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FOREWORD 

Many of the problems facing societies today emerge from structures that can be 
thought of as systems combining people and the natural environment with various artifacts 
of man and his technology. Systems analysis addresses problems emerging from the behav­
ior of such systems. 

In the early part of its history, systems analysis usually dealt with those systems 
that to a large extent were dominated by the technical artifacts involved, either of hard­
ware or structure, and made good use of extensions of classical tools, while introducing a 
few new ones as the problems prompted their invention. However, since the frontiers of 
systems analysis have shifted more toward systems dominated by social or natural factors, 
these classical tools have become less appropriate and useful - new ones must be sought 
if the problems are to be addressed effectively. 

Thus, as part of its work, the International Institute for Applied Systems Analysis 
explores new concepts and tools that can help systems analysis to advance on these cur­
rent frontiers. 

In this article, the research of which was partially supported by the Institute, John 
Casti describes two relatively new theories, catastrophe theory and q-analysis, and suggests 
both how their structures may offer useful insights on social and behavioral systems and 
how their formulations could potentially offer computational schemes that could support 
problem solutions. Finally, he outlines an approach that could be taken to develop a 
theory of surprises for social and behavioral systems. 

HUGH J. MISER 
Leader 

The Craft of Systems Analysis 
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Methods based in algebra and geometry are introduced for the mathematical formulation of problems in the social 
and behavioral sciences. Specifically, the paper introduces the main concepts of singularity theory, catastrophe theory 
and q-analysis for the characterization of the global structure of social systems. Applications in urban land 
developmenl, electric power generation and international conflict are given to illustrate the methodology. The paper 
concludes with an outline for a general mathematical theory of surprises, together with a program for investigating 
the systemic property of resilience. 
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MATHEMATICAL MODELING IN THE 
SOCIAL SCIENCES 

Stimulated by the (partial) successes of their 
cousins in the economics community, social and 
behavioral scientists have been increasingly 
adopting the tools of applied mathematics to 
formulate and analyze various models of human 
behavior. Especially in the past decade there has 
been a veritable explosion of papers, books and 
lecture notes advocating the uses of linear 
programming, graph theory, regression analysis, 
and Markov chains, to name but a few 
approaches, for the study of such assorted social 
ills as the criminal justice system, populations 
migration, public health facilities and automobile 
parking space allocations. Interesting surveys of 
some of this literature are in Refs. 1- 3. While we 
do not wish to minimize the importance or 
relevance of this work in any way, the fact still 
remains that most of the modeling efforts in the 
social and behavioral areas leave the 
practitioners and decision makers with a strong 
feeling of unease and dissatisfaction. The general 
view is that once one steps away from a very 
localized situation, such as the microeconomy of 

tPartial support for this paper was provided by the U.S. 
Department of Energy under Contract No. DE-ACOl­
XORA50260. 
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a firm, and tackles a large, complex system, such 
as the national economy, the tools and methods 
of classical applied mathematics fail to 
adequately cope with many of the essential 
ingredients of the problem. In short, the tools 
developed around the physics-based paradigm of 
classical mechanics and its minor extension into 
engineering, are no longer appropriate for 
capturing the structural aspects of large social 
systems. In the Kuhnian sense, a new paradigm 
has been created, requiring its own blend of 
mathematical concepts and tools. But, what are 
the distinguishing features of this paradigm which 
the mathematics must strive to capture? 

One of the central foundations upon which the 
physics-based theory of modeling rests is the 
assumption of a basic "law" governing the 
relationship between the variables of the problem. 
Such a law may be something rather elementary 
like Ohm's Law or quite elaborate such as the 
selection rules of quantum mechanics, but the 
essential assumption underlying all modeling 
efforts is the existence of such a law. We have 
argued elsewhere4 that in the social and 
behavioral realms there are no such laws, at least 
not in the sense in which the term is used in 
physics. While the arguments of Ref. 4 do not 
bear repeating here, it is worth noting that, in 
our view, the only possibility for freeing the 
modeling process from an overdependence upon 
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laws is to convert the laws into purely 
mathematical axioms. The search for laws is then 
replaced by the construction of appropriate 
mathematical structures. Thus, any mathematical 
theory of modeling addressed to the social 
sciences must not rely upon the presence of laws 
for its utilization. 

A common consequence of the employment of 
a physical law in classical modeling is that the 
model then refers only to the behavior of the 
system in some localized spatio-temporal region. 
For instance, Newton's 2nd law postulates the 
relationship between the force exerted upon a 
point particle at a specific moment in time and the 
particle's acceleration at that same instant. The 
implicit hope in such a modeling scheme is that 
the local information provided by the law can 
somehow be pieced together to provide a global 
picture of the particle's behavior throughout 
space and · time. Such a procedure works 
reasonably well in physics, probably due to the 
fact that all laws of physics can technically be 
expressed in terms of invariants of certain groups 
of coordinate transformations and it turns out 
that these groups have analytic representations. 
This fact has the consequence that if we know 
the experimental data in a local spatio-temporal 
region, then we can extend it by analytic 
continuation to other regions without having to 
take into account what is happening "at infinity". 
In short, the analyticity forces a certain "rigidity" 
upon the process which seems to be essential for 
the existence of a physical law. Needless to say, 
in the social sciences the absence of laws casts 
serious doubt over one's ability to employ the 
above sort of local-to-global, reductionist 
philosophy of modeling. Any mathematical 
approach to social science modeling must contain 
within its framework the ability to capture the 
global structure of a situation without first having 
to decompose the system into elementary 
"atoms". 

The ability to express basic concepts in a 
morphological way is one of the strengths of 
classical modeling theory. Here by 
morphological, we mean being able to exhibit the 
concept in mind by a simple geometrical form. 
Thus, in classical physics we speak of point 
particles, elliptical planetary orbits, spherically­
symmetric gravitational fields and so on. In the 
social sciences, concepts are used which cannot 
be expressed in a morphological way. For 
instance, notions such as "power", "status'', 
"ideology", etc. seem difficult to identify with any 

"forms" from elementary geometry. Mathematical 
methods for modeling in the behavioral and 
social spheres must be capable of explicit 
geometric characterization and manipulation of 
morphogenetic fields if social science modeling is 
to be made into a scientific discipline. 

The Cartesian/Newtonian world view, upon 
which classical modeling is based, says that 
"space" is a priori and that "objects" sit in it. 
Similarly, this view asserts the existence of some 
"absolute time" to go along with the "absolute 
space". Although the Einsteinian revolution 
abolished both such absolutes, it did so in a most 
peculiar way: by invoking the existence of 
another absolute, the velocity of light in a 
vacuum. It is our contention that the social 
sciences cannot abolish one type of absolutism by 
replacing it with another and that a coherent 
theory of modeling in these areas will have to 
appeal to the relational philosophy of Aristotle 
and Leibniz. In this world-view, the concept of 
space is developed via the notion of relation 
between observed objects, i.e. our awareness of 
space comes through our awareness of the 
relation between objects. In a similar view, time 
is then the manifestation of relations between 
events. The idea of absolute space and time is 
thus completely absent from the Aristotelian/ 
Leibnizian framework, thereby providing the 
basis for a holistic rather than reductionistic 
theory of modeling. 

The task that remains is to translate the 
foregoing desiderata into a specific mathematical 
form which will then supply the needed tools for 
modeling in the social sphere. While this program 
is as yet far from complete, the situation has 
progressed beyond that of mere armchair 
philosophy. In what follows, we shall explore two 
methodological directions which have been 
pursued with the above goals in mind: 
catastrophe theory and q-analysis. Each of these 
methodological approaches to modeling follow 
the same conceptual approach, namely, to map a 
given situation or process in the external world 
onto a well-defined and well-understood abstract 
geometrical form. In the case of catastrophe 
theory these forms are the geometrical objects 
(fold, cusp, butterfly, etc.) resulting from the 
Thom Classification Theorem for smooth 
functions. For q-analysis, the standard form is a 
simplicial complex (or collection of such 
complexes), which is associated in a well-defined 
way with the data sets and relations of the given 
problem. Thus, both catastrophe theory and q-
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analysis provide us with a language of' structure, 
enabling us to speak in a rather precise, 
mathematical and morphological way about the 
global and local connective structure present in 
any particular situation. In addition, many of the 
qualitative features observed in the social and 
behavioral sciences such as discontinuities, 
"surprises", hysteresis effects, subjective time 
scales and so on, which cause some nontrivial 
modeling difficulties using physics-based methods, 
can be approached in a mathematical way using 
the catastrophe theory and q-analysis machinery. 

Following a brief outline of both catastrophe 
theory and q-analysis in the next two sections, we 
shall then illustrate the employment of these tools 
in a variety of social and behavioral settings 
involving electric power networks, international 
conflict, and land use development. These 
examples serve not only to indicate the power 
and scope of the catastrophe theory/q-analysis 
"language", but also to suggest certain extensions 
of the "vocabulary" and "grammar" needed for a 
deeper understanding of such human phenomena. 

2 CATASTROPHE THEORY 

So much has been written about catastrophe 
theory in the past few years that we shall refrain 
from a detailed exposition here, contenting 
outselves with the bare essentials needed for what 
follows. For the interested reader we recommend 
a recent book 5 as the best elementary 
introduction to the subject. Other volumes6

• 
7 can 

also be recommended for a wealth of interesting 
theory and examples and, of course, the original 
source which ignited the catastrophe theory 
explosion is Thom's treatise. 8 Finally, for some 
adverse views on the subject, particularly 
focusing upon some of its early application in the 
social sciences, see Ref. 9. 

At the mathematical level, catastrophe theory 
is involved with the problem of classification of 
singularities of smooth (i.e. C"") functions . From 
the standpoint of applications, the utility of the 
mathematical theory hinges upon being able to 
identify the equilibria states of the system under 
study with the critical points of some 
parametrized family of C00 functions. 

Roughly speaking, catastrophe theory 
addresses itself to the question: given a C ' 
function f (x), x ER", when can we find a smooth 
coordinate transformation y = h(x) such that in 
the y variables f is exactly represented by a 

GS--B 

finite segment of its Taylor series expansion in 
the neighborhood of a critical point? In the event 
such a transformation h is possible, a secondary 
question then arises: is there a smoothly 
parametrized family of functions F containing f 
such that the above "finite truncation" property 
holds for each f E F and, if so, what does such a 
family look like? The Thom- Mather theorem 
answers the above questions in terms of certain 
integers computable from the function f in a 
neighborhood of the . critical point. Looking at 
the question from the other end, catastrophe 
theory also answers (partially) the question: in a 
k-parameter family of functions, which local types 
do we typically meet? For applications either 
form of the question may arise, although the 
latter seems to be more common. Now let us be 
a bit more specific about the foregoing matters. 

Consider a smooth function f(x 1, x 2 , ... , x") in 
a neighborhood of the origin. We write /f to 
denote the k-jet of f at 0, i.e. the Taylor series 
expansion off to terms of order k. Thus, 

where J is of order k +I. So, lf is a polynomial 
function of degree~ k. We say a function f is k­
determinate at 0 if whenever lf = /g for some 
smooth g, there is a smooth change of 
coordinates x--->y such that 

f (X1, Xz, · · ., Xn) =g(y1 (XI•··., Xn), 

Y2(Xi. .. . , xn), .. . , Yn(X 1,. .. , xn)). 

In such a case, we say f and g are right­
equivalent, denoted f ~ Rg. Note that the 
coordinate change must be regular, i.e. 

det(
0Y•)+o oxj 

at the origin and it must leave the origin fixed. It 
need not be more than local, i.e. defined only in 
some neighborhood of 0. If we choose g(x)=/f, 
then clearly lf = fg , which implies that if f is 
k-determinate then there is a local coordinate 
system such that in the y coordinates f is 
expressed exactly by the polynomial /! The 
smallest k such that f is k-determinate at 0 is 
called the determinacy off, denoted (J(f). 

If we let [,,denote the partial derivative uf/ox., 
then we say that a smooth function </J(x) is 
generated by the f, if there exist n smooth 
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functions {l/l;(x)} such that 

n 

</>(x)= I l/1 1(x)f,;{x). 
i = 1 

Define the non-negative integer codim f =the 
number of terms which are independently not 
generated by the f, 1• This number is called the 
codimension off For example, if f(x 1,x2)=xi 
+x~, then codim f =3, since xL> x 2 and x 1x 2 are 
not generated (by convention, we do not consider 
the constant term 1 in these computations). On 
the other hand, if f(x1>x 2)=xfx2 , then codim f 
= CIJ , since x~ is not generated by the f, 1 for any 
k. 

Unfortunately, it may require an infinite 
number of. computations to decide if a particular 
f is finitely-determined, so we introduce the 
related concept of k-comp/eteness. The function 
f (x) is k-complete if every </>(x) such that rjJ 
=0(1 x lk) is generated by f, 1 using functions l/J 1(x) 
= 0( x ). In other words, if rjJ is of order k and 
we can generate rjJ by f, 1 using multipliers 
containing no constant terms, then f is k­
complete. For example, the function f (x 1, x 2) =xi 
+xi is 5-complete, but not 4-complete since 
terms of the type xf x~ cannot be obtained from 
the f, 1, although we could obtain pure quartics 
like xi and xi. It is reasonably clear that k­
completeness can be decided in a finite number of 
steps. In fact, to prove k-completeness it is 
sufficient to show that any rjJ(x) = O(i x lkl can be 
written as 

n 

r/J(x)= I l/J;(x)f,;(x)+O(ixlk +I) 
i = 1 

for some smooth functions l/11(x) = O( i x ll· 
The relationship between k-completeness, k­

determinacy and codimension is contained in the 
following theorems, due primarily to Mather and 
Thom. 

THEOREM 

determinate. 
f k-complete implies f is k-

TH EOREM 2 f k-determinate implies f is (k + 1 )­
complete. 

THEOREM 3 codim f < C/J if and only if f is finitely 
determinate. 

The above theorems enable us to conclude that 
almost every smooth function is right-equivalent 
to a polynomial and the only smooth functions 

which are not are those with codim f = CIJ . So, if 
f is finitely determinate, we can introduce a local 
coordinate system near 0 such that the behavior 
off in this neighborhood is entirely and exactly 
given by its k-jet, i.e. by a finite segment of its 
Taylor series expansion. 

The next question to be addressed is whether 
or not a small perturbation off introduces any 
essential change into the above results. To 
answer this stability question we need the 
concept of a universal unf aiding of f Let the 
function f have codim f = c < CIJ, and let u ) x ), j 
= 1, 2, ... , c be independent functions not 
generated by f, 1• The function 

c 

f(x)+ I aiu)x), 
j = I 

where { ai} are constants, is called a universal 
unfolding off 

Now assume that the original function f is 
perturbed by some smooth functions { </>k(x)} , i.e. 
the new function considered is 

n 

f(x)+ I ai</>i(x), 
j = l 

which we can write as 

c n 

f(x) + I a;u;(x) + I ai</>i(x), (*) 
j = l j = c + l 

where the </>1(x), j=c+l, . .. ,N, are generated by 
f, 1. The main structural stability result is 

THEOREM 4. Jn the expression (*), the functions 
</Ji(x), j = c +I, . .. , n, can be removed by a smooth 
coordinate transformation. 

Thus, the universal unfolding of f represents the 
most general type of smooth perturbation to 
which f can be subjected. It then follows that to 
study the effect of local perturbations on f, it 
suffices to study the properties of a universal 
unfolding. 

The last ingredient we need in order to state 
the Thom- Mather Classification Theorem is the 
idea of the corank of f Define the Hessian 
matrix, H off (x) at 0 by 
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The integer r = n - rank H is called the corank of 
f at 0. The importance of the corank resides in 
the following result. 

SPLITTING LEMMA The function f (x) is right­
equivalent to the [unction g(x 1,x2 , . .. ,x,) 
+q(x,+ 1,. . .,x.), where g=O(lxl 3

) and q is a non­
degenerate quadratic form . 

Thus, the Splitting Lemma enables us to separate 
the variables xi. .. . , x. into 2 classes: the 
"essential" variables entering into intrinsically 
nonlinear behavior, and the n -r "inessential" 
variables which play no role in bifurcations and 
"catastrophes". 

The claim of utility of catastrophe theory in 
the social and behavioral sciences rests heavily 
upon the Splitting Lemma in the following sense. 
Investigations in the social sciences usually 
involve large numbers of variables and 
traditional methods usually attempt to control all 
but a small number and analyze the inter­
relations of those remaining. On the other hand, 
in catastrophe theory the primary focus is upon 
the codimension, i.e. the number of assignable 
parameters. If this is small, which is usually 
required for any decent theory, then the corank is 
also small.t Hence, the Splitting Lemma then 
insures that the number of mathematically 
relevant state variables is small, usually 1 or 2. 
All the other state variables are well-behaved in a 
neighborhood of the critical point. 

Finally we can state the basic classification 
result of Thom. 

CLASSIFICATION THEOREM Up to multiplication by 
a constant and addition of a non-degenerate 
quadratic form in other variables, every smooth 
function of codimension ~ 6 is right-equivalent to 
one of the universal unfoldings listed in Table I. 

If we denote the universal unfoldings of Table 
I by y(x), then we define the bifurcation set B to 
be 

=O i,j= 1,2, ... ,n} 
'k= 1,2, ... ,c · 

. ('+ ') tMore precisely, 
2 

;£c. 

In the above set-up, the parameters {ad are 
usually thought of as assignable "control" 
variables and the x, are smooth functions of the 
ak except at points on B. So, as the parameters 
slowly change there may be a sudden change in 
the x, as the controls pass across B. Such a 
discontinuity is what is usually termed a 
"catastrophe" in the popular literature. 

In regard to applications of catastrophe theory, 
we can distinguish two approaches. The first is 
when we actually know some physical law 
governing the process under study. In this case, 
we can take the known law as our function f (x) 
and subject it to the machinery outlined above to 
reduce it to one of the standard forms of Table I. 
Such an approach is most typical of the physical 
sciences and has been used with some success in 
mechanics, geometrical optics and elasticity 
theory.6 Interesting applications in biology and 
ecology using this approach have also been 
reported. 7 

The second "metaphysical" approach to the 
use of catastrophe theory is to postulate a priori 
that the unknown process governing the system 
under investigation meets the assumptions of the 
theory, e.g. that there exists some underlying 
potential function which the system locally (or 
globally) moves so as to minimize. This approach 
is more characteristic of applications in the social 
and behavioral areas and is the line which we 
shall follow in the latter sections of this paper. 

3 Q-ANAL YSIS 

Catastrophe theory focuses upon the structure 
present in smooth functions of several variables 
and provides a geometric language for 
characterizing this structure. The language termed 
"q-analysis", 10 or "polyhedral dynamics", 11 offers 
a similar approach to the study of binary 
relations between finite sets of data. Thus, while 
catastrophe theory with its emphasis upon 
smooth functions, is heavily-flavored by the 
analytic tools of differential topology, q-analysis 
relies upon the ideas and methods of algebraic 
topology. 

Consider two finite sets 

and a binary relation A.c Y x X. As is well­
known, we can represent A. by an m x n incidence 
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Corank Codimension Function 

x' 

2 x• 

x' 

4 x• 

x ' 

6 x• 

2 xi -3x1xi 

2 xi+xi 

2 4 xix2 +xi 

2 xixz +x~ 

xixz-X~ 

xi+xi 

2 6 xi+x1xi 

2 6 xixz+x~ 

matrix /\ defined as 

J. CAST! 

TABLE I 

Functions of codimension::;; 6 

Universal unfolding Name 

x3 +a 1x Fold 

x4 +a 1x2 +a2x Cusp 

x5 +a 1x 3 +a2 x 2 +a3 x Swallowtail 

x6 +a 1x4 +a2x3 +a3x 2 +a4 x Butterfly 

x1 +a 1x 5 +a 2 x4 +a 3 x3 Wigwam 

+a4 x2 +a5x 

x
8 

+a1x6 + UzX 5 
+a3X

4 Star 

+a4 x 3 +a5 x 2 + a6 x 

xi - 3x 1xi +a 1(xi +xi) Elliptic umbilic 

+a2X1 +a3X2 

xi +xi +a1X1X2 +a2x t Hyperbolic umbilic 
+a3x2 

xi Xz +xi+ a1 xi+ a2xi Parabolic umbilic 

+a3 x 1 +a4 x 2 

xix2 +xi +a 1xi +a2xi+a3x1 2nd hyperbolic umbilic 

+a4x2+asxi 

xi x2 - x~ + a1 xi+ a2xi + a3 x 1 2nd elliptic umbilic 

+a4Xz+U5X~ 

xi+xi+a 1x 1 +a2x2 +a3x1x2 Symbolic umbilic 

+a4xi +asx1xi 

xi +x1xi +a1X1+OzXz+03X1X2 (None) 

+ a4 xf + a5 xf x1 + a6 xi 

xix 2 +x~ +a1xf +azxi +a3 x 1 2nd parabolic umbilic 

+a4 x2 +a 5xi + a6 xi 

complex and let the elements of Y represent the 
simplices. Thus, Yi is the p-simplex consisting of 
the vertices x,

1
, xi,, ... , xi, + 

1 
if and only if 

(yi, x;) d for j = 1, 2, ... , p + 1. The conjugate 

Associated with the relation .l. are two simplicial 
complexes Ky(X;.l.) and Kx(Y;.l.*) defined in the 
following fashion: in K r(X; .l.) we identify the 
elements of the set X with the vertices of the 

complex K x( Y; .l. *) is formed by interchanging the 
roles of the sets X and Y, which in terms of the 
incidence matrix /\ involves using /\', the 
transpose of /\. In this fashion, we can associate a 
standard geometrical form, namely a simplicial 
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complex, with every binary relation A and use 
the structural properties of this form to tell us 
something about A.. This is the essential idea 
underlying q-analysis. 

An important aspect of the effective use of the 
above idea is the recognition that data sets X 
and Y are often hierarchically structured. To 
account for this structure within the q-analysis 
language, we employ the notion of a set cover. 
We say a set A covers a set X if 

i) each a, EA is contained in P(X), the power 
set of X; 

ii) ua,=X. 
Thus, each element a, is the name of a subset of 
elements from X. The special case of a set 
partition occurs when a, n a i = { 4>}. 

If we think of the set X as being at some 
particular hierarchical level, say N, then it is 
natural to say that A is at the (N +!)-level. 
Similarly, we could find a cover r of A and think 
of r as existing at level (N + 2) and so on. Or, 
going the other direction, we may regard X as a 
cover of a set Q which would then be placed at 
the (N - !)-level. In this manner, the hierarchical 
diagram in Figure I could be obtained. 

6 
r '!' N +2 

1T 

1 1 
1T 

6 
A B N + 1 

' ' ..... -... ,,e 11· 
1T 

' ..... ..... 
' >. ' ' x ' y N 

1T 1T 

a 
Q p N -1 

FIGURE I 

In this diagram, the relation n represents the 
natural relation associating a given element at 
one level with its subset at the next. The diagonal 
relation fJ taking us from one level to the next is 
defined in the usual set-theoretic way in order to 
make the diagram commutative. 

Within the q-analysis framework, the basic 
building blocks of the relation A. are the simplices 

of the complexes Kr(X; A.) and Kx(Y; J, *). We are 
interested in studying the way in which these 
pieces are "glued" together in the complex. To 
this end, we define a connective relation upon the 
simplices as follows. We say that two simplices <JP 

and <J, are q-connected if there exists a sequence 
ofsimplices {<J.J7~i in K such that 

i) <JP shares a face of dimension {30 with <J.,; 

ii) <J, shares a face of dimension f3. with <J •• ; 

iii) <J. , shares a face of dimension {3, with <J.,. 
1

; 

iv) q=min {f30 ,f3t>···,f3.}. 

(Note: we shall adopt the standard notational 
convention that dim <J; = i, with dim er= ( # 
vertices in er)- I. Also, dim K =dim of highest 
dimensional er EK). It is an easy matter to verify 
that q-connection is an equivalence relation on 
Kr(X; A.), so we may study the equivalence classes 
of this relation. For each value of q 
= 0, I, ... , dim K , we define the integer 

Qq = # of distinct q-classes 

and call the vector 

the structure vector of K . The vector Q gives us 
some idea of the global geometry of K, as it tells 
us how many q-dimensional "pieces" exist in the 
complex. The lower-dimensional ( < q) "gap~" 

between these pieces form an obstacle to the 
natural flow of information or "traffic" 
throughout K, an observation that is of some 
significance as our later appl ications will show. 

While Q tells us something about the complex 
K as a whole, the relation of q-connection 
provides little information about the individual 
simplices of K. In particular, it is of interest to 
know how well a given simplex fits into the 
overall complex and, especially, whether or not a 
particular simplex should be regarded as 
"unusual" or "special", relative to the rest of the 
complex. As a measure of integration, we define 
the eccentricity of a simplex er as 

q-q· 
eccer= q·+ I' 

where q =dim er, q· = highest-dirnensWaal face 
which er shares with another distinct w 'lex in 
K. We remark that the above definition l•-·. the 
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defect that the measure of a simplex's non-
conforming nature depends only upon another 
single simplex in K and not upon all the other 
members of K. Various alternative measures of 
eccentricity have been proposed to eliminate this 
problem but for our purposes the above 
definition, due to Atkin, 10 will suffice. 

In order to consolidate the above notions, let 
us consider the following simple example. Let the 
incidence matrix of the relation }. be given by 

}. X1 Xz X3 X4 X5 x6 X7 Xg X9 X10 

Y1 I I 0 0 0 0 0 0 

Yi 0 I 0 0 0 0 0 0 

Y3 0 I 0 0 I 0 0 0 0 

A=y4 0 0 0 0 I I 0 0 

Ys 0 0 0 0 0 0 0 

Y6 0 0 0 0 0 0 0 I 

Y1 0 0 0 0 0 0 I 0 

Ya 0 0 0 0 0 0 0 

Geometrically, Kr(X;J.) has the form shown in 
Figure 2. 

. 10 ,. 

,, 

FIGURE 2 

The structure vector for K is Q = G 
8 1 

~). Thus 

there are 2 3-connected components in K , 
consisting of the single simplices {yi} and {y4}. 
At the opposite end of the spectrum, we have Q0 

=I indicating that the complex is a single piece 
at the 0-dimensional level. The fact that Q2 = 8 
shows that K splits into many disjoint pieces as 
far as 2-dimensional connectivity is concerned, 
indicating that there is a high likelihood of 
serious obstruction to the flow of traffic between 
various 2-dimensional simplices in K. We shall 
pursue these ideas further on after introducing 
the idea of a dynamic on K. 

By "traffic" on a complex K , we mean 
anything associated with K that 

i) is defined on the simplices of K 

and 

ii) can be described by a graded set function 

which we call the pattern of the traffic. Each 

n': { i-dim. simplices} 

-+J (a number domain). 

Thus, n' is the pattern n restricted to the i­
simplices of K. A typical example of traffic on 
Kr(X) would occur in a situation if we had X 
=traffic routes thru a town, Y =type of vehicles, 
and the traffic as the amount of goods and 
people carried by different vehicles. 

Any change in the pattern n, which is part of a 
free redistribution of the values of n, means 
effectively that there is a free flow of numbers 
from one simplex to another. However, since n is 
graded by dimensionality levels, the numbers 
themselves acquire a dimensional significance which 
must be taken into account when studying 
the redistribution of numbers from one simplex 
to another. Hence the dimensions of the common 
faces of two simplices is very important. If the 
pattern n' is to change freely then it needs a (t 
+!)-chain of connection to do so. Thus, the 
number of separate t-connected components in K 
is an indication of the impossibility of free 
changes in n'. For this reason we define the 
obstruction vector Q as 

Q=Q - U, 

where U =vector all of whose components equal I. 
Note that the above considerations regarding 

free changes of n are related only to the 
underlying geometry of K. The peculiarities of 
some particular pattern n might also involve 
Internal constraints on the actual chains of 
connection within a single connected component 
which place additional obstacles in the way of 
the change n-+n+bn. For instance, we might 
have a "conservation law" of the form L7=0 bn, 
= 0. This is an additional constraint, above and 
beyond those imposed by the geometry. 
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A change in n at the level t, i.e. i5n' is 
associated with a "force" in K at the dimension 
level t. If i5n' > 0 we speak of an attractive t-force, 
while i5n' < 0 is t-force of repulsion. 

A great deal of the additional algebraic 
structure of K, including notions of "holes" and 
"loops" in the complex are discussed in some 
detail in Ref. 12. Of special interest for 
applications are the computational methods 
developed for patterns and their relatioriship with 
dynamics on K. Let us now turn to some 
prototypical applications of the methods 
introduced above. 

4 LAND USE AND DEVELOPMENT 

As a simple illustration of how catastrophe 
theory is sometimes applied in practice, let us 
consider an urban housing model, whose 
objective is to predict the development of a given 
residential area as a function of both the 
accessibility of the area and the number of vacant 
units available. More specifically, let 

N(t) =rate of growth of housing units in t)1e 
area at time t; 

a= excess number of vacant units relative to 
the regional norm; 

b =relative accessibility of the area to the 
regional population. 

Our goal is to describe the variation of N as a 
function of a and b. 

In order to justify employment of catastrophe 
theory we shall assume that the dynamic 
underlying N is such that for each (a, b) level, 
N(t) moves so as to locally maximize a potential 
function V. This assumption (or its equivalent) is 
often employed in land development models of 
the so-called "gravity" type. Furthermore, we 
assume that for each level of a and b the time­
scale for the change of N is fast enough that we 
observe only the steady-state level of N, i.e., the 
transient dynamics of N(t) are "fast" compared to 
the "slow" changes of a and b (for a theoretical 
treatment of this "delay" convention as well as a 
discussion of what is fast and what is slow, see 
Ref. 13). 

Under the foregoing hypotheses, we may 
invoke the catastrophe theory machinery and 
regard N ( = N(oo)) as the single "essential" 
variable of the Splitting Lemma, with a and b as 

two parameters. In catastrophe theory parlance, 
we are in the case of the cusp catastrophe, which 
has the universal unfolding V= ±(N4 /4+aN 2/2 
+ bN), leading to the well-known picture of the 
equilibrium manifold M for N given in Figure 3. 

M 

Low housing growth rate 

Relativeacc1!$$ibillty 

FIGURE 3 

In the above canonical unfolding for the 
potential V, we would choose the negative sign 
since it is more reasonable to assume that for a 
fixed level of vacancy and accessibility, a given 
region will develop at the fastest, rather than 
slowest possible rate. Thus, our model is actually 
the so-called "dual" cusp. 

The picture emerging from Figure 3 is that the 
housing rate will grow discontinuously only if a 
combination of high vacancy and high 
accessibility (probably strongly positively 
correlated with desirability) takes place in such a 
way as to cross the fold line (I) moving from 
right to left in the parameter space P. Similarly, 
we can expect the growth rate to "crash" if the 
vacancy/accessibility combination crosses the fold 
line (II) from left to right. To insure a smooth 
development of housing, it is necessary to take 
steps which prevent entering the shaded cusp 
region. The simplest way to accomplish this is to 
keep a< 0, i.e. make sure that the vacancy rate of 
the particular area is no greater than that of the 
regional average. Zoning regulations, preferential 
tax rates, restrictions on building permits and/or 
housing subsidies could all contribute toward 
keeping a small. 

On the other hand, should we wish to 
stimulate a sluggish housing market and promote 
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a boom in development of a particular area, it 
would be necessary to have a> 0 and to make b 
large, i.e. the model suggests actions such as 
subsidies for construction, building of new roads 
to the area, encouragement of development of 
local shopping areas and so forth : All actions of 
this type would work toward forcing the system 
to cross the fold line (I), consequently increasing 
the growth rate discontinuously. 

To transform the above static model into a 
dynamical description, we can use the 
assumption that N(t) moves so as to maximize 
the potential V(N). This leads to the dynamical 
equation for N as 

Now, of course, a and b must also be regarded as 
time-varying functions a(t), b(t) satisfying their 
own differential equations 

d . 
di a(t) = G 1 (a, b, N), 

The functions G 1 and G2 are not dictated by the 
catastrophe theory methodology and must be 
determined through understanding of the 
particular process and utilization of measured 
data, if available. We note in closing that in 
order to have the dynamical model merge into 
the earlier static one, it is necessary to choose the 
functions G, and G2 so that the time-scales of N 
and a and b differ significantly. In other words, 
we cannot use functions G1 and G2 which would 
cause a and b to change at more or less the same 
rate as N. This constraint can be easily met, 
however, by first choosing physically meaningful 
G1 and G,, then multiplying these functions by a 
small parameter E « I, which would act to slow 
down the time-scale in (a, b) space. 

Shifting now to the problem of land use, let us 
consider the employment of q-analysis for the 
study of how the types of activities of a given 
town interconnect with the physical space 
available. Assume that the town has a certain set 
of geographically-distinct areas which form the 
members of a set X. For instance, in Manhattan 

we might have 

X = {Upper East Side, Upper West Side, 
Harlem, Midtown, Theatre District, 
Garment District, Chelsea, Greenwich 
Village, Soho, Chinatown, Financial 
District} 

We also have a collection of activities which may 
take place in the locations of X. Such activities 
form the elements of a set Y. Let us take 

Y = {retail trade, cultural amenities, residential , 
entertainment, light manufacturing, heavy 
industry. finance/ business} 

An obvious relation A. on X x Y is 

..1.: (x;, Yi) EA. if and only if activity Yi takes place 
in area X;. 

A plausible incidence matrix for the relation J. 
using the above sets X and Y is 

,1, x, Xz .\ 3 .\4 X5 -'6 X7 Xs X9 X10 X11 

y, I 1 I 1 I I I 

Y2 0 0 0 0 0 0 0 

Y3 I I I 0 0 0 1 1 0 

Y4 0 0 0 0 I 0 0 0 0 

Ys 0 0 I 0 0 1 0 0 1 I 0 

Y6 0 0 0 0 0 0 0 0 0 0 0 

Y7 0 0 0 0 0 0 0 0 0 

The structure vector for the complex Kr(X ;J.) 
and its conjugate Kx(Y; J.*) are 

Q=(I01 0) 
I I I I 1 I II I I 

(4 10). Q* = I I 2 I 

Thus, in terms of the activities taking place in the 
city we see that there is a high degree of 
connectivity at every dimension level. This is 
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accounted for by the fact that retail trade and 
residential activity (y 1 and YJ) take place in so 
many sections of the city. In fact, from dimension 
4 to 10, these are the only activities we "see" 
taking place in the city. So, if we are considering 
activities which occur in 5 or more 
neighborhoods, we would view Manhattan as 
consisting only of retail trade and residential 
property. Furthermore, we note that heavy 
industry (y6) is a ( -1)-dimensional simplex 
showing that it does not belong to the complex 
at all and could be eliminated from our analysis 
altogether. 

Looking at the eccentricities of the simplices, 
only retail trade (y 1) has a nonzero eccentricity 
(eccy1 =4/7), indicating that there is really no 
single activity that is carried out in isolation m 
the city. 

Viewing the city from the standpoint of 
neighborhoods rather than act1v1t1es, the 
conjugate complex shows that Soho (x9 ) is the 
most diverse neighborhood with 5 different 
activities taking place there, followed closely by 
Greenwich Village (x8) with 4. In terms of overall 
cohesion via activities, Q* shows us that the city 
is well-connected at all levels except for the small 
fragmentation at q = 2. A more detailed look at 
this separation shows that the 2-connected 
components are Midtown (x4 ) and the collection 
of neighborhoods N={x3,x5,x8,x9,x 10}. This 
indicates that there is some comhination of 3 
activities happening in Midtown that is not 
shared by the neighborhoods N. Inspection of the 
situation shows that this is due to the fact that 
the vertex y7, finance/business, does not occur in 
any part of N. Other than this small anomaly, 
the view of Manhattan as a collection of 
neighborhoods suggests that the activities act to 
"cement" the neighborhoods together in a very 
solid fashion. This feeling is further borne out by 
the fact that the eccentricities of the 
neighborhoods are all very small, with only Soho 
and Midtown being nonzero, and even these two 
are quite insignificant (ecc x 9 = 1/4, ecc x4 = 1/2). 

In conclusion, the overall picture that emerges 
of Manhattan from the above analysis is just that 
which one obtains intuitively, namely, a 
collection of individual neighborhoods well­
connected to each other through a broad array of 
urban activities. Furthermore, the act1v1ties 
themselves are well-distributed throughout the 
city justifying what every New Yorker knows 
that you can live your whole life in your own 

GS- C 

neighborhood and not feel that you're missing 
anything! 

Should we wish to take a more detailed view 
of the above relation A., we could employ the set 
cover idea to decompose the N-level sets X 
and/or Y into their (N - !)-level components. For 
example, the set X may be thought of as a cover 
for a new set U consisting of elements 

{ 

E59th St. - E96th St., E96th St., } 
= £125th St., above El 25th St., £42nd 

U St.-E59th St., £14th St. - £42nd St., 
Canal St.-£14th St., below Canal 
St., .... 

Thus, each of the elements x, = U uj, where the 
union is over all elements of U corresponding to 
the particular region x 1• In this way we can take 
a more detailed look at how local neighborhoods 
relate to the human activities taking place within 
them and also how the activities work to tie 
neighborhoods together. 

On the other hand, should we wish to examine 
the activities in greater detail then we would use 
the set Y to cover a collection of activities. For 
instance, the element y 1, retail trade, may act as a 
name for the · set {butcher, bookshop, 
supermarket, jeweler, dept. store, camera store, 
pizzeria, barber}. Thus, each y,=Ujzj and the 
elements zj form a new set Z covered by Y. So, 
we would have the hierarchy shown in Figure 4. 

N - Level 

1T 1T 

(N-1) - Level 

µ 

FIGURE 4 

The natural projections n, together with the 
relations A. and µ, defined at their respective 
levels, enable us to construct the relation (} 
linking the micro to the macro view of 
Manhattan. 

Some typical patterns which may be defined on 
the complex Kr(X; A.), include 

1) amount of money spent/ year in activity y, 

2) number of people employed in activity y, 

3) tax base provided by activity y. 
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On the complex Kx(Y;).*), some possible patterns 
of interest include 

4) number of people living in area x, 

5) number of square blocks included in area x , 

6) political voting distribution in area x, 
7) consumn-good spending in area x. 

Thus, wc sec that the q-analysis language 
provides us with a very flexible tool for looking 
at many facets of the urban structure present in a 
given town and gives a basis for a rational plan 
of land use development. 

5 INTERNATIONAL CONFLICTS AND 
CRISES 

Crisis has been referred to as both the actual 
prelude to war and the averted approaches. The 
current international situation certainly makes 
the importance of crisis perception and 
management clear, but a definite 
conceptualization of crises has so far eluded 
students of the subject. Perhaps the vagueness of 
the term "crisis" is to blame. Nonetheless, if we 
assume the validity of McClelland's definition: 14 

"A crisis is, in some way, a change of state in the 
flow of international political actions", then 
catastrophe theory suggests itself as a possible 
language with which to distinguish crisis from 
noncrisis periods. 

Since there is no readily identifiable "potential" 
function governing the dynamics of crisis onset 
and disappearance, we shall employ the 
"metaphysical way" of catastrophe theory and 
postulate the existence of such a potential. 
Furthermore, we shall also assume that the 
coordinate system chosen to verbally describe the 
situation is such that we can appeal to the 
Splitting Lemma and separate the many variables 
involved in a crisis into "essential" and 
"inessential" variables, with the essential variables 
corresponding to our perceived reaction to the 
crisis. In this example, there will be only the 
single essential variable, military action. This is 
equivalent to stating that our postulated 
potential function is of corank I. The control 
parameters used in our model of crisis will be 
perceived decision time and perceived threat. 
Choice of these variables implies that we are 
assuming our potential function to be of 
codimension 2 which, by the Classification 

Theorem, implies that the crisis situation can be 
represented by the cusp catastrophe. 

As an aside, we note that the control 
parameters are consistent with those advocated 
by Hermann 15 in his work on crisis detection. In 
hi s case there are three control dimensions, the 
clement of surprise being added to the two 
variables time and threat. Hermann represents 
these three dimensions in a crisis cube (Figure 5). 

Khrushchev' s + 
Ouster 

Japanese Treaty + 

E : + Berlin Blockade + 

,,}-------------,;;;;,;,;:;:;.,;; - H 

,,,,. / Request 

,,,.. / +Cuban Missiles · Hungarian U - 2-1-1 ,,,.. ,,,,,. + Korean Attack Uprising + 

A High Low D 
Threat 

FIGURE 5 

According to Hermann's theory of crisis, the 
vertices of the cube correspond to various levels 
of crisis with a high crisis situation being 
characterized by points near A (high threat/short 
time/surprise) and the routine situations being at 
G (low threat/extended time/anticipated). 

In our simplified cusp model, decision time 
increases the relative amount of time available for 
choosing alternative behaviors. The zero point 
represents normalcy, or average decision time, 
using everyday standard operating procedures. 
On the low end, decision time is a matter of 
minutes such as reaction to a nuclear attack. On 
the high end, actions need not be taken for 
several days or weeks. 

The continuum for perceived threat will range 
from strategic dominance at the low end, to 
strategic impotence at the high end. It should be 
kept in mind that we are speaking here of 
perceived threat, which may be a quite different 
matter than actual threat. 

The behavioral output variable, military action, 
lies on a continuum going from complete 
passivism on the one hand to nuclear attack on 
the other. Military operations begin at the zero 
point and build to nuclear attack at the extreme. 
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Putting all the foregoing assumptions and 
definitions together we arrive ·at the cusp 
geometry of Figure 6 for characterizing the crisis 
situation. 

FIGURE 6 

Since the literature16 on cns1s management 
indicates that the jump from a non-crisis mode to 
crisis is distinct from the jump from crisis mode 
to non-crisis, we employ the so-called "delay" 
convention for interpretation of the model. 

The geometry of Figure 6 strongly suggests 
that when the system is not already involved in 
military action, it will not choose to engage in 
such action until the threat is extremely high. But 
if military action is already being taken, the 
system will continue such action until the threat 
is fairly low (e.g. occupation forces). The actual 
levels of where the threat is perceived to be high 
or low can only be determined by empirical 
means. 

The divergence in rnoving from military action 
to non-action becomes larger as decision time 
becomes shorter. This implies that when decision 
time is short, the decision to initiate hostilities 
may be less routine than the cessation of military 
behavior. 

A very interesting extension of the above 
model is reported in Ref. 17, where, in addition 
to the variables of the cusp model, an additional 

behavior (output) variable termed "operational 
preparedness" is introduced, along with a third 
input parameter "degree of uncertainty". The 
uncertainty in a situation is a replacement for the 
variable "surprise" in Hermann's crisis cube, and 
is justified on the grounds that if one defines a 
crisis situation only in terms of events with 
surprises, a great deal of important events and 
situations are eliminated which have the potential 
of being described as crises. The original output 
variable military activity acts as a measure of the 
influence of the system on its external 
environment. On the other hand, the new output 
operating procedures act as a measure of change 
in the internal environment of the system to meet 
the perceived threat. 

Accepting the above variables as those which 
offer promise in describing crisis and crisis 
situations, their interrelationship is described by 
the elliptic umbilic catastrophe, having 2 
behavioral outputs (military action and 
operational preparedness) and 3 inputs (perceived 
threat, decision time and degree of uncertainty). 
A detailed discussion of the implications of this 
model is given in Ref. 17 and will not be repeated 
here. Let us just sketch the bifurcation set B in 
parameter space of this model (see Figure 7). 

FIGURE 7 

To enter B is to create potential crises, while to 
leave B is to create a shift in behavior space, i.e. 
a crisis. Note, however, that the above model 
distinguishes between a crisis and a crisis 
situation. A crisis is an instantaneous change in 
behavior, i.e. a discontinuity in behavior. A crisis 
situation places the system in a state of "alert". 
Basically, any point in B corresponds to a crisis 
situation, while crossing the boundary of B may 
bring on the crisis. 

Before closing this example, it is worthwhile to 
point out that the ideas sketched above apply in 
any crisis management situation, not just in the 
military context we have chosen. By replacing 
our output variable "military action", with 
another "action" variable, the formalism of the 
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above model goes over for other crisis situations 
such as business management, psychological 
traumas or epidemic disease control. 

Now let us turn attention to another type of 
international conflict which can be analyzed 
using the topological tools of q-analysis. Consider 
the long-standing Arab-Israeli dispute over 
territory in the Middle East. At the most basic 
level, this dispute can be viewed as a relationship 
between the countries involved (i.e. the Arab 
nations, Israel and the PLO) and the various 
issues (e.g. Israeli occupation of the West Bank, 
free access to Jerusalem, return of the Golan 
Heights, etc.). Thus, the basic sets X and Y for 
our q-analysis will be taken to be 

where 

x 1 = autonomous Palestianian state in the 
West Bank and Gaza, 

x 2 = return of the West Bank and Gaza to 
Arab rule, 

x 3 = Israeli military outposts along the Jordan 
River, 

x4 = Israel retains East Jerusalem. 

x 5 = free access to all religious centers, 

x 6 = return of Sinai to Egypt, 

x 7 = dismantle Israeli Sinai settlements, 

x8 = return of Golan Heights to Syria, 

x 9 = Israeli military outposts on Golan 
Heights, 

x 10 = Arab countries grant citizenship to 
Palestinians choosing to remain within 
their borders. 

The set of participants is 

Y={y 1,y2,.-·,YG}, 

is 

= {Israel, Egypt, Palestinians, 
Jordan, Syria, Saudi Arabia}. 

The relation Ac Y x X which we shall employ 

I.I,. Y1) E i.<->participant y1 is neutral or favorable 
toward goal xj. 

The incidence matrix for A is 

A X1 X2 X3 X4 X5 x6 X7 Xg X9 X10 

Yi 0 !. 1 0 0 1 

Yi 1 0 0 

YJ 0 0 1 1 

Y4 0 0 1 0 

Ys 0 0 0 0 

Y6 0 

Examination of the complex Ky(X; A) shows 
that the most likely negotiating partner for Israel 
is Saudi Arabia, which is neutral or favorable on 
all issues except one. However, both Egypt and 
the Palestinians are nearly as likely candidates 
since they are simplices of dimension only one 
less than Saudi Arabia. As the Camp David talks 
demonstrated, Egypt is indeed a favored 
negotiating partner due also to psychological and 
other factors not incorporated into the above 
relation },. 

Focusing upon goals and issues, we find the 
high-dimensional objects in K x( Y; A*) being x 2 

=return of the West Bank and Gaza to Arab 
rule, x 5 =free access to religious centers and x 3 
=return of the Sinai to Egypt. These goals are 
viewed as neutral or favorable by all 6 
participants. Therefore, they provide a good basis 
for a negotiated settlement of the conflict. This 
observation has been borne out by the Camp 
David talks, as well as by subsequent 
developments. 

In addition to the above relation A, three other 
cases were considered in Ref. 18: favorable only, 
unfavorable only and neutral only. The results of 
these studies confirmed that (!) Israel is highly 
disconnected from the other parties in the 
dispute, (2) Saudi Arabia is the most moderate of 
the Arab states, (3) Syria is by far the most rigid 
and inflexible and (4) the single issue which tends 
to bring all the parties together is free access to 
all religious centers. 

6 ELECTRIC POWER SYSTEMS 

As an interesting example of a physical process 
for which the dynamical equations are know11, we 
consider the behavior of a collection of 
generators forming an electric power supply 
network. For a network with n generators and 
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zero transfer conductance, the equations as 
developed in Ref. 19 are 

x [sinot-sinoij], 

i=l,2, . .. , n. 

Here 

wi =angular speed of rotor i, 

o, =electrical torque angle of rotor i, 

M,=angular momentum of rotor i, 

d, =damping factor for rotor i, 

E, =voltage of generator i, 

Bij =short circuit admittance between 
generators i and j , 

oij=o,-oj, 

"0 =the stable steady-state value of oij, 

Out interest is in studying the behavior of the 
equilibrium values of w, and o, as a function of 
the parameters M., E,, B,i, and d,. 

If we define aij=d,-di, bij=E,EiB'i' then it 
can be shown that the function 

n - 1 n 

V(wij,.5,)= L L [1 /2M,Mkw?k 
i= l k=i+ 1 

n n - I n 

- L L L M,bjkcosoik+K, 
i = tj=t k = j+l 

j-=ti k::Fi 

is a Lyapunov function for the above dynamics. 
We may now use the function V as our basic 
potential function and investigate the possibility 
of representing V by a polynomial canonical form 
in a neighborhood of an equilibrium. 

To illustrate the catastrophe theory approach 
with a minimum of notational complexities, 
consider the simple case of n = 2 generators. In 

this case, we have only 2 basic variables w1 2 = x 1, 

012 =x 2 . The function V then becomes 

= 1/2axi-f3x2 -y cos x 2 + K. 

Since addition of the constant K to V does not 
affect our problem, we set K = 0. Upon 
computing grad V, we find the critical points of V 
are 

Computing the 4-jet of V at the critical point 
yields 

+ Jy2 -{32] + l /2[axf-Jy2 -{32 xD 

f3 3 4 
~ ~{32X2 + 3! +.._n -p 41 · 

Again we drop the constant term and examine 

Here we see that the function V is 2-determinate 
with codim V=O if af.O and yf. ±/3. The 
condition on a is necessary for the problem to 
make sense, so the only interesting possibility for 
a degeneracy in V occurs when y = {3. If y i= {3, 
then V is equivalent to a Morse function in a 
neighborhood of its critical point and can be 
replaced by its 2-jet 

a simple Morse saddle. So, let us assume that y 
= {3. 

The function V now assumes the form 
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Computing l~x, and V'.x , we have 

Thus, no term of the type {cos x 2 } can be 
generated by v,,, and V'.x,. All other smooth 
terms can be generated and we can easily find 
that the Hessian of V has corank 1. Thus, we are 
in the case r= 1, c = 1 of Table I, which is the so­
called "fold" catastrophe. We may identify the 
single essential variable with x 2 , as is seen by 
examination of the jet 14 V when y =fl. So, a 
universal unfolding of the po tential function V in 
the cr itical case is 

where t is the unfolding parameter. 
Summarizing the above results, we conclude 

that when y i= fl the potential V is equivalent to a 
simple Morse saddle, while in the critical case 
when y = fl2 V is right-equivalent to the cubic 
potential V. Only in the second case can we 
expect to find an abrupt change in the stability 
beh.avior of the power system as _parameters are 
vaned. In the canonical structure V, the unfolding 
parameter t depends upon the physical 
parameters 11., fl, y, and a change in the system 
stability behavior will occur when t passes thru 
the value 0. We can see the structure more 
clearly if we set y=fl+ e and consider J 3 V. We 
obtain 

Neglecting the quadratic term in x 1, this is an 
unfolding of the functio~ x~ and can be brought 
mto the standard form V by a simple coordinate 
change. The change will then yield t as a function 
of fl and y. 

Adopting a more macroscopic view of the 
power network, we can represent the system 
schematically as in Figure 8. The above diagram 
makes it clear that the transmission network 
which consists of passive elements, is a relatio~ 
between the set of n generators and the set of m 
loads. Thus, we can apply the q-analysis language 
to describe various aspects of the connecfr;e 
structure of the network. 

n Generators 

Transmission 

network 

m Loads 

1 
t---, 
I I 
I 1 

-+-~-' I 

~--J 
I 
I 

I I 
I I 
----------------------~ 

FIGURE 8 

In the power system context, it is useful to 
think of the relation between generators and 
loads as a weighted relation, with the entries of 
the incidence matrix A of the relation defined as 

Aij= the fraction of the power requirement of 
load j which is supplied by generator i, i 
= 1,2, . . . ,n; }= 1,2, ... ,m. 

For scaling convenience, we shall multiply each 
Aij by 100 in order to work only with integers. 

To illustrate the use of q-analysis, let us 
consider a network consisting of n = 5 generators 
and m = 6 loads with the weighted incidence 
matrix A 

). X1 

Yi 30 
y Y2 10 

(generators) YJ 40 

Y4 0 

Ys 20 

x 
(loads) 

X2 X3 X4 

20 10 10 
30 0 20 
50 40 20 
0 20 10 
0 30 40 

X5 x6 

30 20 
0 20 
0 10 

60 0 
10 50 

In order to investigate the connective structure of 
this distribution network, we take various views 
of the relation by "slicing" A at different levels. 

~or instance, let us slice at the lowest level 1%, 
which consists of including any generator which 
supplies any amount of power to any load i~ our 
induced binary relation µ. The relation µ is given 
by a binary incidence matrix U as follows: 

[U] ={l, if A,i>O 
'
1 0, otherwise. 
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Thus, at the 1 % level we have 

µ X1 Xz X3 X4 X5 x6 

y, I I 

Yz 0 0 

U(1 %)=y3 1 0 1 

Y4 0 0 0 

Ys 0 

The complex Kr(X; µ) has the structure vector 

while the conjugates complex Kx(Y;µ*) has the 
structure vector 

Q*(l%)=(~111~} 
So, we see that both the generators and the loads 
are well-connected insofar as the supply and 
demand of some power is concerned. This fact is 
also seen if we calculate the eccentricities of the 
generators and the loads. The only elements 
having nonzero eccentricities are the generator y1 
with ecc y 1 = 1/5 and the load x4 with ecc x4 

=1 /4. 
Now we slice at a much higher level and 

consider only those connections which provide at 
least 20% of the total power requirement of a 
load. In this case, the incidence matrix U is 

µ x, Xz X3 X4 X5 x6 

y, 1 0 0 I 

Yz 0 I 0 1 0 

U(20%)=y3 1 1 I 0 0 

Y4 0 0 0 1 0 

Ys · 0 0 

In this case, the relevant structure vectors turn 
out to be 

Q(20%)=G31~} 

Q*(20%)=G2~} 

So, we see that at the 20% supply rate both the 
complexes of generators connected by loads and 
loads connected by generators fragment into 
disconnected pieces at the higher-dimensional 
levels. This means, for example, that any kind of 
load-sharing involving 20% or more of a load 
among 2 or more generators is impossible due to 
the connective structure of the network. It is also 
of some interest to observe the integration of 
individual generators into the complex K r(X; µ). 
The eccentricities at the 20% level are 

eccy1 =1, eccy2 = 1/2, eccy3 = 1/ 3, 

eccy4 =0, eccy5 =1. 

Thus, y5 which was perfectly well integrated into 
the network at the I% level, is now quite a 
conspicuous element at the 20% level. This 
indicates that y5 is a much more central element 
in the overall power system than, say, y4 . 

In the conjugate complex, we have 

eccx 5 =1 , eccx1=1/2, i=l , 2,3,4,6. 

Thus, we see that load x 5 , with its heavy 
dependence upon generator y4 , stands out at the 
20% level more than any of the other loads. This 
suggests that a surge in demand in load area x 5 
is likely to cause more strain on the network 
than the same surge in other load areas. 

The preceding ideas can be extended to a 
dynamical context by introducing a pattern on 
the complexes as was indicated in our earlier 
examples. For instance, a typical pattern on 
Kr(X; ).) would be the amount of power 
generated at each generator. The connectivity 
structure just presented would then enable us to 
study the possibility of redistributing the power 
from a given generator to other loads in the 
event of a disruption in some part of the system. 
Analogously, a pattern on the conjugate complex 
involving the demand at each load would provide 
us with the basis for investigation of how to 
reallocate power when surges in demand occur. 

7 RESILIENCE, TIME AND SURPRISE 

Lurking just below the surface in much of the 
preceding discussion and examples is the idea 
that in many social, as well as natural systems 
some seemingly small unknown, or even 
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unknowable disturbances will occur and cause 
the system to enter into a state of structural 
and/or dynamical collapse. Indeed, part of the 
raison d'etre for the development of catastrophe 
theory was to provide a mathematical foundation 
for speaking of such behavioral discontinuities. It 
is evident that the need for such a theory of 
systemic stability is greater now than ever before, 
as mankind faces an ever-increasing sense of 
vulnerability to risks, uncertainties and the 
unknown. The Three-Mile · Island and Love 
Canal incidents represent only the tip of the 
iceberg of potential disasters that lie in wait for 
society if we are unable to provide a design and 
management methodology that enables a system 
to not only persist and respond to the unknown, 
but to actually benefit from it. 

It has been argued elsewhere,20 that a 
comprehensive theory of system "resilience" must 
include predictive, regulative and adaptive 
components. Based upon a variety of case studies 
involving forest pests, fisheries, forest-fire systems, 
human disease and savannah ecosystems, it was 
concluded in Ref. 20 that "all management 
policies succeeded in the short term; all failed in 
the longer term and produced a crisis; all owed 
the failure to a successful effort to reduce 
variability; and some adapted successfully to the 
failure while others did not." Furthermore, in 
assessing the ingredients needed to avoid the 
types of crises mentioned above, 

" ... the key questions are what are the sources 
of surprise, which ones are most difficult to deal 
with, how do people, and institutions interpret 
and respond to surprise, and how can we design 
and manage failure and surprise adaptively? .... 
Hence, resilience becomes the capability to adapt 
to surprise because of past experience of 
instabilities .... " 

Thus, we see a pressing need for a systematic 
theory of surprises, warning us when our 
conceptions of reality fail to match the real 
world. When couched in these terms, it is 
reasonably clear that such a theory is far 
removed from traditional arguments in 
probability theory and statistics. While a 
comprehensive theory of surprises is far from a 
reality, at the present, it is our contention that 
many of the necessary components can be 
expressed through the catastrophe and q-analysis 
languages we have employed above. 

Let us begin by consideration of the qualitative 
features of a system which "surprise theory" must 
capture. 

A. Bifurcation- by definition, surprise occurs 
when reality and our conception of reality part 
company. In effect, this means that our model of 
a system and the "real" model bifurcate from 
each other. To speak meaningfully of such a 
bifurcation, we must develop a mathematical 
theory which enables us to say when one model 
bifurcates from another and, when this happens, 
to give a measure of the magnitude of the 
bifurcation. It will be noted below that the type 
of bifurcation (discontinuities) seen in catastrophe 
theory, are only a special case of this more 
general bifurcation of models. 

B. Qualitative Time- no theory of surprise can 
avoid addressing the observed fact that different 
events in a system occur on widely-varying time­
scales and, as a consequence, time and rates of 
change are central factors in the understanding 
and design of resilient systems. In fact , we shall 
go further and argue that the classical Newtonian 
view of time expressed in the Principia as: 
"Absolute, true and mathematical time, of itself, 
and by its own nature, flows uniformly on, 
without regard to anything external," is woefully 
inadequate for capturing the notion of duration 
between events outside the realm of classical 
physics. Our contention will be that the 
dimensional quality of events (as expressed 
through q-analysis) has temporal significance and 
must be taken into account when speaking of the 
occurrence or non-occurrence of those events. 

Here again we see that classical probabilistic 
arguments, having their basis in the absolutism of 
Newtonian time, cannot possibly capture the 
structural difference between the natural times 
associated with high- and low-dimensional events. 
The qualitative structure of time given below also 
allows us to speak precisely about graded rates of 
change of variables, taking explicit account of 
their dimensional levels. Such a distinction 
provides a firm footing for the somewhat vague 
"fast-slow" distinction often seen in elementary 
applications of catastrophe theory, especially in 
the behavioral sciences. 

C. Adaptation and Evolution- in traditional 
engineering design and optimization systems are 
developed which are unforgiving of error. Success 
is measured by the reduction of variability of 
important quantities, usually by some type of 
error-controlled feedback mechanism. There are 
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two basic problems associated with such an 
approach: (1) the underlying system is not static 
and often evolves into an unexpected structure 
for which the regulation scheme is inappropriate, 
and (2) the concept of error-controlled regulation 
means that if there is no error, there is no 
regulation, i.e. if there is no variation in the state 
variables, then the controller become inactive and 
may become incapable of responding to an 
unexpected change in the operating environment. 
What is needed is a control policy that is more 
tolerant of error and provides for the continued 
exploration of alternative actions and objectives 
based upon a learning process stimulated by 
induced variation in the system. In short, we need 
an adaptive control policy. 

Since prediction, regulation and adapative 
control have been extensively developed in the 
engineering and system theory literature for a 
number of years we shall say no more about 
these matters here, but focus the balance of our 
attention upon some system-theoretic ideas which 
appear relevant to developing the theories of 
system bifurcation and time need to formalize 
our concept of surprise. 

Let Q represent a collection of admissible input 
functions (decisions) to our system and let 
f: n ..... r be an input/output map with r the set 
of output functions. Thus, f is what is termed an 
external description of the system. We can 
introduce an equivalence relation R1 into 0. by 
defining (w 1, w 2) ER f if and only if f (w1) = f (w2). 

The input/output description f gives rise to the 
set of equivalence classes of inputs O./R1, which is 
termed the state set X of the system. Thus, the 
states are elements of the form [w] denoting the 
class of all inputs giving rise to the same output 
as w. Let us assume that the set r is a metric 
space so that we may induce a metric onto X as 
follows: ll [w 1] , [w2Jllx=llf(w1) - f(w 2)llr· Under 
this metric, there is a homeomorphism between 
X and the set of values (outputs) of f, i.e. the 
values of f r,arametrize the states X. Through 
the metric II · !Ix we will then say that two states 
are "close" if and only if their corresponding f 
values are close. 

We can make exactly the same arguments if we 
have a collection of descriptions F={f1,f2 , • • • ,f.} 
of the system at our disposal. We generate an 
equivalence relation by (w 1, w2) E RF if and only if 
J.(w1) = J.(w2) for each i = 1, 2, . . . , n. We then 
parametrize the quotient set Q/RF and impose a 
metric on this space which shows that two states 

[w 1] and [w2] are close if and only if J.(w 1) and 
f.(w 2) are close for each i = 1, 2, ... , 11. 

What is important to recognize is that any set 
of descriptions F gives rise to a particular way of 
characterizing the system and captures some 
aspect of the reality of the system. We shall be 
concerned with the way in which alternate 
descriptions can be compared with each other. 

In Thom's view of catastrophe theory, ideas of 
the above type are used to discuss organic form. 
He considers a set E of "geometric objects" 
parametrized by a manifold S through a mapping 
71: E-+S. Here, E corresponds to our set O./R ( 
= X) and the parameter set S corresponds to the 
space of values of the maps f E F. Thom then 
says that a point a ES is generic if, for all a' close 
to a, a' has "the same form" as a. The set of 
generic points is clearly open in S and the 
complement of this open set is the closed set of 
bifurcation points. 

In Thom's geometric view, we are clearly in the 
situation of comparing two different descriptions 
of the elements in E. On the one hand, we have a 
description arising from the parametrization. On 
the other hand, we have a tacit description 
summed up in the use of the words "same form". 
The determination of the "form" of an object in 
E can only come about from an alternate 
description of those objects, one which is 
independent of the description arising from the 
parametrization. 

Example 1 (The Cusp Catastrophe) Here we 
take E =set of all curves representing cubic 
equations in one variable. In appropriate 
coordinates we can write 

E = {x3 +ax+ b: a, b real numbers} . 

Thus, we can regard E as being parametrized by 
the set 

S = {(a, b): a, b real}= R2
, 

and 71:£-+S is a map from E-+R 2
• On the other 

hand, these curves may also be described by their 
root structure relative to the x-axis. They may 
have a single real root, repeated roots or 3 
distinct real roots. We define a mapping <P from 
the set of all cubic curves as 

{ 

0, if C has one real root _ 

</J(C)= 1, if Chas a repeated real root 

2, if C has three distinct real roots. 
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Then, according to the </J description, two cubic 
curves C 1 and C 2 are "close" if </J(Ctl=</J(C2) . 

If we use </J to define the intrinsic "topology" 
on E and look at the generic points of R2 

induced by ri, we find that these comprise all 
(a,b) for which 4a3 +27b2 f0, i.e. the bifurcation 
points of the ri description relative to the </J 

description lie on the cusp, which is the 
complement of the generic set. On the other 
hand, if we use ri to define the intrinsic topology, 
we find that each of the three points {O, 1,2} is a 
bifurcation point of the </J description relative to 
the ri description, i.e. a point where two curves 
are no longer "close" in the </J description, while 
remaining "close" in the ri description. Here, of 
course, "close" in a particular description is 
defined in terms of the topology in X associated 
with that description. 

Example 2 (Dynamical Systems) Consider the 
class E of all dynamical systems defined on some 
differentiable manifold M. Suppose that the 
dynamics are given (locally) by a system of 
differential equations 

There are two independent ways in which such a 
system can be described: (1) in terms of the 
functions {f;} and (2) in terms of the asymptotic 
properties of the trajectories determined by the 
differential equations. 

In the first description, two dynamical systems 
"'I:. 1 =(f1,f2, .•• ,f.) and "'I:. 2 =(g1,g2, •. . ,g.) are 
regarded as close if each f; is close to the 
corresponding g, in some appropriate norm in 
function space. Usually, we use the so-called 
Whitney C1-topology, which gives the distance 
between "'I:. 1 and "'I:. 2 as 

n 

p("L 1, °'L 2)=max I 
x i = 1 

On the other hand, in the second type of 
description, "'I:. 1 and "'I:. 2 are close if corresponding 
trajectories in M are close for all t. 

In the usual investigations of structural 
stability, the "intrinsic" topology on E is taken to 
be that which is imposed by the closeness of 
corresponding trajectories. Comparing this 

description with that given by the Whitney 
topology, the resulting bifurcation set (i.e. the 
points which are not close in the Whitney 
topology but are close in the intrinsic topology) 
lies in a space of parameters determined by the 
functions {J;} which map M-> R 1 . On the other 
hand, if we choose the Whitney topology as the 
intrinsic one, then the bifurcation set lies in a set 
of parameters determined by mappings of R 1 -> M 
(representing the corresponding trajectories). 

Now let us return to the situation in which the 
system "'I:. is described by a map f:D.->r. Then 
any other description g, which is a continuous 
function of f induces the same metric on X ( 
=D./R1) that f does, i.e. if E, E' eX are close 
under f, then they are also close under g. In this 
case, the description of "'I:. provided by g is 
redundant to that provided by f, since every point 
of r is a generic point for either description with 
respect to the topology induced by the other. In 
short, we obtain no new information about "'I:. by 
supplementing the f-description with the g­
description. 

The point of using an alternate description is 
to gain new information about "'I:.. Thus, another 
criterion for the equivalence of two descriptions 
f: X ->S, g: X ->S, where S, S are arbitrary 
parameter sets, is that the bifurcation sets in S, S 
induced by the pairs (g,f) and (f,g), respectively, 
shall be empty. In general, given the descriptions 
f and g, the generic points of S and S represent 
elements of X for which the two descriptions 
coincide. On the other hand, on the bifurcation 
points, the two descriptions differ and we gain 
information about the corresponding elements of 
X by employing both descriptions. On the 
generic points of either descriptions with respect 
to the other, the properties of the second 
description are hidden; they reveal themselves 
only on the bifurcation points. 

The question arises as to how we should go 
about incorporating both descriptions f and g 
into a new description which improves upon 
them both. The obvious way is to take their 
cartesian product. We form the product S x Sand 
describe a given element [ w] EX by the pair 
[f(w),g(w)]. We give S x S the product topology, 
so that two elements [w], [w'] are close if and 
only if f(w) is close to f(w') in S and 
simultaneously g(w) is close to g(w') in S. We can 
now state the following abstract characterization 
of when the description f improves upon the 
description g: 
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IMPROVEM ENT THEOREM f:X->S is an 
improvement upon g: X ->S if and only if every 
point of S is generic relative to the topology 
imposed on X by g, while the bifurcation set in S 
arising from the topology imposed on X by f is 
not empty. 

Let us briefly discuss the meaning of the above 
results for Example 1. There we had two 
descriptions of the family of cubic curves in a 
single variable: (1) via the coefficients (a, b) and (2) 
via the numbers 0, l, 2 representing the root 
structure of the curve. Thus, a combination of 
these two descriptions yields the cartesian 
product SxS=R 2 x{O,l , 2} and a description 
6: X ->S x S. Thus, ·in the 6-description, we 
associate with every cubic curve C the triple 
(a, b, z), where (a, b) are the coefficients of C and z 
represents the root structure (Remark: not every 
such triple corresponds to a cubic curve). In the 
6-description, two curves C and C' are close if 
and only if (a, b) and (a', b') are close in R2 and 
simultaneously z=z'. Thus, in the new 6-
description, the cubic curves corresponding to 
coefficients lying on the bifurcation set (i.e. on the 
cusp 4a3 +27b2 =0) can be close only to each 

' other, and not to any cubics determined by 
coefficients off the bifurcation set. Thus, we see 
by the Improvement Theorem that the description 
6 is an improvement over both the descriptions Y/ 
and </J. 

Similar remarks apply to Example 2 making 
use of the two alternate descriptions given for a 
dynamical system :E. 
, Returning now to our discussion of "surprises'', 

we noted earlier that a surprise occurs when our 
conceptions of reality fail to match reality. 
Interpreting a conception of reality as one 
description f (or model) for reality, while 
thinking of reality itself as given by another 
description g, it is reasonably clear that a 
surprise occurs when the g-description bifurcates 
from the !-description. In other words, when two 
states are close in our conception of a situation, 
but fail to remain close in the real situation, then 
we may interpret this bifurcation as a surprise. 

Operationally, we never really know the 
description of our situation which corresponds to 
reality. All we have in practice are two or more 
alternative descriptions (models) which we can 
compare with each other. Thus, we must choose 
one model as the "base" model, and interpret 
bifurcations of the other models from the base as 

the surprises. One systematic way of choosing the 
base model is to start with a description f and 
then "refine" f to a model g so that the relation 
R9 refines R1, i.e. each !-equivalence class is a 
union of g-equivalence classes of inputs. In this 
way, two states which are close in g must be 
close in f, but not conversely. Thus, the model g 
may exhibit surprises relative to the description 
provided by f More details about all of the 
above procedures, as well as a discussion of 
related issues may be found in Ref. 21. 

Any viable theory of surprise must contain 
some component for dealing with the observed 
qualitative nature of time. The intuitively felt 
notions of "time flies" or "time drags" must 
manifest themselves on the change of pattern 
associated with the dynamics on the basic 
geometric structure representing our system. We 
find it convenient to represent these various types 
of time through the medium of q-analysis in the 
following manner. 

Consider the classical Newtonian view of time, 
which can be represented by the diagram 

past+-now-> future 

T ""'To 
~•~-.t~-.t~-t___!_e 

- I 0 2 3 

where the numbers represent the measurement of 
specific moments of time. The lines connecting up 
the vertices of time measurement represent our 
sense of time duration. This picture represents a 
very elementary sort of simplicial complex, 
having an infinite set of vertices with the 
numbers attributed to each vertex forming a 
pattern r 0 on the vertices, i.e. the 0-simplices. The 
numbers which we assign to the edges joining the 
vertices form another pattern r 1

, referred to as 
the time intervals between successive moments of 
measurement. Thus, in the Newtonian view the 
time pattern is the graded pattern 

The representation above makes it clear why 
we refer to the Newtonian view of time as a 
linear concept associated with the simplicial 
complex K consisting of a set of 1-sirnplices 
which are 0-connected. When the Newtonian 
time-axis is used to represent a set of observed 
events, the idea behind it is to somehow produce 
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a kind of "clock'', whose time moments (the 
vertices) can be put into a 1-1 correspondence 
with the set of events. The pattern r 0 describes 
the "now" events, while r 1 describes the interval 
pattern. 

In the relativity theory of Einstein, the classical 
Newtonian pattern above was replaced by a new 
and different one. The new structure was a 
consequence of the physical role played by the 
light signal and had the structure 

Thus, now the time moments are represented by 
3-simplices, while the time intervals are 
corresponding 4-simplices (see Figure 9). 

FIGURE 9 

So, in the relativistic view of physics there will be 
I-simplex intervals as well as 2- and 3-simplex 
intervals between appropriate "now" moments. A 
more detailed discussion of these points can be 
found in Ref. 22. 

The foregoing considerations suggest that we 
introduce the following structural definition of 
time. 

DEFINITION On any given simplicial complex K, 
time is a specific type of graded pattern satisfying 
the following conditions: 

i) time imposes a total ordering of all p­
simplices in K (so that we can speak of one p­
event preceding another); 

ii) the time-pattern is of the form 

r= L, (rP®rp +1). 
p~O 

The pattern rP describing the now-traffic of p­
events on K can be understood as a simple 0/ 1 
function on the p-simplices of K. The location of 
the single non-zero value identifies the particular 
p-event which is the now-moment. Then the 
"next p-event" in K is experienced by a change in 
this pattern via brP, so that the 1-value is found 
on a different p-simplex. This movement of values 
throughout K clearly involves the topology 
(connectivity) of K , since one p-event cannot 
follow another unless there is an available (p+ !)­
interval connecting the two. Thus, brP is a pjorce 
in the structure of events representing our sense 
of moving time. 

The commonly accepted assumption of 
Western culture is that when we use the word 
"time" we are referring to the Newtonian time 
pattern r = r 0 ®r 1

. This convention is certainly 
useful in providing a common frame of reference, 
yet it disguises the essential nature of our 
experience of time. Thus, suppose that an 
individual experiences a time traffic of dimension 
p (p > 0). Then he finds it culturally necessary to 
replace this by the Newtonian r as follows: 

(experienced time) (Newtonian time). 

This means that the individual experiences a (p 
+!)-force of repulsion as far as the interval 
pattern is concerned, having to force his (p+ !)­
perception of the time interval down into the !­
dimensional interval of the Newtonian pattern. 
The experience of this force is expressed by such 
phrases as "time drags" or "time flies", indicating 
the fact that ,v+ 1 and r 1 are out of step. 

Since a "p-event" in K will generally 
correspond to the recognition of a p-simplex in 
K, let us assume, for the moment, that there is a 
1-1 correspondence between the 1-simplices of 
K and the Newtonian reference frame. Then the 
time-intervals for the gap between one p-event 
and another will be proportional to the number 
(p+ l)(p+2)/ 2 since this is the number of edges in 
the least connection between two p-simplices. 
Here we have assumed that a p-event occurs by 
way of the edges which make up the (p + ! ) event 
which bridges the current and previous p-events. 
As an example, if the r 1 unit (the Newtonian 
time) is I day, then a 6-event would require (6 
+ 2)(6 + 1)/ 2 = 28 days to "arrive". Similarly, a 
p = 25 event, would require (27)(26)/ 2 = 351 days, 
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almost a full year, i.e. the interval between 
successive 25-events is 351 days. 

We have assumed above that recognition of a 
p-event occurs by way of the edges which connect 
it to another (the "next") p-event. If, on the other 
hand, we assume the worst case, that we cannot 
recognize a p-event until all of its faces have been 
separately recognized, we would have to 
recognize all intervals between the successive 
0, I, 2, ... , p events. This number is the sum 

pf (p+2)(t + l)=(p+2)(p + 1)2p - l. 

1 ~ 1 t+ I 2 

Thus, now if r 1 =1 day, we have that a p=5-
event would take 672 days ~ 2 years to arrive. 
Although we shall not pursue it here, an 
argument can be made for associating this 
"worst" case with the question of moving up a 
hierarchy from level N to level N + I, since a p­
event at (N + I) will generally correspond to a q­
event at level N, with q»p. 

At a fixed N-level structure, the total range of 
time-interval patterns will be contained in the 
sequence of numbers I, 3, 6, 10, 15, 21, ... derived 
from the values of (p+ l)(p+2)/2. These numbers 
represent the apparent intervals of conventional 
time (r 1

) required for the recognition of 0-events, 
I-events, etc. When we speak of the future we 
conventionally refer to the sequence of 0-events 
in the Newtonian structure r=r 0 EBr 1

. But, in our 
structural view of time we can see that many p­
events at the now-point cannot manifest 
themselves until much later on the Newtonian 
scale. Thus, there is an obvious sense in which 
the "future" events are already contained in the 
"present" events. But an ability to be sensitive to 
higher order p-times by seeing successive p-events 
would be manifest as insight into this future. 

We note in closing that the multidimensional 
time theory outlined above can be employed in 
our bifurcation-based theory of surprise in at 
least two different ways. First of all, we can use 
the time theory to assign definite meaning to the 
problem variables as "fast", "slow", 
"intermediate", etc. and regard their variation as 
a manifestation of certain p-events. Since we 
already know where the bifurcation surfaces are 
in the parameter space, the time theory enables 
us to predict when these surfaces will be crossed, 
causing one description to bifurcate from 
another. 

An alternative route would be to formulate the 
basic system descriptions in simplicial complex 
terms. The dynamics are then represented as a 
change of pattern 

as already discussed. Now we could introduce the 
multidimensional time factor by attempting to 
extend the classical notion of a differential 
equation by setting 

where f1nP is the change in the p-pattern, f1rP is 
the change in the p-time pattern and {a-~} are the 
p-simplices of the complex K. Here, our task 
would be to develop the appropriate functions hp 
characterizing the corresponding dynamics. 
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