

Future mercury emission reduction in China

Flora M. Brocza^{1,2}, Robert Sander¹, Peter Rafaj¹

¹Pollution Management Research Group, Energy, Climate, Environment Program, IIASA, Laxenburg, Austria ²School of Chemical and Process Engineering, University of Leeds, Leeds, UK

Representing China's clean air policies in GAINS

China is estimated to have emitted >25% of global anthropogenic

GAINS simulates current and future policies to control individual air pollutants

mercury (Hg) emissions to the air in 2015^{1} , but its biggest Hg emission sources are undergoing rapid transformations as stringent policies to control emissions of PM, SO₂ and NOx and climate targets are implemented. The GAINS model² is ideally suited to compute and visualise scenarios of co-benefits from air pollution and greenhouse gas policies, thanks to an update to the Hg emission computation which considers existing pollutant control strategies, as well as mercury-specific controls for all emission sources. Here, we show two current legislation (CLE) and one maximum feasible reduction (MFR) scenarios for the IEA World Energy Outlook 2021 stated policies and net-zero emission projections³.

Current Legislation

Co-benefits from PM and SO₂ control

Fabric filters, electrostatic precipitators (ESP), flue gas desulfurization (dry/wet FGD) or acid plants remove significant amounts of mercury from flue gas and are considered Best Available Technologies (BAT) for most industrial flue gases. The PM and SO₂ control strategies are implemented on the province level.

Max. Feasible Reduction

Dedicated Hg controls

- Power sector, industrial production: 100% application of sorbent injection with added fabric filters by 2050
- Artisanal & small-scale gold mining, caustic soda production: phasing out / banning activity.

 \rightarrow PM, SO₂, NO_x, CO₂, CH₄, Hg... \rightarrow 182 regions (35 for China) \rightarrow 100+ Hg emission sources

https://gains.iiasa.ac.at/

Fig. 1: Combining PM, SO2 and Hg control strategies

Example: PP sector, activity=coal

Technology	Removal efficiencies* [%]→	Power plants	Industrial processes	Others (incl. ASGM, caustic soda)			
ESP, High-efficiency dedusting (incl. FF)		38.2 - 51.4	41.4				
ESP/HED + Flue gas desulphurization		79.2 – 85.9	61.6				
Sorbent injection + fabric filter		86.8-95.2	90.7				
Ban				100			
* Dependent on sector / fuel used (e.g. hard coal, brown coal, waste)							

Activity Projections

Baseline:

IEA World Energy Outlook 2021: "Stated Policies Scenario"(STEPS)

Climate Policy:

IEA World Energy Outlook 2021: "Net Zero Emissions by 2050" (NZE)

Strong focus on greenhouse gas reduction, projections for nonferrous metal production, waste and ASGM as in baseline scenario

1.111.121				
60	WSCRB	LINJ (not relevant)		WSCRB
50		,		PM_REM
40	PM = ESP1, ESP2, HED			PM_FGD
30		FGD = PRWFGD	LHGCO	LHGCO_PM_FGD
20		+ PWECD	SPC	SPC
10		FWFGD	FFSINJ	FFSINJ
	PM controls	SO2 controls	Hg controls	Desired overlap

Conclusion & Outlook

- GAINS now generates a mercury control strategy based on PM and SO₂ pollution control technologies
 - --> Quantification of co-benefits.
 - --> Mercury emissions can be quantified for every policy scenario in GAINS
- All analysed scenarios achieve mercury emission reduction below 2015 values
- To achieve substantial emission reduction below 300 t/year, abatement options for mercury release from industrial

Both scenarios: Addition of **Hg-specific** activities: share of ASGM of total gold mining, cremation, VCM production, Hg mining

processes need to be applied and activity projections for these sectors need to be refined.

• A recording of the <u>Hg-GAINS workshop on</u> 19.7.2022 is available on the ICMGP'22 platform for anyone wishing to understand and possibly use Hg-GAINS!

I'd love to get in touch contact me at brocza@iiasa.ac.at!

1. AMAP / UNEP, 2019. Technical background report to the global mercury assessment 2018. Arctic Monitoring and Assessment Programme, Oslo, Norway / UN Environment Programme, Che

3. IEA, 2021. World Energy Model Documentation, October 2021, IEA Publications.

Engineering and Physical Sciences Research Council UNIVERSITY OF LEEDS

