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Abstract: In this article, we intend to explore the role of using an ”infinite time horizon”
framework to address the issues of sustainability and long-term strategies in the control of
biological processes. We use two case study models to explain why considering a fixed or moving
endpoint does not lead to the desired long-term effects. The first biological model considered
concerns the spread of an infectious disease and its treatment as an infinite horizon optimal
control problem. The second one deals with the metronomic chemotherapy cancer treatment
over the remaining lifetime horizon of the patient. The latter is consistent with the conception
of cancer as a chronic disease. Both models show structural differences in the choice of the
objective functional, the first one uses a stabilization functional containing a weight function,
the second one contains a damage functional which involves a density function.
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1. INTRODUCTION

In this paper we intend to investigate the role of using
the infinite horizon framework to address the questions
of sustainability and long-term treatment strategies while
controlling biological processes.

Problems of calculus of variations and optimal control
problems over unbounded intervals arise in a very natural
way, when one investigates dynamic systems describing
macroeconomic growth processes. These economic growth
models are characterized by an objective functional which
acts over an unbounded domain and usually contains a
discount factor in the integral functional. Economic models
which lead to infinite horizon problems of optimal control
resp. calculus of variations have been considered for the
very first time in Ramsey (1928). The work of Ramsey had
an essential impact on the development of the modern con-
cepts of sustainable economic growth and influenced this
so far, that the consideration of an infinite time horizon
in the macroscopic economic models has become common.
Ramsey’s ground-breaking suggestion was to model the
society as an infinitely long living individual. In the years
1960 - 1970, the development of this economic area has had
a great influence on the discovery of the famous maximum
principle of the optimal control theory by the research
group around L. S. Pontryagin, cf. Pontryagin et al. (1969),
Carlson et al. (1991). Arrow and Kurz (1970), p. xviii, have

⋆ This research has been partly supported by the German Research
Foundation, Project number PI 209/8-3 | LY 149/2-3 which we
gratefully appreciate.

explained the introduction of an infinite time planning
interval as follows: ”The infinite horizon is an idealiza-
tion of the fundamental point that the consequences of
investment are very long-lived; any short horizon requires
some methods of evaluating end-of-period capital stocks,
and the only proper evaluation is their value in use in the
subsequent future.”

Optimal control problems are of interest not only for
economic growth models. They appear also in biological
models in which the consideration of a fixed finite time
horizon seems to be unnatural. It is more realistic to con-
sider the planning time period T itself as an exponentially
distributed random variable, cf. Pickenhain (2010). Last
but not least, problems of asymptotic controllability of
dynamic systems towards a system equilibrium can be
modeled as an infinite horizon optimal control problem,
cf. Kalman (1960).

Areas of applications for infinite horizon optimal con-
trol problems range from macroeconomic problems, cf.
Cass (1965), Lykina et al. (2008), Magill (1982), Sethi
& Thompson (2000), over problems of climate control,
cf. Haurie (2003), problems of continuum mechanics, cf.
Zaslavski (1995), to the problems of terror control, see
Grass et al. (2008), as well as biologic problems, cf. a.o.
Goh et al. (1974), Lin et al. (2010), Skritek & Veliov
(2015). We focus only on the latter.
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2. PRELIMINARIES

We denote by Mn := M(IR+; IRn) the space of all
Lebesgue measurable functions defined on the set IR+ :=
[0,∞) and having their values in IRn. One calls a con-
tinuous function ν : IR+ → IR+\{0} weight function and
density function, if ν belongs to the space M and is

Lebesgue integrable over the set IR+, i.e.
∞∫
0

ν(t)dt < ∞.

With a weight function ν ∈ C(IR+) the weighted Lebesgue
space Ln

p (IR
+, ν) for 1 ≤ p < ∞ is introduced as follows:

Ln
p (IR

+, ν) := {x ∈ Mn| ∥x∥pp :=

∞∫

0

|x(t)|pν(t) dt < ∞},

cf. Kufner (1985), p. 11 ff. One defines the weighted
Sobolev space W 1,n

p (IR+, ν) as the subspace of the weighted

Lebesgue space Ln
p (IR

+, ν) containing all measurable func-
tions x(·), which together with their generalized deriva-
tives lie in the space Ln

p (IR
+, ν), see Yosida (1980), p. 49.

Therefore, it follows

W 1,n
p (IR+, ν) := {x ∈ Mn|x ∈ Ln

p (IR
+, ν), ẋ ∈ Ln

p (IR
+, ν) }.

For the notion of generalized derivatives we refer to the
book Yosida (1980), p. 49.

3. GENERAL PROBLEM FORMULATION

First let us consider the following infinite horizon optimal
control problem:

(P )∞ : J∞(x, u) =

∞∫

0

r(t, x(t), u(t))ν̃(t)dt → min ! (1)

(x, u) ∈ X × U (2)

ẋ(t) = f(t, x(t), u(t)) a. e. on IR+, (3)

x(0) = x0, (4)

x(t) ∈ Z, (5)

u(t) ∈ U a. e. on IR+. (6)

Here, the integral objective functional J∞ is to be mini-
mized with respect to all pairs (x, u) belonging to the func-
tional spacesX×U , which are at the moment abstract, and
satisfying a system of ordinary differential equations, an
initial condition, as well as state and control constraints.
A pair (x, u) is called admissible, if all constraints (2) – (6)
are fulfilled and the value of J∞(x, u) exists and satisfies
J∞(x, u) > −∞. In the sequel, single parts of the optimal
control problem will be discussed in details. We are aware
that in case of infinite horizon optimal control problems
there are numerous optimality definitions occurring in the
literature. Here we deal only with the classical definition of
optimality. In the sequel we introduce two biologic models
where two different kinds of objectives are used. The first
kind of the objective functional is a stabilization functional
with a proper weight function inside, whereas the second
one aims at minimizing the expected damage as well as
treatment costs.

4. CONTROL PROBLEM OF OPTIMAL
VACCINATION STRATEGY

4.1 Motivation from the point of view of epidemiology

Due to the knowledge of authors, almost all mathematical
models of optimal control of infectious deceases have been
considered over bounded time intervals. However, for this
kind of applications consideration of optimal control prob-
lems with finite fixed horizon is questionable, and cutting
the horizon often leads to results which contradict the prin-
ciple of sustainability. Possibility and also importance of
investigating the epidemiological problems on unbounded
intervals has been pointed out in Thäter et al. (2018),
however without going into details and providing some
results.

The known epidemiological optimal control problems do
not contain any density function in the objective func-
tional, cf. a.o. Maurer & Pinho (2016), Rachah & Torres
(2015). The presence of such a density function, e.g. of a
discount factor e−ρt as it is typical in economic models,
would be absolutely meaningful, because the objective
functional often describes the vaccination and treatment
costs. And as long as the decision criterion, the functional,
admits an economic interpretation, the presence of a dis-
count factor or of another weight function while working
with long intervals is reasonable. The interpretation of
the weight function in the objective as a density of an
exponential distribution for the end time T as a random
variable is meaningful as well and it is preferable to the
fixation of the horizon. Moreover, the consideration of a
proper weight function eϱt, ϱ > 0 in the integrand of the
objective functional seems to be reasonable. With such a
weight function, a control can be found that stabilizes the
process asymptotically and exponentially in the sense of
Lyapunov. This allows new insights into optimal control
of biological systems.

4.2 A SEIR model for control of an infectious decease

We consider the SEIR dynamic system accordingly to
Maurer & Pinho (2016), where it has been a part of an
optimal control problem over a finite fixed horizon with
an L1 performance functional. The suggested SEIR model
is a 4-compartment epidemiological model in which each
individual of a population belongs to exactly one of four
compartments at a time: S (susceptible), E (exposed), I
(infected) and R (recovered). The relation N(t) = S(t) +
E(t)+I(t)+R(t) for the total population N(t) allows us to
reformulate the dynamic system in the form of a ”SEIN”
model which we nevertheless continue to call SEIR model:

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)− α1u1(t)S(t)

Ė(t) = cI(t)S(t)− (e+ d)E(t)− α2u2(t)E(t)

−α4u4(t)E(t)

İ(t) = eE(t)− (g + a+ d)I(t)− α3(t)u3(t)I(t)

Ṅ(t) = (b− d)N(t)− aI(t) + α4u4(t)E(t)

where functions ui(·), i = 1, 2, 3, 4 denote the control
functions (immunization fraction, medication, immune-
boasting medication) for which the constraints 0 ≤ ui(t) ≤
1 have to be fulfilled for all i and t.



	 Valeriya Lykina  et al. / IFAC PapersOnLine 55-20 (2022) 665–670	 667

The above dynamic system is affine in control u(t) and
suits into the class of general problem setting described
in the previous section. The whole SEIR optimal con-
trol problem is a macroscopic biologic model and the
corresponding infinite horizon formulation of it is very
important and challenging. The consideration of an infinite
time horizon in this model makes sense because there is no
reason to limit the time horizon since it is not clear how
long the epidemic will last.

Furthermore, instead of minimizing the number of in-
fected individuals and the vaccination costs as it is the
case in Maurer & Pinho (2016), we suggest to minimize
the weighted quadratic deviation from the desired point
(Sd, Ed, Id, Rd) ∈ IR4 in the state space as the objective.
Since the equilibria of this dynamic system depend only on
the involved parameters and do not depend on the initial
condition, the unfortunate case of negative or very high
positive components of equilibria can occur. Therefore,
in such cases the stabilization of the system around the
equilibrium is not the desired goal from the point of view
of epidemiological application. For this reason, it is often
useful to control the dynamics of the SEIR model so that it
asymptotically converges to a specific state (Sd, Ed, Id, Rd)
desired by the decision maker.

These considerations lead to the following functional:

J∞(x, u) =

∞∫

0

{
(S(t)− Sd)

2 + (E(t)− Ed)
2

+(I(t)− Id)
2 + (R(t)−Rd)

2 + u2(t)
}
eβtdt, (7)

with β > 0. The state and control spaces are chosen in
this application as follows:

X × U := W 1,4
2 (IR+, eβt)× L4

2(IR
+, eβt).

After a linear shift transformation of the dynamic system,
the subsequent linearization of the system around the
origin and the formulation of the dual variational problem,
we could successfully apply the direct dual-based pseudo-
spectral solution method, cf. Kolo (2021), for different
constellations of parameters and initial values. Results for
one realistic parameter setting and the control-constrained
optimal control problem are given in images below where
already for small numbers of collocation points, e.g. 10
or 11, good convergence of the pseudo-spectral method
could be achieved. The solution images reveal that all four
control functions asymptotically approach some small non-
zero level and remain there for the infinitely long time
period, which means that the control measures have to be
persistent in contrast to the strategies resulting from the
fixed time horizon setting of the same problem.

5. CONTROL PROBLEM OF OPTIMAL CANCER
TREATMENT STRATEGY

5.1 Motivation from the point of view of mathematical
oncology

In recent years the question of modeling a low-dosed
cancer treatment by means of chemotherapy agents has
been paid a broad attention. It has become evident
through numerous experiments that ”more is not neces-
sarily better” for certain type of cancers, cf. Schättler

Fig. 1. Solution to the OCP of the SEIR model with infinite
horizon

& Ledzewicz (2015) and references therein. The papers
Klement (2000) and Browder (2000) gave birth to a new
research field in medicine called metronomic chemother-
apy. The two mostly spread definitions of what metro-
nomic chemotherapy means say: ”The frequent admin-
istration of chemotherapy drugs at relatively low, non-
toxic doses, without prolonged drug-free breaks” and the
recent one ”the minimum biologically effective dose of a
chemotherapeutic agent, which, when given at a regular
dosing regiment with no prolonged drug-free breaks, leads
to anti-tumor activity”. The main assumption is that be-
sides of a cytotoxic effect on tumor cells, small doses of a
chemotherapeutic agent have both antiangiogenic and im-
mune stimulatory effect, while toxicity level on healthy tis-
sues stays low or even neglectful. This fact is illustrated by
a generic dynamic model of cancer treatment by means of
chemotherapy, cf. the book Schättler & Ledzewicz (2015):

ṗ(t) =−ξp(t) ln (p(t)/q(t))− θp(t)r(t)− ϕ1p(t)u(t), (8)

q̇(t) = bp(t)− (µ+ dp2/3(t))q(t)− ϕ2q(t)u(t), (9)

ṙ(t) = α(p(t)− βp2(t))r(t) + γ − δr(t) + ϕ3r(t)u(t),(10)

where p(t), q(t) and r(t) denote the tumor volume,
the carrying capacity of tumor vasculature and the im-
munocompetent cell density respectively. The control u(t)
stands for the dose of a chemotherapeutic agent and
ξ, µ, d, β, γ, δ, ϕi (i = 1, 2, 3) are parameters of the
model. In the cited source, the model has been analyzed

2. PRELIMINARIES

We denote by Mn := M(IR+; IRn) the space of all
Lebesgue measurable functions defined on the set IR+ :=
[0,∞) and having their values in IRn. One calls a con-
tinuous function ν : IR+ → IR+\{0} weight function and
density function, if ν belongs to the space M and is

Lebesgue integrable over the set IR+, i.e.
∞∫
0

ν(t)dt < ∞.

With a weight function ν ∈ C(IR+) the weighted Lebesgue
space Ln

p (IR
+, ν) for 1 ≤ p < ∞ is introduced as follows:

Ln
p (IR

+, ν) := {x ∈ Mn| ∥x∥pp :=

∞∫

0

|x(t)|pν(t) dt < ∞},

cf. Kufner (1985), p. 11 ff. One defines the weighted
Sobolev space W 1,n

p (IR+, ν) as the subspace of the weighted

Lebesgue space Ln
p (IR

+, ν) containing all measurable func-
tions x(·), which together with their generalized deriva-
tives lie in the space Ln

p (IR
+, ν), see Yosida (1980), p. 49.

Therefore, it follows

W 1,n
p (IR+, ν) := {x ∈ Mn|x ∈ Ln

p (IR
+, ν), ẋ ∈ Ln

p (IR
+, ν) }.

For the notion of generalized derivatives we refer to the
book Yosida (1980), p. 49.

3. GENERAL PROBLEM FORMULATION

First let us consider the following infinite horizon optimal
control problem:

(P )∞ : J∞(x, u) =

∞∫

0

r(t, x(t), u(t))ν̃(t)dt → min ! (1)

(x, u) ∈ X × U (2)

ẋ(t) = f(t, x(t), u(t)) a. e. on IR+, (3)

x(0) = x0, (4)

x(t) ∈ Z, (5)

u(t) ∈ U a. e. on IR+. (6)

Here, the integral objective functional J∞ is to be mini-
mized with respect to all pairs (x, u) belonging to the func-
tional spacesX×U , which are at the moment abstract, and
satisfying a system of ordinary differential equations, an
initial condition, as well as state and control constraints.
A pair (x, u) is called admissible, if all constraints (2) – (6)
are fulfilled and the value of J∞(x, u) exists and satisfies
J∞(x, u) > −∞. In the sequel, single parts of the optimal
control problem will be discussed in details. We are aware
that in case of infinite horizon optimal control problems
there are numerous optimality definitions occurring in the
literature. Here we deal only with the classical definition of
optimality. In the sequel we introduce two biologic models
where two different kinds of objectives are used. The first
kind of the objective functional is a stabilization functional
with a proper weight function inside, whereas the second
one aims at minimizing the expected damage as well as
treatment costs.

4. CONTROL PROBLEM OF OPTIMAL
VACCINATION STRATEGY

4.1 Motivation from the point of view of epidemiology

Due to the knowledge of authors, almost all mathematical
models of optimal control of infectious deceases have been
considered over bounded time intervals. However, for this
kind of applications consideration of optimal control prob-
lems with finite fixed horizon is questionable, and cutting
the horizon often leads to results which contradict the prin-
ciple of sustainability. Possibility and also importance of
investigating the epidemiological problems on unbounded
intervals has been pointed out in Thäter et al. (2018),
however without going into details and providing some
results.

The known epidemiological optimal control problems do
not contain any density function in the objective func-
tional, cf. a.o. Maurer & Pinho (2016), Rachah & Torres
(2015). The presence of such a density function, e.g. of a
discount factor e−ρt as it is typical in economic models,
would be absolutely meaningful, because the objective
functional often describes the vaccination and treatment
costs. And as long as the decision criterion, the functional,
admits an economic interpretation, the presence of a dis-
count factor or of another weight function while working
with long intervals is reasonable. The interpretation of
the weight function in the objective as a density of an
exponential distribution for the end time T as a random
variable is meaningful as well and it is preferable to the
fixation of the horizon. Moreover, the consideration of a
proper weight function eϱt, ϱ > 0 in the integrand of the
objective functional seems to be reasonable. With such a
weight function, a control can be found that stabilizes the
process asymptotically and exponentially in the sense of
Lyapunov. This allows new insights into optimal control
of biological systems.

4.2 A SEIR model for control of an infectious decease

We consider the SEIR dynamic system accordingly to
Maurer & Pinho (2016), where it has been a part of an
optimal control problem over a finite fixed horizon with
an L1 performance functional. The suggested SEIR model
is a 4-compartment epidemiological model in which each
individual of a population belongs to exactly one of four
compartments at a time: S (susceptible), E (exposed), I
(infected) and R (recovered). The relation N(t) = S(t) +
E(t)+I(t)+R(t) for the total population N(t) allows us to
reformulate the dynamic system in the form of a ”SEIN”
model which we nevertheless continue to call SEIR model:

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)− α1u1(t)S(t)

Ė(t) = cI(t)S(t)− (e+ d)E(t)− α2u2(t)E(t)

−α4u4(t)E(t)

İ(t) = eE(t)− (g + a+ d)I(t)− α3(t)u3(t)I(t)

Ṅ(t) = (b− d)N(t)− aI(t) + α4u4(t)E(t)

where functions ui(·), i = 1, 2, 3, 4 denote the control
functions (immunization fraction, medication, immune-
boasting medication) for which the constraints 0 ≤ ui(t) ≤
1 have to be fulfilled for all i and t.
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with respect to equilibria, their stability and bifurcations
as well as an optimal control problem with a free finite
terminal time T . In dependence on involved parameters,
the above dynamic system may have scenarios varying
from a unique, asymptotically stable benign (tumor-free)
equilibrium point (situation of immune surveillance) to
a multi-stable situation with both benign and malignant
equilibria (co-existent equilibria) to the situation when
only unique, asymptotically stable malignant (death) equi-
librium point exists, cf. Schättler & Ledzewicz (2015), p.
358.

Since it is very important not only how much of drug
to give, but also how to give, the finding of the drug
administration regiment (protocol) becomes one of the
most important tasks on the way to a successful therapy.

Our task in the present paper is to consider the problem of
metronomic chemotherapy as an optimal control problem,
where the tumor size and the side effects of the therapy are
being minimized over the treatment horizon, which gives
rise to an integral objective in Lagrange form. Through
finding the optimal solution to this optimal control prob-
lem we obtain the best possible drug administration pro-
tocol automatically, including the doses and rest periods
if there should be some. In case of continuous optimal
solutions which are less practicable, the latter may be
replaced by piecewise constant suboptimal controls which
are still good enough to satisfy the treatment goal.

One of our key ideas is to assume that we have enough
time to treat the patient and the goal is not to fight the
cancer as fast as possible. Moreover, we consider the cancer
as a chronic disease, which will be treated over the whole
remaining future life time of the particular patient. The
aim is to figure out whether such ”chronic” formulation
of the control problem leads to considerably lower doses
in comparison to the short fixed finite treatment horizons.
We would like to mention that through minimizing the
expectation value of the cost functional the optimal control
problem becomes stochastic. Nevertheless, in some cases it
can easily be transformed to a purely deterministic control
problem with infinite horizon.

To handle the obtained infinite horizon optimal control
problem we use on the one side its rigorous formulation
in weighted functional spaces. The advantage of such a
functional analytical approach was addressed in details in
Lykina & Pickenhain (2017) and we use it here to prove
the existence of an optimal solution. According to this
approach, a weighted Sobolev and a weighted Lebesgue
spaces are chosen as the state space and the control space
respectively. On the other side, to obtain numerical solu-
tions to the considered problem, the open source software
package OCMat was applied, which is available at http://
orcos.tuwien.ac.at/research/ocmat software/and has been
described in Graß (2012). Just like the pseudospectral
method used to solve the SEIR model, the continuity
method of Graß (2012) avoids any truncation of the time
interval. Instead, it starts at the equilibrium point, which
is obviously a solution to the problem if the initial state
is exactly at that equilibrium, and then continues the
constant solution with respect to the initial state until the
actual initial state specified in the model is reached.

5.2 Metronomic chemotherapy model with a growing force
of mortality

Let a be the current age of the particular patient to be
treated against cancer and Ta be the random variable
denoting the future lifetime of the patient. Then our
purpose is to minimize the L2 objective functional

J∞(x, u) = ETa




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt


(11)

with respect to all (x, u) ∈ X × U := W 1,3
2 (IR+, e−ρt) ×

L1
2(IR

+, e−ρt), (x, u) := (p, q, r, u) satisfying the differential
equations (8) – (10). Making different assumptions about
the distribution of the random variable Ta it is possible
to transform the mathematical expectation value into a
purely deterministic form. In this manuscript we consider
the following case of a growing force of mortality, e.g.

µa = kan, k, n > 0 (12)

and in this case, the random variable Ta is distributed with
the density

ϕ(Ta) = k(a+ Ta)
ne−

k
n+1 ((a+Ta)

n+1−an+1), (13)

which represents the density function of Weibull distribu-
tion.

Therefore, calculating the expectation value in the objec-
tive (11) for all n ≥ 0 and changing the order of integration
we arrive at

ETa




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt




=

∞

0




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt


 k(a+ Ta)

n

·e−
k

n+1 ((a+Ta)
n+1−an+1)dTa

=

∞

0

∞

t

1

2

�
p(t) + q(t)− r(t) + u2(t)


k(a+ Ta)

n

·e−
k

n+1 ((a+Ta)
n+1−an+1)dTadt. (14)

Calculating the inner integral in the above expression one
obtains

J2
∞(x, u) = e

k
n+1a

n+1

∞

0

1

2

�
p(t) + q(t)− r(t) + u2(t)



·e−
k

n+1 (a+t)n+1

dt. (15)

Thus, we have received a purely deterministic optimal
control problem with infinite horizon, namely (15), (8) –
(10).

Remark 1. It is to mention that there are distributions,
such as Chen or Makeham distribution, which reflect the
demographic data, and respectively the behavior of the
remaining life time random variable Ta, especially of a
cancer-sick person, in a more realistic way. But in our
considerations we restrict ourselves by only two consid-
ered distributions, exponential and Weibull distributions,
which allow the application of the described ”Kamien-
Schwartz-Trick” for transformation of a stochastic optimal
control problem into a deterministic one.
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With n = 1 and x := (p, q, r), we consider objective
functional of the form

J2
∞(x, u) = e

k
2 a

2

∞∫

0

1

2

(
p(t) + q(t)− r(t) + u2(t)

)
e−

k
2 (a+t)2dt

=

∞∫

0

1

2

(
p(t) + q(t)− r(t) + u2(t)

)
e−ka·t−k·t2dt. (16)

The whole optimal control problem reads as: minimize
functional (16) with respect to all pairs

(x, u) ∈ W 1,3
2 (IR+, e−ρt)× L1

2(IR
+, e−ρt)

satisfying conditions (8) – (10) as well as control con-
straints

0 ≤ u(t) ≤ umax ∀ t > 0 (17)
∞∫

0

u(t)e−ρtdt ≤ d. (18)

In order to apply the numerical solution method men-
tioned above, we use the system of necessary optimality
conditions given by the Pontryagin Type Maximum Prin-
ciple proved in Ziemann (2019). This system also includes
a necessary transversality condition of the form y(·) ∈
W 1,3

2 (R+, eρt) which represents the essential difference to
the case of a fixed finite planning horizon. We now build
the Pontryagin function:

H(t, ξ1, ξ2, ξ3, v, η1, η2, η3, λ0 = 1) =

−1

2

(
ξ1 + ξ2 − ξ3 + v2

)
e−ka·t−k·t2

+η1 · (−ξξ1 ln (ξ1/ξ2)− θξ1ξ3 − ϕ1ξ1v)

+η2 · (b · ξ1 − (µ+ dξ
2/3
1 )ξ2 − ϕ2ξ2v)

+η3 · (α(ξ1 − βξ21)ξ3 + γ − δξ3 + ϕ3ξ3v). (19)

Setting

Hv(t, ξ1, ξ2, ξ3, v, η1, η2, η3, λ0 = 1) =

−v · e−ka·t−k·t2 − η1 · ϕ1ξ1 − η2ϕ2ξ2 + η3ϕ3ξ3 = 0 (20)

and resolving this equation with respect to v we obtain

v := v(t, ξ, η) = v(t, ξ1, ξ2, ξ3, η1, η2, η3) =

(−η1 · ϕ1ξ1 − η2ϕ2ξ2 + η3ϕ3ξ3) · eka·t+k·t2 , (21)

and, consequently:

u∗(t) =

{
umax , v(t,x∗(t),y(t)) ≥ umax

v(t,x∗(t),y(t)) , v(t,x∗(t),y(t)) ∈ (0, umax)
0 , v(t,x∗(t),y(t)) ≤ 0

With the Hamiltonian H(t, ξ, η) := max
v∈[0,umax]

H(t, ξ, v, η),

one gets the adjoint equations ẏi(t) = −Hξi(t,x
∗(t),y(t))

(i = 1, 2, 3) building together with equations (8) – (10) the
canonical system for this optimal control problem.

For our numerical computations, we have chosen the same
parameter set as in Schättler & Ledzewicz (2015), p. 371,
and ρ = 0.03, a = 40. In this case, the dynamic system
possesses at least one stable benign equilibrium. The
optimal solution can be found in Figures below, whereby
the control constraint does not become active, since the
largest attained value of control lies at the level of 3.85.
The remarkable thing about the obtained optimal control
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Fig. 2. Solution to the OCP of cancer treatment with
infinite horizon

is that it, similarly to the solution of the SEIR model,
approaches some small non-zero level and remains near it
for an infinitely long time. This seems to be appropriate
to the consideration and treatment of cancer as a chronic
decease. Since the optimal strategy requires rather very
small drug doses having also the immune-boasting effect,
the patient body gains the opportunity to regenerate. This
underlines the legitimacy of the treatment in terms of the
sustainability principle.

6. CONCLUSIONS

In this paper, bio-medical models are formulated and ad-
dressed as control problems over an infinite time horizon.
The inclusion of an infinite planning interval for the bio-
medical models represents an important and challenging
mathematical aspect, the introduction of which turns out
to be an appropriate idealization for sustainability princi-
ples that are becoming increasingly important for society
at present and in the future. Both goals, optimal control
and asymptotic stabilization, could be combined even in
one objective functional with an infinite time horizon. In
addition to the immediate interest in optimal long-term
strategies, which come from the corresponding application
area, the formulated biological models should serve as test
problems that help to understand and illustrate mathe-
matical phenomena.
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with respect to equilibria, their stability and bifurcations
as well as an optimal control problem with a free finite
terminal time T . In dependence on involved parameters,
the above dynamic system may have scenarios varying
from a unique, asymptotically stable benign (tumor-free)
equilibrium point (situation of immune surveillance) to
a multi-stable situation with both benign and malignant
equilibria (co-existent equilibria) to the situation when
only unique, asymptotically stable malignant (death) equi-
librium point exists, cf. Schättler & Ledzewicz (2015), p.
358.

Since it is very important not only how much of drug
to give, but also how to give, the finding of the drug
administration regiment (protocol) becomes one of the
most important tasks on the way to a successful therapy.

Our task in the present paper is to consider the problem of
metronomic chemotherapy as an optimal control problem,
where the tumor size and the side effects of the therapy are
being minimized over the treatment horizon, which gives
rise to an integral objective in Lagrange form. Through
finding the optimal solution to this optimal control prob-
lem we obtain the best possible drug administration pro-
tocol automatically, including the doses and rest periods
if there should be some. In case of continuous optimal
solutions which are less practicable, the latter may be
replaced by piecewise constant suboptimal controls which
are still good enough to satisfy the treatment goal.

One of our key ideas is to assume that we have enough
time to treat the patient and the goal is not to fight the
cancer as fast as possible. Moreover, we consider the cancer
as a chronic disease, which will be treated over the whole
remaining future life time of the particular patient. The
aim is to figure out whether such ”chronic” formulation
of the control problem leads to considerably lower doses
in comparison to the short fixed finite treatment horizons.
We would like to mention that through minimizing the
expectation value of the cost functional the optimal control
problem becomes stochastic. Nevertheless, in some cases it
can easily be transformed to a purely deterministic control
problem with infinite horizon.

To handle the obtained infinite horizon optimal control
problem we use on the one side its rigorous formulation
in weighted functional spaces. The advantage of such a
functional analytical approach was addressed in details in
Lykina & Pickenhain (2017) and we use it here to prove
the existence of an optimal solution. According to this
approach, a weighted Sobolev and a weighted Lebesgue
spaces are chosen as the state space and the control space
respectively. On the other side, to obtain numerical solu-
tions to the considered problem, the open source software
package OCMat was applied, which is available at http://
orcos.tuwien.ac.at/research/ocmat software/and has been
described in Graß (2012). Just like the pseudospectral
method used to solve the SEIR model, the continuity
method of Graß (2012) avoids any truncation of the time
interval. Instead, it starts at the equilibrium point, which
is obviously a solution to the problem if the initial state
is exactly at that equilibrium, and then continues the
constant solution with respect to the initial state until the
actual initial state specified in the model is reached.

5.2 Metronomic chemotherapy model with a growing force
of mortality

Let a be the current age of the particular patient to be
treated against cancer and Ta be the random variable
denoting the future lifetime of the patient. Then our
purpose is to minimize the L2 objective functional

J∞(x, u) = ETa




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt


(11)

with respect to all (x, u) ∈ X × U := W 1,3
2 (IR+, e−ρt) ×

L1
2(IR

+, e−ρt), (x, u) := (p, q, r, u) satisfying the differential
equations (8) – (10). Making different assumptions about
the distribution of the random variable Ta it is possible
to transform the mathematical expectation value into a
purely deterministic form. In this manuscript we consider
the following case of a growing force of mortality, e.g.

µa = kan, k, n > 0 (12)

and in this case, the random variable Ta is distributed with
the density

ϕ(Ta) = k(a+ Ta)
ne−

k
n+1 ((a+Ta)

n+1−an+1), (13)

which represents the density function of Weibull distribu-
tion.

Therefore, calculating the expectation value in the objec-
tive (11) for all n ≥ 0 and changing the order of integration
we arrive at

ETa




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt




=

∞

0




Ta

0

1

2

�
p(t) + q(t)− r(t) + u2(t)


dt


 k(a+ Ta)

n

·e−
k

n+1 ((a+Ta)
n+1−an+1)dTa

=

∞

0

∞

t

1

2

�
p(t) + q(t)− r(t) + u2(t)


k(a+ Ta)

n

·e−
k

n+1 ((a+Ta)
n+1−an+1)dTadt. (14)

Calculating the inner integral in the above expression one
obtains

J2
∞(x, u) = e

k
n+1a

n+1

∞

0

1

2

�
p(t) + q(t)− r(t) + u2(t)



·e−
k

n+1 (a+t)n+1

dt. (15)

Thus, we have received a purely deterministic optimal
control problem with infinite horizon, namely (15), (8) –
(10).

Remark 1. It is to mention that there are distributions,
such as Chen or Makeham distribution, which reflect the
demographic data, and respectively the behavior of the
remaining life time random variable Ta, especially of a
cancer-sick person, in a more realistic way. But in our
considerations we restrict ourselves by only two consid-
ered distributions, exponential and Weibull distributions,
which allow the application of the described ”Kamien-
Schwartz-Trick” for transformation of a stochastic optimal
control problem into a deterministic one.
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