii) the cohort fertility rate stays constant for
a changing mortality rate μ, such that the fertility decisions of individuals do not change for
changing parameters; and (iii) a change in the mortality rate does not change the population
size, such that the scale effect in the Romer (1990) framework is neutralized with respect
to the overall population size. Assuming a growing population, as in Buiter (1988), together
with a semi-endogenous growth framework, as in Jones (1995), would imply effects similar
to the ones that we find during the transition to the long-run balanced growth path (BGP; see
Remark 3 and Derivation of the BGP in the Jones (1995) model in Appendix).

Taking into account our demographic structure and using the stated aggregation rules
leads to the following dynamic equations for the aggregate capital stock and aggregate
consumption (see Aggregating over cohorts in Appendix):

K̇ = rK +W − C ,(5)

Ċ

C

= r − ρ − μ(ρ + μ)
K

C

,(6)

where W refers to aggregate non-capital income (see Remark 4 and the Accounting for
realistic demography in Appendix for a more general demographic structure).

The resource constraint states that aggregate production Y is either consumed or invested
in physical capital such that the goods market clearing condition

(7) K̇ = Y − C

is fulfilled. Next, we turn to the description of the production side of the economy. Since
the production side closely follows the R&D-based endogenous growth literature, we state
only the key equations required for the further analysis of changing the retirement age and
changing life expectancy.

Production side Labour is either employed in the final goods sector (LY) to assemble
the consumption aggregate, or in the R&D sector (LA) to develop the new technologies
(‘blueprints’ for machines or simply ‘ideas’) that drive productivity growth in knowledge-
based economies (see, for example, Romer 1990; Grossman and Helpman 1991; Aghion
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2022] RISING LONGEVITY 5

and Howitt 1992). The representative firm in the final goods sector combines workers and
machines according to the production technology

(8) Y = L
1−α
Y

∫
A

0
x

α
i

di ,

where A is the stock of technology in the country, xi is the quantity of a specific machine i
used in final goods production, and α ∈ (0, 1) is the elasticity of final output with respect
to machines. Taking the final good as the numeraire, profit-maximization of final goods
producing firms together with the assumption of perfect competition in the final goods market
implies that the wage rate for workers wY , and the price of machines pi , are given by

wY = (1 − α)
Y

LY

, pi = αL1−α
Y

x
α−1
i

.

Each intermediate firm produces one of the differentiated machines such that there is
monopolistic competition in the vein of Dixit and Stiglitz (1977). After a firm has purchased
a blueprint from the R&D sector, it has access to a production technology that allows it
to convert one unit of capital k into one machine x such that ki = xi for all firms i . Thus
operating profits can be written as

(9) πi = pi ki − rki = αL1−α
Y

k
α
i

− rki .

Profit-maximization of firm i yields the optimal price pi = r/α, where 1/α is the markup
over marginal cost (Dixit and Stiglitz 1977). As a consequence, the aggregate capital stock
is equal to the total quantity of intermediates, that is, K = Ax . Using this, the aggregate
production function (equation (8)) becomes Y = (ALY )1−α

K
α , and production per capital

unit can be written as a function of the interest rate and the elasticity of final output with
respect to machines r = αp = α2

Y /K , which gives Y /K = r/α2.
The R&D sector employs scientists to discover new technologies (Romer 1990).

Depending on the productivity of scientists λ, and their employment level LA, the stock
of blueprints evolves according to

(10) Ȧ = λALA.

R&D firms maximize their profits πA = pAλALA − wALA, with pA representing the price of
a blueprint, by choosing the employment level LA. The first-order condition of this profit-
maximization problem pins down wages in the research sector as wA = pAλA. Due to perfect
labour mobility, wages of workers in the final goods sector and wages of scientists equalize
at the labour market equilibrium such that

(11) wA = pAλA = (1 − α)
Y

LY

= wY .

Firms in the R&D sector charge a price for the blueprint that is equal to the present value of
operating profits in the intermediate goods sector. This is because there is always a potential
entrant willing to bid a lower price. Consequently,

pA =
∫ ∞

t

e−�(τ) π dτ

Economica
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6 ECONOMICA [XXXX

holds in equilibrium, where �(τ) = ∫ τ

t
r(s) ds denotes the compound interest between t

and τ . Via the Leibniz rule and the fact that prices of blueprints do not change along a BGP,
we obtain the long-run equilibrium price of a blueprint as

pA = π

r

.

Next, by using equation (9), we get operating profits as π = (1 − α)αY /A such that the price
of blueprints becomes pA = (1 − α)αY /(rA). Using the labour market clearing condition
L = LA + LY , we can then determine the quantity of labour employed in the final goods
sector and in the R&D sector by using equation (11), as

(12) LY = r

αλ
, LA = L− r

αλ
.

This endogenous division of labour determines the flow of new technologies in the R&D
sector. Inserting equation (12) into equation (10) leads to the evolution of technology as

(13) Ȧ = max

{
λAL− rA

α
, 0

}
.

Now we have all the necessary ingredients to solve for the long-run BGP and to assess
the effects of changing life expectancy and a changing retirement age on economic
growth.

II. THE IMPACT OF RISING LONGEVITY AND CHANGING RETIREMENT POLICIES ON LONG-RUN

GROWTH

Balanced growth impact of changes in the retirement age and in mortality Along a BGP,
we know that the growth rates of technology, capital and consumption coincide such that
Ȧ/A = Ċ /C = K̇ /K = g . Collecting equations (6), (7) and (13), recalling that labour supply
is given by L(t) = ∫

t

t−R N (t0, t) dt0, and utilizing the definition C /K ≡ ξ , we derive the
following three-dimensional system describing our model economy along the BGP:

g = r

α2
− ξ ,(14)

g = r − ρ − μ(ρ + μ)
1

ξ
,(15)

g = λ

∫
t

t−R
N (t0, t) dt0 − r

α
.(16)

In this system, the endogenous variables are the interest rate r , the consumption-to-capital
ratio ξ , and the long-run economic growth rate g . We turn to implicit comparative statics
to prove the analytical results in Propositions 1 and 2, and generate two sets of insights. In
a first step, we consider the balanced-growth impact of an isolated change in the retirement
age. In a second step, we consider the balanced-growth impact of a change in longevity, and
study how this depends on potential adjustments in the retirement age.

Proposition 1. In the endogenous growth framework of Romer (1990) with overlapping
generations and retirement, an increase in the retirement age (a rise in R) leads to:

Economica
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2022] RISING LONGEVITY 7

(i) an increase in the interest rate (r);
(ii) an increase in the long-run economic growth rate (g).

Proof. Noting that
∫
t

t−R N (t0, t) dt0 = N

(
1 − e−μR

)
, we rewrite the system (14)–(16) as

W (ξ , g , r) := r

α2
− ξ − g = 0,(17)

X (ξ , g , r) := r − ρ − μ(ρ + μ)
1

ξ
− g = 0,(18)

Y (ξ , g , r) := λN
(
1 − e−μR

) − r

α
− g = 0.(19)

Applying the implicit function theorem and Cramer’s rule, we obtain the following
comparative statics:

dg

dR
= λμN e−μR[α2ξ 2 + μ(μ + ρ)]

(1 + α)[αξ 2 + μ(μ + ρ)]
> 0,(20)

dr

dR
= α2λμN e−μR[μ(μ + ρ) + ξ 2]

(1 + α)[αξ 2 + μ(μ + ρ)]
> 0.(21) �

Hence, in contrast to Futagami and Nakajima (2001) and Heijdra and Mierau (2011),
who base their analysis on a Romer (1986) framework in which growth is driven by physical
capital accumulation via learning-by-doing spillovers, an increase in the retirement age
unambiguously raises economic growth in a Romer (1990) setting. The intuition is that a
rise in the retirement age implies an increase in the labour force and therefore raises the
number of scientists that are available for the production of blueprints in the R&D sector.
While there is also a reduction in individual savings due to the longer working life (as in
Futagami and Nakajima 2001; Heijdra and Mierau 2011), the associated negative growth
effect is overcompensated by the positive effect of the larger labour force.

The difference in the results suggests that in economies in which growth is driven mainly
by purposeful R&D investments (such as in Germany, Japan and the USA), an increase in
the retirement age will indeed lead to a rise in the long-run economic growth rate. However,
in economies in which growth is driven mainly by physical capital accumulation coupled
with learning-by-doing spillovers (predominantly small economies that are not advancing the
worldwide research frontier), a rise in the retirement age could lead to a reduction in the
growth rate. Consequently, any adjustment of the retirement age should be considered in
light of the underlying structure of the economy.

Proposition 1 shows that a rise in the retirement age may be an appropriate policy response
to the phenomenon of secular stagnation as described in detail by Eggertsson et al. (2019,
2020). According to these contributions, we were facing a prolonged period of stagnation in
many countries with sluggish economic growth and an equilibrium interest rate stuck below
zero after the global financial crisis. Our results show that raising the retirement age increases
the workforce and—at the same time—reduces savings. Both of these effects put upward
pressure on the interest rate and, overall, lead to faster economic growth.

The effects of increasing life expectancy are more subtle because there are opposing
channels: (i) a reduction of the generational turnover leading to higher aggregate savings and
thus a lower interest rate, which in turn encourages investment in R&D and thereby fosters
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8 ECONOMICA [XXXX

economic growth; (ii) a reduction of the labour supply for a given retirement age because a
lower mortality rate then implies a lower support ratio for a stationary population.

Proposition 2. In the endogenous growth framework of Romer (1990) with overlapping
generations and a constant retirement age, an increase in life expectancy (a decrease in μ)
leads to a decrease in the interest rate and an ambiguous response of the long-run economic
growth rate.

Proof . Applying the implicit function theorem and Cramer’s rule to the system of
equations (17)–(19), we obtain the following comparative statics:

dg

dμ
= e−μR

{
λNR[α2ξ 2 + μ(μ + ρ)] − αξ(2μ + ρ) eμR

}
(α + 1)[αξ 2 + μ(μ + ρ)]

� 0,(22)

dr

dμ
= α2

{
ξ(2μ + ρ) + λNR e−μR [μ(μ + ρ) + ξ 2]

}
(α + 1)[αξ 2 + μ(μ + ρ)]

> 0.(23)

This establishes the claim in the proposition. �

These results constitute an analytical underpinning for Bloom et al. (2007) and Aksoy
et al. (2019), who provide evidence that, indeed, an increase in longevity triggers an increase
in aggregate saving and a decline in the interest rate. Our result is also consistent with the
finding of Aksoy et al. (2019) that ageing has led to a reduction in R&D activity and in
economic growth over the time frame 1970–2014 in a set of OECD countries.

Growth-preserving retirement response to longevity change Against this backdrop, the next
proposition spells out a set of conditions on the response of the retirement age (however
brought about) to mortality change, under which a mortality decline translates into a lower
interest rate and an increase in economic growth.

Proposition 3. In the endogenous growth framework of Romer (1990) with overlapping
generations and an exogenous policy response of the retirement age, a decrease in mortality μ

(and thus an increase in life expectancy) leads to:

(i) a decrease in the interest rate (r) if and only if the retirement response satisfies

(24)
dR

dμ

μ

R

> −1 − ξ(ρ + 2μ)

RλN e
−μR [μ(ρ + μ) + ξ 2]

:= 
r ;

(ii) an increase in the long-run economic growth rate (g) if and only if the retirement
response satisfies

(25)
dR

dμ

μ

R

< −1 + αξ(ρ + 2μ)

RλN e
−μR [μ(ρ + μ) + α2ξ 2]

:= 
g .

Proof. Combining (22) and (23) with (20) and (21), we obtain the forms

dg

dμ
+ dg

dR

dR

dμ
,

dr

dμ
+ dr

dR

dR

dμ
.

Rearranging these expressions provides the conditions reported in the proposition. �
Economica
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2022] RISING LONGEVITY 9

Proposition 3 provides a set of conditions on the elasticity of the retirement response
with respect to mortality, for a decline in mortality to have a negative impact on the interest
rate and a positive impact on economic growth. The following remark provides an equivalent
formulation in terms of a change in longevity.

Remark 1. We have cast our analysis directly in terms of the mortality rate μ. In the
Blanchard (1985) setting, life expectancy is given by the identity LE ≡ μ−1. Thus we obtain
the relationship

dμ

dLE
= − μ

LE

by which to multiply all relevant derivatives to obtain the corresponding expressions in terms
of life expectancy. We can then express the elasticity of the retirement age with respect to
longevity as

(26) εR,LE = dR

dLE

LE

R

= dR

dμ

dμ

dLE

R

LE

= −dR

dμ

μ

R

,

such that the two conditions in (24) and (25) can now be written in terms of life
expectancy:

(27) εR,LE < −
r

and

(28) εR,LE > −
g .

To establish a benchmark, consider that the retirement age is not adjusted to a change in
longevity, that is, εR,LE ≡ 0. It is immediately verified for this case that dr/dLE < 0, implying
that the interest rate decreases in response to an increase in life expectancy, reflecting a boost
in savings. By contrast, we have dg/dLE � 0, implying an ambiguous effect of longevity
on economic growth. This is because it is not clear whether the shift of resources into the
R&D sector that is triggered by the decline in the interest rate (Prettner 2013; Kuhn and
Prettner 2016) compensates for the reduction in labour force participation, as measured by
Rμ, or equivalently, by R/LE .

Equation (28) provides a condition on the elasticity of the retirement response to an
increase in longevity for the overall impact on economic growth to be positive. Specifically,
an increase in the retirement age in response to an increase in longevity is required for a
positive impact on economic growth whenever −
g > 0, which is true if the savings response
is relatively weak. Notably, however, the retirement age may be lowered, that is, εR,LE < 0,
if the increase in longevity translates into a strong savings response (as may be true for
low levels of the retirement age), such that −
g < 0. Furthermore, the condition shows that
by guaranteeing a constant labour force, a proportional adaptation of the retirement age to
longevity, as implied by the unit elasticity εR,LE = 1, ensures a positive impact of a longevity
increase on balanced growth. Finally, we see from (27) that longevity improvements lead to
a decline in the interest rate as long as retirement is not boosted by too much. It follows
immediately from −
g ≤ −
r that as long as εR,LE ∈ [−
g , −
r ], there is a joint decline in
the interest rate and a boost to economic growth. Indeed, this is always true for a proportional
adaptation.
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10 ECONOMICA [XXXX

Numerical illustration of the longevity–retirement–growth nexus The ambiguous effect of an
increase in life expectancy on economic growth in case of a fixed retirement age begs the
questions as to (i) by how much different economies need to adjust their retirement age to
secure a positive impact of rising longevity on economic growth, and (ii) whether actual
changes to the retirement age are adequate in this regard. In the following, we provide a
numerical assessment of how four economies—the USA, the EU, Japan and the OECD
(average) economy—have fared with respect to these questions. To obtain a long-term
assessment and to balance out short-term fluctuations, we first calibrate the economies to
reflect the average growth rate over the time frame 2000–2017, dropping the years 2008
and 2009 during which the financial crisis was creating strong distortions. On this basis, we
calculate the threshold 
g , as defined in equation (25), and the elasticity of the change in
the retirement age in response to a 1% increase in life expectancy, εR,LE . This allows us to
assess whether the elasticity exceeds the threshold (recall equation (28)) and thus whether an
increase in longevity should have translated into a growth stimulus for the economies under
consideration.

Substituting successively for r and ξ in the system (14)–(16), and subsequently
reinserting, we can solve for the closed-form solution:

g
∗ = 1

2(1 + α)

(
(1 + α)λN

(
1 − e−μR

) − ρ(29)

−
√[

(1 − α)λN (1 − e−μR) + ρ
]2 + 4αμ(μ + ρ)

)
,

(30) r
∗ = αλN

(
1 − e−μR

) − αg∗,

(31) ξ∗ = r
∗

α2
− g

∗ = λN
(
1 − e−μR

)
α

− 1 + α

α
g

∗.

For all countries, we set α = 0.33 in line with Jones (1995) and Acemoglu (2009), and a
time preference rate ρ = 0.05 that is within a range of plausible values (cf. Warner and
Pleeter 2001; Grossmann et al. 2013a,b). We take the economy-specific growth rate g and
life expectancy LE = μ−1 from the World Development Indicators (World Bank 2019), and
calculate the average effective retirement age R from OECD (2019) data.1 Based on this,
we employ equation (29) to calibrate the value of λN . Using this value in equation (31) to
determine ξ∗, we are able to derive the threshold 
g . Finally, we compute the elasticity that
corresponds to the percentage change in the retirement age from 2010–2017 to 2000–2007
for a 1% increase in life expectancy across these two time frames:

εR,LE = (R2010−2017 − R2000−2007)/R2000−2007

(LE2010−2017 − LE2000−2007)/LE2000−2007
.

When calculating the elasticity from the data, we average the values of retirement and
life expectancy over the time spans 2000–2007 and 2010–2017. Table 1 summarizes our
findings.

The four economies exhibit relatively little variation across growth rates, with the EU
experiencing an average growth rate of around 1.75% over the time frame 2000–2017 as
opposed to some 1.5% only in Japan. By contrast, Japan leads in terms of life expectancy
with around 83.5 years, while the USA is lagging with some 78 years. With 68.5 years, the
Japanese retire late and experience only around 15 years in retirement, whereas EU citizens
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2022] RISING LONGEVITY 11

TABLE 1
COMPARISON BETWEEN THE THRESHOLD (
g ) AND THE ELASTICITY (εR,LE ) ACROSS COUNTRIES

Variable USA EU Japan OECD

Average growth rate 2000–2017 (in %) 1.56 1.75 1.48 1.60
Average life expectancy 2000–2017 77.96 79.28 82.62 78.90
Average retirement age 2000–2017 64.84 61.55 68.53 63.10
Threshold (
g ) 0.966 0.969 0.967 0.967
Elasticity (εR,LE ) 1.260 0.582 0.484 0.900

Source: Authors’ own calculations based on World Bank (2019) (growth rates, life expectancy, gender shares in
total labour force) and OECD (2019) (average effective retirement age).

live more than 17.5 years in retirement. The threshold value for the growth-preserving increase
in the retirement age is close to 1 for all economies, which reflects a modest marginal savings
response to an increase in longevity. Hence there is not much leeway for any of the economies
to remain below an increase in the retirement age that is in lockstep with longevity growth
unless they are willing to forgo economic growth.

As it turns out, there is considerable variation in the elasticities of the actual retirement
age with respect to longevity change, ranging from 1.26 in the USA, implying an
overcompensation of the increase in longevity, to 0.48 in Japan. According to our results, only
the USA would have experienced a positive growth stimulus from the increase in longevity,
whereas Japan and the EU economy would have suffered a loss. Notably, the OECD average
economy lies close to the threshold, implying that the longevity increase was almost neutral.

We consider the quantitative implications as part of a second numerical exercise. Here,
we distinguish the time range 2000–2007 as opposed to 2010–2017 not only according
to longevity and retirement, but also with respect to the value of λN as a shifter of the
growth rate of R&D. Evidently, such shifts embrace size effects (via N ) and genuine
productivity effects (via λ), where the latter may be related to changes in education
but also to changes in the structure and relevance of the innovation process, including
policy interventions. We thus recalibrate our model to obtain time-specific values of λN ,
reflecting the 2000–2007 and 2010–2017 growth rates in the data, which complement
the time-specific values of longevity and retirement. We can then decompose the change
in growth rates across the time frames 2000–2007 and 2010–2017, �g := g2010−2017 −
g2000−2007, according to its drivers: productivity change (�λN := λN2010−2017 − λN2000−2007),
changing longevity (�LE := LE2010−2017 − LE2000−2007) and changing retirement age (�R :=
R2010−2017 − R2000−2007). The findings are summarized in Table 2.

While the USA and the OECD have experienced only a moderate decline in economic
growth, the EU has experienced close to a percentage point loss in growth, albeit starting
from a high growth rate in 2000–2007. Japan, in contrast, has experienced a modest gain.
Our analysis shows that for all economies, changes in R&D productivity are the key driver:
negative for the USA, the EU and the OECD, and positive for Japan. Longevity changes and
changes in the retirement age generate small effects in comparison, the largest being the −0.14
and −0.15 percentage point growth drags from longevity increases in Europe and across the
OECD, respectively. At a positive impact of 0.09 percentage points, the countervailing effect
of an increase in the retirement age is largest in the OECD. In line with our predictions from
the elasticity rule, we find that the increase in the retirement age is sufficient to overturn
the longevity increase in the USA, and insufficient in the EU, Japan and the OECD. For the
OECD, the decomposition also shows that the increase in the retirement age falls short of
what is required for a compensation of longevity growth by a larger margin than might be
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12 ECONOMICA [XXXX

TABLE 2
DECOMPOSITION OF CHANGE IN GROWTH RATE BETWEEN 2000–2007 AND 2010–2017

Variable USA EU Japan OECD

Average growth rate 2010–2017 (in %) 1.44 1.33 1.62 1.40
Average growth rate 2000–2007 (in %) 1.68 2.16 1.34 1.81
Percentage point change in growth ratea −0.23 −0.83 0.29 −0.41
Driven by (in percentage points):
Productivity change −0.25 −0.77 0.32 −0.46
Longevity change −0.06 −0.14 −0.06 −0.15
Change in retirement age 0.08 0.07 0.03 0.09
Complementarity across channels 0.0 0.01 0.0 0.12

Notes a Entries for the USA, Japan and the OECD exhibit minor rounding errors.
Source:See Table 1.

TABLE 3
INCREASE IN THE RETIREMENT AGE THAT WOULD HAVE NEUTRALIZED THE 2000–2007 TO

2010–2017 INCREASE IN LONGEVITY (GIVEN 2010–2017 PRODUCTIVITY)

Variable USA EU Japan OECD

Average growth rate 2010–2017 (in %) 1.44 1.33 1.62 1.40
Counterfactual growth rate 2010–2017 (in %)a 1.43 1.39 1.65 1.40
Compensating change in retirement age (years) 1.12 2.22 1.28 1.55
Actual change in retirement age (years) 1.46 1.14 0.64 1.45

Notes

a With productivity at 2010–2017; retirement and longevity at 2000–2007 levels.
Source: See Table 1.

TABLE 4
COMPENSATING (GROWTH NEUTRAL) INCREASE IN PRODUCTIVITY

Variable USA EU Japan OECD

Average growth rate 2000–2007 (in %) 1.68 2.16 1.34 1.81
Average growth rate 2010–2017 (in %) 1.44 1.33 1.62 1.40
Compensating change in productivity (in %) −0.33 1.17 0.59 0.11
Actual change in productivity (in %) −4.46 −12.67 6.07 −7.05

Source: See Table 1.

expected from the elasticity rule in equation (28). The discrepancy can be understood with
respect to the ceteris paribus nature of this rule. Notably, for the OECD, complementarity
across the three drivers of the growth rate seems to matter, but this may also reflect variations
across the different OECD economies.

We conclude the numerical analysis with two counterfactual policy experiments, as
portrayed in Tables 3 and 4. Specifically, we ask: (i) which increase in the retirement age
would have neutralized the 2000–2007 to 2010–2017 increase in longevity when holding
the productivity measure at its 2010–2017 level (see Table 3); and (ii) which increase in
productivity would have neutralized the joint 2000–2007 to 2010–2017 increase in longevity
and the retirement age (see Table 4).
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2022] RISING LONGEVITY 13

A comparison of the actual 2010–2017 growth rates to the counterfactual rates, in which
longevity and retirement remain fixed at their 2000–2007 levels, shows the failure of the EU
and Japan to compensate for the increase in longevity, which has led to a loss in economic
growth (see Table 3). In the EU, in particular, the sizeable increase in longevity would have
called for a significant increase in the retirement age in excess of 2 years, with the actual
increase falling short by a little more than 1 year. In Japan, the compensating retirement
adjustment would have been more minor, but the actual increase was lowest, at a little more
than 6 months. In contrast, the USA has been overadjusting, leading to an increase in the
economic growth rate, whereas the OECD’s compensation turned out to be appropriate to
maintain the level of growth. Notably, however, the drag on growth of a failure to adjust
retirement in line with the longevity change is rather minor, and the same applies to the gain
in case of overcompensation.

Table 4 presents the increase in productivity that would be necessary to compensate
for the increase in longevity and retirement in scenario (ii) above, and thereby maintain the
2000–2007 economic growth rate. As it turns out, the compensatory productivity adjustments,
which could come through greater productivity in the R&D process or through improvements
in education, are modest. At a required increase in productivity of 1.17% over a 10-year
period, they are largest for the EU, much smaller for Japan and the OECD, and even negative
for the USA, the latter reflecting slow longevity growth and the overcompensating increase
in the retirement age. For all economies, the compensatory productivity change is swamped
by the actual change (as determined from the model), which constitutes a drag on growth in
all countries but Japan.

III. ALTERNATIVE UNDERLYING ECONOMIC STRUCTURES

So far, we have discussed the mechanisms in a prototype model economy of the Romer (1990)
type in which (i) R&D is based on the employment of scientists, (ii) the strong scale effect is
present, (iii) the population is stationary and mortality is age-independent, (iv) the retirement
age is varied exogenously (e.g. by a policymaker), and (v) human capital accumulation does
not play a role.

In this section, we discuss the robustness of our results to different modelling assumptions
and describe the qualitative implications of considering changes in these assumptions on our
results.
Robustness 1: Lab-equipment approach We first discuss the implications of considering a
lab-equipment specification of R&D (see also Our results in the context of the lab-equipment
approach in Appendix).

Remark 2. If we replace equation (10) by a lab-equipment specification as in Rivera-Batiz
and Romer (1991) such that

Ȧ = λ̂Z ,

where Z is a fraction of final output interpreted as lab equipment, and λ is a scaling factor
reflecting the productivity of lab equipment in generating new ideas, then the scale effect is
still present but the interest rate channel drops out of the model (see Our results in the context
of the lab-equipment approach in Appendix and Rivera-Batiz and Romer 1991, eq. (10)). Since
the financing of R&D seems, however, to matter in light of the empirical evidence (cf. Brown
et al. 2009; Ang 2010; Howell 2016), and because R&D is a very labour-intensive activity
to date, we deem the Romer (1990) framework to be better suited to capture the relevant
aspects of reality than the lab-equipment approach.
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14 ECONOMICA [XXXX

Robustness 2: Role of scale effect Readers who are familiar with R&D-driven growth theory
will correctly anticipate that the underlying mechanism of the effects of a changing retirement
age rests on the scale effect. This effect has been criticized in the literature (cf. Jones 1995;
Peretto 1998; Segerström 1998) because it does not conform with data on the relation between
productivity growth and employment in R&D. We therefore analyse the implications of using a
semi-endogenous growth model in the vein of Jones (1995) instead of the endogenous growth
model of Romer (1990) as the underlying framework, while allowing for a non-stationary
population (see Derivation of the BGP in the Jones (1995) model in Appendix). In this case,
population growth is given by the difference between the fertility rate β and the mortality rate
μ as n = β − μ. Workforce growth differs from population growth because of the exogenous
retirement age at which all surviving workers leave the workforce instantaneously. Following
Prettner (2013) and Prettner and Trimborn (2017) in modifying the R&D productivity equation
to

(32) Ȧ = λAφ
LA,

where φ < 1 measures the strength of intertemporal knowledge spillovers, leads to a long-run
balanced growth rate

(33) g
Jones = β − μ∗

1 − φ
,

where μ∗ is the cumulative exit rate from the workforce determined by mortality and
retirement. Thus the long-run growth rate of GDP is pinned down by the long-run growth
rate of the workforce, β − μ∗. We summarize the consequences in the following remark.

Remark 3. Changing the retirement age or changing life expectancy in the semi-endogenous
growth models of Jones (1995), Kortum (1997) or Segerström (1998), or in Schumpeterian
scale-free growth models such as those of Peretto (1998) and Young (1998), affect long-run
economic growth only if they bear on the growth rate of the workforce. All other effects
described above for the Romer (1990) setting apply only during the transition towards the
balanced growth rate. However, the transition in these growth models is usually rather slow
(see, for example, Prettner and Trimborn 2017), such that even transient growth effects span
a substantial time period and thus imply substantial level effects on per capita GDP.

Robustness 3: Realistic demography Next, we turn to the case of a fully realistic demography,
involving both a possibly non-stationary population and an age-dependent mortality schedule.
In this case, our findings on the impact of variation in the retirement age continue to apply.
The findings on the impact of changing life expectancy continue to hold whenever the decline
in the aggregate death rate leads to a decline in the ‘generational turnover’ that acts as a drag
on consumption growth. Intuitively, mortality reductions tend to boost demand in settings
where consumption increases with age such that more individuals tend to live through ages
with high consumption spending (cf. Kuhn and Prettner 2018). This effect is present in the
baseline model (see the last term in equation (15) of the growth system (14)–(16)) and
can be shown to hold under plausible circumstances in a more general model with age-
specific mortality (see the Accounting for realistic demography in Appendix). This channel
is complemented by a decline in the interest rate, as triggered by the increase in aggregate
saving that is necessary to accommodate the higher levels of consumption spending in old
age. We can summarize as follows.
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2022] RISING LONGEVITY 15

Remark 4. If mortality is age-dependent, then any change in the mortality pattern that leads
to a reduction in the aggregate death rate, or equivalently, to an increase in life expectancy,
will typically stimulate economic growth in economies in which consumption is increasing
with age. Evidence in Kuhn and Prettner (2018) suggests that this channel is indeed relevant
for a number of important industrialized countries, including the USA, Japan and a number
of EU economies.

The final two aspects for consideration relate to the exogeneity of retirement and education
within our model, both of which have been shown to be important, and indeed related sets
of choices from an individual lifecycle perspective (see, for example, Hazan 2009; Hansen
and Lønstrup 2012; Cervellati and Sunde 2013; Sánchez-Romero et al. 2016).

Robustness 4: Endogenous retirement Turning to the possible endogeneity of retirement first,
we follow Prettner and Canning (2014) in embedding an optimal choice of the retirement age
within general equilibrium. We can thus show the following (see Accounting for endogenous
retirement in Appendix).

Remark 5. Consider an extension of our model where the representative individual decides on
an optimal duration of the working life. The following then hold along a BGP. (i) The impact
of longevity on the optimal retirement age is positive if the retirement age is sufficiently
high to begin with, and the impact of a longevity increase on the economic growth rate is
bounded from above. (ii) The impact of longevity on the economic growth rate is positive
if the response of the (optimal) retirement age is sufficiently strong. It is always positive if
the elasticity of longevity with respect to retirement, as defined in equation (26), satisfies
εR,LE ≥ 1.

Finding (i) with respect to the impact of longevity on the optimal retirement age
generalizes Prettner and Canning (2014), who consider the general equilibrium of a stationary
economy and find that the retirement age increases with longevity if it is sufficiently high to
begin with. Prettner and Canning (2014) show this to be true numerically for a number of
OECD economies. Our finding confirms this for a Romer (1990) balanced growth economy
with the additional condition that a possible positive impact of longevity on economic growth
is not excessive. Finding (ii) generalizes our Proposition 3 to the case of optimal retirement.
Indeed, the condition for a longevity increase to bear positive on the economic growth rate
can again be expressed in terms of the elasticity of the retirement age to longevity around the
optimum retirement age. As before, the growth impact of a longevity extension is positive
if the retirement age increases by a sufficient amount, depending on the impact of longevity
on the generational turnover. A positive impact is guaranteed if the elasticity is equal to or
exceeds 1.

While this shows that our findings are robust to endogenizing the retirement age, we
should also point out that—from a practical point of view—it is often sufficient to focus
on the result in Proposition 3 based on an exogenous variation in the retirement age. This is
true in particular if we are interested in the change in the retirement age that is required
to ensure that longevity growth translates into economic growth. Whether the variation
in retirement then arises through an exogenous variation in a statutory retirement age or
through a variation in an optimally chosen retirement age is of secondary importance. This
is not least when taking into account the evidence that individual retirement decisions
tend to cluster around the statutory retirement age and other focal points, for example,
relating to age thresholds determining the eligibility to certain pension schemes or retirement
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16 ECONOMICA [XXXX

incentives (see, for example, Gruber and Wise 1998; Gustman and Steinmeier 2005;
Seibold 2021).

Robustness 5: Endogenous human capital Finally, the accumulation of human capital acts
as an important complementary force to R&D in a Romer (1990) economy (cf. Strulik
et al. 2013). While, for reasons of tractability, we do not capture this process explicitly,
it is relatively straightforward to infer its role. At the macroeconomic level, an increase in
human capital would amount to an increase in the effective labour force, L̂(t) = h(t) L(t),
with h(t) being a measure of human capital. It is easily seen from equation (16) that this
would amount to an increase in economic growth, while the growth effects of increasing
the retirement age and of increasing life expectancy would remain qualitatively unaffected.
In our numerical exercise, variations in human capital across economies and over time are
reflected in the respective variations of the productivity measure λN (see Table 2). Naturally,
it is impossible at this level to disentangle the macro-level impacts of human capital from
any other drivers of productivity.

When considering endogenous human capital accumulation, the relationship between the
retirement age and educational investments becomes more intricate. While an increase in the
retirement age, and thus the duration of the working life, will increase educational investments,
education may still be boosted by increasing longevity even if the retirement age declines.
This is true if decreases in mortality benefit in particular the working-age population (Strulik
and Werner 2012; Cervellati and Sunde 2013; Sánchez-Romero et al. 2016). We summarize
this in the final remark.

Remark 6. Considering exogenous human capital accumulation would leave our qualitative
results unaffected, while endogenous human capital accumulation would typically strengthen
our results with respect to the growth effects of increasing the retirement age and increasing
longevity.

IV. CONCLUSIONS

We showed that a rise in the retirement age implies faster long-run economic growth in modern
knowledge-based economies, and that the growth effects of increasing life expectancy depend
on the underlying retirement policies. If the retirement age is left constant, then an increase
in life expectancy is likely to reduce economic growth. By contrast, if the retirement age rises
in lockstep with life expectancy, then this is sufficient for economic growth to be boosted
by an increase in life expectancy. We provide a more specific threshold requirement for the
increase in the retirement age that is necessary to preserve a positive growth stimulus, and
show numerically that this criterion is overachieved by the USA, (nearly) met by the OECD
average economy, and not attained by the EU and Japan. The growth impact is of relatively
modest magnitude, however.

Overall, our results differ from those based on models in which growth is driven mainly
by physical capital accumulation coupled with learning-by-doing spillovers. This modelling
reflects small economies that are not advancing the worldwide research frontier and adopt
technologies developed abroad. In these economies, a rise in the retirement age is prone
to depress the long-run economic growth rate (Futagami and Nakajima 2001; Heijdra and
Mierau 2011). Overall, our results therefore suggest that keeping the underlying structure of
the economy in mind is particularly important when conducting pension policies.

The policy recommendations emanating from our R&D-based endogenous growth model
with demography and retirement would be: (i) to raise the retirement age in the face of secular
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2022] RISING LONGEVITY 17

stagnation because this boosts economic growth and puts upward pressure on the interest rate;
and (ii) to couple ‘on average’ the retirement age to life expectancy.

However, we are well aware that crucial differences between different types of labour
are present in reality. For employees in the R&D sector, it may easily be possible and even
desirable to extend the working age, whereas workers in the production sector may struggle,
for example, due to health issues. Consequently, retirement may well need to be designed in a
flexible way such that an increase in the retirement age is possible for those who are still able
and willing to work, while there are options for earlier retirement in physically demanding
occupations and for those with health problems. More generally, studying the design of
pension schemes within an R&D-driven economy remains a task for future research.

A second qualifier is that we are currently observing breathtaking advances in automation
technologies that are replacing workers (Acemoglu and Restrepo 2018; Prettner and
Strulik 2020; Prettner 2019). These advances are particularly pronounced in countries
that are subject to rapid population ageing (Abeliansky and Prettner 2017; Acemoglu and
Restrepo 2017, 2022). While it remains to be seen whether automation could help to avert
the negative effects of a declining workforce, this possibility is worth being considered in
the context of future social security and pension policies.

APPENDIX

Optimal consumption

The control variable is consumption c. The current-value Hamiltonian is given by

H = log(c) + φ[χw + (μ + r)k − c].

The first-order conditions (FOCs) are

1

c

= φ,

(μ + r)φ = (ρ + μ)φ − φ̇.

From the first FOC we get −ċ/c2 = φ̇ such that the second FOC implies the consumption Euler
equation (3):

(A1)
ċ

c

= (r − ρ)c.

Aggregating over cohorts

For our demographic structure, the aggregation rules to calculate aggregate consumption and aggregate
capital are given by

C (t) = μN

∫
t

−∞
c(t0, t) eμ(t0−t) dt0,(A2)

K (t) = μN

∫
t

−∞
k(t0, t) eμ(t0−t) dt0.(A3)
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18 ECONOMICA [XXXX

Differentiating equations (A2) and (A3) with respect to time yields

Ċ (t) = μN

[∫
t

−∞
ċ(t0, t) eμ(t0−t) dt0 − μ

∫
t

−∞
c(t0, t) eμ(t0−t) dt0

]
+ μN c(t , t)(A4)

= μN c(t , t) − μ C (t) + μN

∫
t

−∞
ċ(t0, t) e−μ(t−t0) dt0,

K̇ (t) = μN

[∫
t

−∞
k̇(t0, t) eμ(t0−t) dt0 − μ

∫
t

−∞
k(t0, t) eμ(t0−t) dt0

]
+ μN k(t , t)(A5)

= μN k(t , t) − μ K (t) + μN

∫
t

−∞
k̇(t0, t) e−μ(t−t0) dt0.

Newborns do not own any capital because we abstract from bequests, that is, k(t , t) = 0. From
equation (2), it then follows that

K̇ (t) = −μ K (t) + μN

∫
t

−∞
[χ(t0, t) w(t) + (μ + r) k(t0, t) − c(t0, t)] e−μ(t−t0) dt0

= r K (t) − C (t) +W (t),

which is the law of motion for aggregate capital, with W being aggregate non-capital income defined
as

(
μN

∫
t

−∞ χ(t0, t) w(t) dt0
)

e−μ(t−t0).
Reformulating an agent’s optimization problem subject to the lifetime budget constraint, as in

Prettner and Canning (2014), we have

max
c(t0,τ)

U =
∫ ∞

t

e(ρ+μ)(t−τ) log[c(t0, τ)] dτ(A6)

subject to k(t0, t) +
∫

R+t

t

w(τ ) e−DA(t ,τ)dτ =
∫ ∞

t

c(t0, τ) e−DA(t ,τ) dτ ,

where the discount factor is DA(t , τ) = ∫ τ

t
[r(s) + μ] ds . The FOC is

1

c(t0, τ)
e(ρ+μ)(t−τ) = μ(t) e−DA(t ,τ).

For the period τ = t , this implies that

c(t0, t) = 1

μ(t)
.

Therefore we can write
1

c(t0, τ)
e(ρ+μ)(t−τ) = 1

c(t0, t)
e−DA(t ,τ),

which gives
c(t0, t) e(ρ+μ)(t−τ) = c(t0, τ) e−DA(t ,τ).

Integrating over time and using (A6) provides

∫ ∞

t

c(t0, t) e(ρ+μ)(t−τ) dτ =
∫ ∞

t

c(t0, τ) e−DA(t ,τ) dτ ,

c(t0, t)

ρ + μ

[−e(ρ+μ)(t−τ)
]∞
t

= k(t0, t) +
∫

T

t

w(τ ) e−DA(t ,τ) dτ

⇒ c(t0, t) = (ρ + μ) [k(t0, t) + h(t)] ,
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2022] RISING LONGEVITY 19

where h = ∫
R+t
t

w(τ ) e−DA(t ,τ) dτ refers to non-capital wealth, that is, wage income plus lump-sum
transfers of profits. These calculations show that optimal consumption is proportional to total wealth with
a marginal propensity to consume of ρ + μ (Heijdra and van der Ploeg 2002; Grafeneder-Weissteiner
and Prettner 2013; Prettner and Canning 2014; Heijdra 2017, ch. 15). Aggregate consumption is then
given by

C (t) ≡ μN

∫
t

−∞
c(t0, t) eμ(t0−t) dt0(A7)

= μN

∫
t

−∞
eμ(t0−t)(ρ + μ) [k(t0, t) + h(t)] dt0

= (ρ + μ) [K (t) + H (t)] ,

where H refers to aggregate non-capital income. Since newborns do not own capital because there are
no bequests, their consumption is given by

(A8) c(t , t) = (ρ + μ)h(t).

Using equations (A1), (A4), (A7) and (A8), we finally get

Ċ (t) = μ(ρ + μ) H (t) − μ(ρ + μ) [K (t) + H (t)] + μN

∫
t

−∞
(r − ρ) c(t0, t) e−μ(t−t0) dt0

= μ(ρ + μ) H (t) − μ(ρ + μ) [K (t) + H (t)] + (r − ρ) C (t),

and thus

Ċ (t)

C (t)
= r − ρ + μ(ρ + μ) H (t) − μ(ρ + μ) [K (t) + H (t)]

C (t)

= r − ρ − μ(ρ + μ)
K (t)

C (t)
,

which is the Euler equation for aggregate consumption.

Our results in the context of the lab-equipment approach

The no-arbitrage condition for investment is given by

rPA = π + ṖA,

where PA is the price/value of a patent (or the firm that is founded after the purchase of the patent).
This equation states that investing the amount P in a standard interest-bearing saving vehicle would
lead to a return of rPA and that this return has to be equal to the return of investing in a patent to
establish a firm, which would yield operating profits π and a valuation gain ṖA. Further, we know that
the profit of an intermediate goods producer is

π = (1 − α)α
Y

A

.

Along the BGP, the price of a patent is given as the discounted stream of all operating profits because
otherwise there would be either entry or exit into intermediate goods production. Thus we have

P
∗
A

= π

r

= (1 − α)αY

rA

.

Following Acemoglu (2009, ch. 13), the research production function in the lab-equipment approach is

Ȧ = λ̂Z ,
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20 ECONOMICA [XXXX

where Z is the amount of final goods invested for the production of new ideas, and λ̂ is the productivity
of Z in generating new ideas. Then technological progress would be given by

Ȧ

A

= λ̂
Z

A

.

Overall, free entry into R&D requires
λ̂P∗

A
= 1

because one unit of final output invested in R&D must be able to exactly recoup its cost in a perfectly
competitive environment. Now we can plug in the above expressions to get

λ̂
(1 − α)αY

rA

= 1 ⇔ r = λ̂(1 − α)αY

A

.

In the lab-equipment version of Acemoglu (2009, ch. 13) we have that the profit-maximizing output by
the producers of intermediate goods equals xi = L such that we can write final goods output as

Y = L
1−α

∫
A

0
x

α
i

di = AL,

and therefore Y /A = L. Then we get the following system of equations in equilibrium:

r = λ(1 − α)αL = λ(1 − α)αL,

g
Lab

A
= λ(1 − α)αL− ρ − μ

ρ + μ

ξ
,

g
Lab

A
= r

α2
− ξ = λ

[
1 − α

α

]
L− ξ ,

where gLab
A

is the rate of technological progress in the lab-equipment approach. The growth rate and the
value of ξ are both fully determined by the second and third equations. It is important to note that the
interest rate (together with the interest rate channel of the effect of demographic changes on economic
growth) drops out. Overall, the economic growth effects of increasing L, and thus of increasing the
retirement age, are then unambiguously positive.

Derivation of the BGP in the Jones (1995) model

In the Jones (1995) model of semi-endogenous growth, a BGP requires that the rates of technological
progress and per capita GDP growth are constant and equal to one another. From equation (32), we
can derive the constant long-run growth rate of A by calculating the growth rate of the growth rate of
A and setting the result equal to zero:

g
Jones

A
= Ȧ

A

= λLA

A
1−φ

⇒ log(gJones
A

) = log(λ) + log(LA) − (1 − φ) log(A),

g
g
Jones

A

!= 0 = β − μ∗ − (1 − φ)gJones
A

⇒ g
Jones

A
= β − μ∗

1 − φ
.

Going from the second to the third line, we used the fact that λ is constant and that the growth rate of
the labour force in the long run is the difference between the birth rate (β) and the combined rates of
death and labour force exit due to retirement (μ∗). Note that in this context, an increase in the retirement
age would lead to a level shift in the size of the workforce but to no shift in its long-run growth rate.
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2022] RISING LONGEVITY 21

Accounting for realistic demography

In this subsection, we study the properties of the model and likely results when considering a non-
stationary population—that is, a setting where the gross birth rate β differs from the death rate μ—and
when allowing for age-specific mortality. Following Kuhn and Prettner (2018), consider a lifecycle
utility function

U =
∫

D

t0

log(c) e−ρ(t−t0)−M (t−t0) dt ,

where M (t − t0) = ∫
t−t0

0 μ(s) ds denotes cumulative mortality up to age t − t0, μ(s) denotes the
age-specific mortality at age s , and D denotes the maximum age of survival. Assume the same
budget dynamics as in the main body of the paper, k̇(t) = χ(t) w + [μ(t) + r] k(t) − c(t), where
the annuity return is now age-specific, μ = μ(t). Deriving the utility-maximizing consumption stream
in the presence of an annuity market continues to yield the individual-level Euler equation (3).

Assume now that the birth rate β may deviate from the aggregate death rate μ := ∫
t

t−D n(t0, t) μ(t −
t0) dt0, where n(t0, t) = N (t0, t)/N (t) denotes the population share of birth cohort t0 at time t . The
flow of labour market entrants is N (t , t) = β N (t), where N (t) = ∫

t

−∞ N (t0, t) dt0 represents the adult
population size, and L(t) = ∫

t

t−R N (t0, t) dt0 is the labour force. Note that each adult cohort is of size
N (t0, t) = β N (t) eμ(t0−t), and thus n(t0, t) = β eμ(t0−t) at a certain date t > t0.

Following the derivations in Kuhn and Prettner (2018) (while setting b = 0, σ = θ = 1), we can
show that the aggregate Euler equation as one component (see equation (15)) of the growth system
(14)–(16) is given by

(A9) g(t) = Ċ (t)

C (t)
= r − ρ + �(t),

where

(A10) �(t) := −μ

[
c

†(t)

c(t)
− β

μ

c(t , t)

c(t)

]

represents the generational turnover effect on aggregate consumption growth. In this expression,
c(t) = C (t)/N (t) is per capita consumption,

c
†(t) = 1

μ

∫
t

t−D
μ(t − t0) c(t0, t) n(t0, t) dt0

is average consumption of the deceased, and c(t , t) is consumption of the newborn cohort.2 We then
find that the impact of the generational turnover effect on aggregate consumption growth is negative,
that is, that �(t) < 0 if and only if the ratio between consumption of the deceased and consumption of
the newborns exceeds the ratio between births and deaths by a sufficient amount, that is, if and only if

c
†(t)

c(t , t)
>

β

μ
.

This condition is likely satisfied for economies that feature a relatively steep age profile of consumption
up to those ages in which the majority of deaths occurs, and for populations that are ageing due to low
birth rates β. Such populations are typically also characterized by higher death rates μ, because the
population is concentrated within older age classes that are subject to higher mortality rates. Furthermore,
it is readily verified from equation (A10) that the direct effect of a change in the aggregate death rate μ

on the generational turnover is negative, implying that a mortality reduction across the board will tend
to lower it, as is the case considered in the main body of the paper. From equation (A9), this implies
that a decline in the aggregate death rate will typically tend to provide a demand-side boost to economic
growth, as the process at which individuals with high levels of late-life consumption spending tend to
be replaced at a lower rate. This direct impact is complemented by a reduction in the interest rate,
as savings tend to increase for the funding of higher consumption spending at high ages. Kuhn and
Prettner (2018) show that for a set of important industrialized countries, including the USA, Japan and a
number of EU countries, the generational turnover effect is negative. This suggests that the ‘generational
turnover channel’ is indeed relevant.

Economica
© 2022 The Authors. Economica published by John Wiley & Sons Ltd on behalf of London School of Economics and Political Science

 14680335, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecca.12445 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [20/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 ECONOMICA [XXXX

Accounting for endogenous retirement

Following Bloom et al. (2007) and Prettner and Canning (2014), individuals enter the labour market as
adults at time t0 and then maximize their discounted stream of lifetime utility

U =
∫ ∞

t0

[
log(c) − χ ν(μ, t)

]
e−(ρ+μ)(t−t0) dt ,

where ν(μ, t) describes instantaneous disutility of work given a remaining life expectancy of 1/μ at
time t , and χ is an indicator function taking value 1 when working, and 0 when retired. With all other
variables and the consumption-saving choice remaining the same as in the benchmark model, we focus
on the retirement decision only.

For individuals to be willing to work at time t , the instantaneous marginal utility of doing so, which
amounts to the marginal utility of the consumption afforded by an additional year’s worth of earnings
(including dividend payments), must exceed the marginal disutility of work, and we have

χ = 1 ⇔ u
′(c) w ≥ ν(μ, t).

To get analytical solutions, we follow Bloom et al. (2007) and Prettner and Canning (2014), and assume
that the disutility of work increases exponentially with the mortality rate, that is, ν(μ, t) = d eμ(t−t0),
where d is a scaling parameter measuring the unwillingness of individuals to work.

Integrating the lifetime budget constraint (4) and using c(t0, t) = c(t0, t0) e(r−ρ)(t−t0), which follows
from the individual Euler equation, and w(t0, t) = w(t0, t0) eg(t−t0), denoting earnings growth by g , we
arrive at an expression for the fraction of consumption expenditures to earnings at the beginning of the
working life depending on the retirement age R:

(A11)
c(t0, t0)

w(t0, t0)
= μ + ρ

μ + r − g

[
1 − e−(μ+r−g)R

]
.

Here, we note that μ + r − g > ρ ≥ 0 holds for all death rates along a BGP. From writing out the
switching condition u

′(c) w = ν(μ, t), one can express the optimal retirement age R∗ implicitly as a
function of the fraction of earnings to consumption expenditures at the beginning of the working life:

(A12)
c(t0, t0)

w(t0, t0)
= e(g+ρ−r−μ)R∗

d

.

Intuitively, this expression tells us that if individuals wish to consume more in relation to initial income,
then they have to retire later. Combining equations (A11) and (A12) yields

(μ + ρ)d = (μ + r − g) e(g+ρ−r−μ)R∗ + d(μ + ρ) e(g−r−μ) R∗
,

being an implicit relationship between the optimal retirement age R∗, the mortality rate μ, the discount
rate ρ, the measure of the unwillingness to work d , the pace of earnings growth g , and the interest
rate r .

Noting that
∫
t

t−R∗ N (t0, t) dt0 = N (1 − e−μR∗
), we can now write the general equilibrium system

as

W (ξ , g , r ,R∗) := r

α
− ξ − g = 0,(A13)

X (ξ , g , r ,R∗) := r − ρ − μ(ρ + μ)
1

ξ
− g = 0,(A14)

Y (ξ , g , r ,R∗) := λN
(
1 − e−μR∗) − r − δ

α
− g = 0,(A15)

Z (ξ , g , r ,R∗) := (μ + r − g) e(g+ρ−r−μ)R∗ + d(μ + ρ)
(
e(g−r−μ)R∗ − 1

) = 0.(A16)
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2022] RISING LONGEVITY 23

Applying the implicit function theorem and Cramer’s Rule, we obtain after some manipulation the
following comparative statics:

dg

dμ
= 1

�4

{
�3ZR∗

dg

dμ

∣∣∣∣
R

∗
+ μλN e−μR∗

α2

[−α2
XμZr + Zμ(Xξ + α2)

]}
(A17)

= 1

�4

{
�3ZR∗

(
dg

dμ

∣∣∣∣
R

∗
− Zμ

ZR∗
dg

dR∗

)
− μλN e−μR∗

XμZr

}
,

dR∗

dμ
=−1

�4

〈
�3Zμ − 1

α2

{
− Xμα(αZr − Zg )(A18)

+R∗λN e−μR∗ [
α2(Zr + Zg ) + Xξ (α

2
Zr + Zg )

] }〉

=−1

�4

{
�3Zμ

(
1 + dg

dμ

∣∣∣∣
R

∗

)
−

[
�3

α

dr

dμ

∣∣∣∣
R

∗
+ 1 − α2

α2
Xμ

]
Zr

}
,

where

�4 = �3ZR∗ − μλN e−μR∗ [
Zg (Xξ + α2)α−2 + Zr (Xξ + 1)

]

= �3

[
ZR∗ − XξZr

dξ

dR∗ − d

(
1 − e(g−r−μ)R∗) dg

dR∗

]
> 0

is the determinant of the full system (A13)–(A16), where

�3 = −(1 + α)(Xξ + α)α−2 < 0

is the determinant of the subsystem (A13)–(A15), where

Xξ = μ(ρ + μ)ξ−2 > 0,

Xμ = −(ρ + 2μ)ξ−1 < 0,

ZR∗ = (μ + r − g)
[
(g + ρ − r − μ) e(g+ρ−r−μ)R∗ − d(μ + g) e(g−r−μ)R∗]

< 0,

Zr = e(g+ρ−r−μ)R∗ − R
∗
d(μ + g),

Zg = −Zr − d(1 − e(g−r−μ)R∗
),

Zμ = Zr − d(1 − e(g−r−μ)R∗
),

and where 1 − e(g−r−μ)R∗
> 0 follows from the equilibrium condition Z (·) = 0.

Here, the derivatives dξ/dR∗ > 0 and dg/dR∗ > 0 correspond to the derivatives that would hold
for an exogenous variation of the retirement age within the original system (A13)–(A15), and the
derivatives dg/dμ |R∗ and dr/dμ |R∗ > 0 correspond to the derivatives that would hold for a variation
in mortality within the original system (A13)–(A15) with a fixed retirement age.

Considering the impact of a variation in the mortality rate on the optimal retirement age first, we
find from (A18) that dR∗/dμ < 0 if

(i) Zμ

(
1 + dg

dμ

∣∣∣∣
R

∗

)
< 0,

(ii) Zr = e(g+ρ−r−μ)R∗− R
∗
d(μ+ g) = [

1−R∗(μ + r−g)
]

e(g+ρ−r−μ)R∗− R
∗
d(μ+g) e(g−r−μ)R∗ ≤ 0,

where (ii) is satisfied if R∗ ≥ (μ + r − g)−1. Thus for condition (ii) to be satisfied, the retirement
age has to be sufficiently large to begin with. Noting that Zμ < Zr ≤ 0 in this case, it follows that
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24 ECONOMICA [XXXX

condition (i) is satisfied if 1 + (dg/dμ) |R∗ > 0, implying that the impact of mortality (longevity) on
the economic growth rate has to be bounded from below (above).

Finally, consider the impact of a variation in mortality on the economic growth rate, dg/dμ. Noting
that

dg

dμ

∣∣∣∣
R

∗
= R

∗

μ

dg

dR∗ − Xμ

α�3
,

and −Zμ/ZR∗ = ∂R∗/∂μ in the sense of a partial response of optimal retirement to a variation in
mortality, we can rewrite equation (A17) as

dg

dμ
= 1

�4

{
�3ZR∗

(
1 + μ

R
∗

∂R∗

∂μ

)
R

∗

μ

dg

dR∗ −
(
ZR∗

α
+ μλN e−μR∗

Zr

)
Xμ

}
.

From this, we find that dg/dμ > 0 if and only if

μ

R
∗

∂R∗

∂μ
= −1 +

(
(ZR∗/α) + μλN e−μR∗

Zr

)
Xμ

�3ZR∗(R∗/μ)(dg/dR∗)
.

Recalling that

−
(
ZR∗

α
+ μλN e−μR∗

Zr

)
Xμ > 0 and �3ZR∗

R
∗

μ

dg

dR∗ > 0,

we see that this condition is analogous to the one reported in Proposition. Specifically, it holds when

εR,LE = − μ

R
∗

∂R∗

∂μ
≥ 1.

NOTES

1. According to OECD (2019): ‘the average effective age of retirement is calculated as a weighted average of (net)
withdrawals from the labour market at different ages over a 5-year period for workers initially aged 40 and over.
In order to abstract from compositional effects in the age structure of the population, labour force withdrawals
are estimated based on changes in labour force participation rates rather than labour force levels.’ OECD (2019)
reports the average effective retirement ages by gender. (The original 2019 data have been removed from the
OECD website, but are available from the authors on request.) To arrive at a general population average, we
weight the gender-specific retirement ages with the gender shares in the total labour force, as reported in World
Bank (2019).

2. For the setting considered in the main body of the paper, we have μ(t) ≡ μ = μ = β, and thus c
†(t) =∫

t

t−D c(t0, t) n(t0, t) dt0 = c(t). Furthermore, recalling that c(t , t) = (ρ + μ) H (t)/N (t), we can write

�(t) = −μ

[
1 − c(t , t)

c(t)

]
= −μ

[
1 − (ρ + μ) H (t)

C (t)

]
= −μ(ρ + μ)

K (t)

C (t)
,

where the last equality follows because C (t) = (ρ + μ) [H (t) + K (t)]. Thus, the case with age-invariant mortality
and a stationary population can indeed be viewed as a special case.
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SÁNCHEZ-ROMERO, M., D’ALBIS, H. and PRSKAWETZ, A. (2016). Education, lifetime labor supply, and longevity

improvements. Journal of Economic Dynamics and Control , 73, 118–41.
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