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Abstract

Aggregation of opinions often results in high decision-making accuracy, owing to the collec-

tive intelligence effect. Studies on group decisions have examined the optimum weights for

opinion aggregation to maximise accuracy. In addition to the optimum weights of opinions,

the impact of the correlation among opinions on collective intelligence is a major issue in col-

lective decision-making. We investigated how individuals should weigh the opinions of oth-

ers and their own to maximise their accuracy in sequential decision-making. In our

sequential decision-making model, each person makes a primary choice, observes his/her

predecessors’ opinions, and makes a final choice, which results in the person’s answer cor-

relating with those of others. We developed an algorithm to find casting voters whose pri-

mary choices are determinative of their answers and revealed that decision accuracy is

maximised by considering only the abilities of the preceding casting voters. We also found

that for individuals with heterogeneous abilities, the order of decision-making has a signifi-

cant impact on the correlation between their answers and their accuracies. This could lead

to a counter-intuitive phenomenon whereby, in sequential decision-making, respondents

are, on average, more accurate when less reliable individuals answer earlier and more reli-

able individuals answer later.

Introduction

Individuals often incorporate others’ opinions into their decision-making with the motivation

to improve their decision accuracy [1]. Indeed, extensive studies have revealed the power of

opinion aggregation; majority-rule voting or average of opinions by non-experts, for example,

can have higher accuracy than an expert’s opinion [2, 3]. The phenomenon wherein the aggre-

gation of non-experts’ opinions can outperform that of an expert is called collective intelligence
[4, 5].

Various applications of collective intelligence, including future forecasts [6–8], crowdsourc-

ing [9], risk assessments [10], lie-detection [11], medical diagnose [12, 13], and ensemble

methods (e.g. random forest) in machine learning [14] have been investigated. Empirical
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studies have shown that opinion aggregation accuracy can be maximised by assigning equal

weights to all opinions offered by individuals with similar problem solving abilities. However,

when their abilities vary significantly, the expert rule, wherein only a single or few individuals

with high ability contribute to decision-making, performs better [12, 15].

For a binary-choice problem with one correct and one wrong choice, the law of large num-

bers has mathematically explained the reason behind the higher accuracy of a majority vote

compared to an individual’s decision-making [2, 16–20]. Theoretical studies have also revealed

that the optimum weight to be given to opinions to maximise the majority vote accuracy is

proportional to the log-odds ratio of the individual’s ability [17, 18, 21]. Such optimum

weighted majority rule is equivalent to the expert rule when the individuals’ abilities vary sig-

nificantly and more than half of the weight should be assigned to an individual; this can par-

tially explain the aforementioned empirical findings [12, 15] showing that opinion aggregation

with the same weights on individuals is sometimes inferior to the expert rule. In addition to

assigning weights to opinions, a group decision accuracy is significantly influenced by the cor-

relation between opinions [2, 22–24]. Although opinion correlation frequently occurs in soci-

ety, such a correlation between opinions frequently deteriorates collective intelligence by

reducing the effective number of independent votes [2, 23, 25].

Our interest lies in assigning weights to opinions that can be correlated. Particularly, we

consider the opinion correlation generated by rational individuals attempting to maximise

their decision accuracy by incorporating each other’s opinions. Such a situation can naturally

occur when individuals decide sequentially rather than simultaneously. In most, if not all,

cases, collective decision-making in our society is sequential, where people decide by consider-

ing earlier presented opinions and sometimes share their ideas to the public to also affect oth-

ers who decide later. Previous studies on sequential decision-making have investigated the

probability of an individual choosing an option given social information, which is the (relative)

number of predecessors supporting the option [26–30]. They also examined the extent to

which an individual should consider social information in his/her decision-making to obtain a

high decision accuracy, given the estimated abilities of him/herself and others. The strength of

such reliance on social information is shown to affect not only an individual’s decision accu-

racy but also the frequency of information cascade occurring in a group, where most individu-

als choose the same option under conformity [27, 29, 31]. In these previous studies, however,

the heterogeneity in individuals’ abilities and the correlation between individuals’ answers are

not sufficiently considered. For example, in social information, while some opinions can be

given by experts who decide by themselves, others can be provided by individuals with low

abilities who followed others’ opinions to improve their decision accuracy. The optimum

weights for accuracy maximisation in sequential decision-making considering such a compli-

cated correlation structure between predecessors’ answers have not been investigated

precisely.

In this study, we considered sequential decision-making [29, 31, 32], where individuals’

answers correlated due to the heterogeneity in their abilities and motivation to follow prede-

cessors. The aforementioned weights being proportional to the log-odds ratios of individuals’

abilities are shown to be optimum for independent opinions and are not applicable to corre-

lated opinions. Intuitively, one might think that to properly evaluate and weigh the predeces-

sors’ opinions, one needs to know not only the predecessors’ expressed answers but also the

unobservable decision process that led to their answers. Indeed, humans have the ability to

infer the inner decision process of others, called the Theory of Mind (ToM) [33–37]. By con-

trast, this study showed that no such inference is necessary to optimally weigh the predeces-

sors’ opinions by assuming that one’s predecessors also maximise their accuracy.
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We proposed a simple algorithm for identifying casting voters whose inner primary opin-

ions are directly reflected in their expressed answers. Applying this algorithm to several exam-

ples of sequential decision-making, we found that individuals can maximise their performance

by optimally weighing casting voters in the predecessors. Such optimum decision-making by

individuals can generate opinion correlation between their answers. Accordingly, later

responding individuals in sequential decision-making cannot obtain a significant effect of col-

lective intelligence from their predecessors’ answers, where a similar phenomenon has been

previously pointed out in the study on the maintenance of opinion diversity [38]. We further

showed that the decision order of individuals with heterogeneous credibility significantly

affects the correlation strength among their answers, optimal decision, and accuracy. Our

results indicated that the expression of opinions by experts at the beginning of sequential deci-

sion-making may compromise the accuracy of the later respondents’ answers because such a

decision order would motivate respondents to follow the preceding individuals, thus generat-

ing correlations between answers used by the later respondents in their decision-making and

undermining the collective intelligence effect.

Methods

Model

Sequential decision-making in a group solving a binary-choice problem. In this study,

we considered a binary-choice problem with one correct and one incorrect option; N persons

answer this problem sequentially. All respondents, except the first, can refer to the answers of

earlier respondents, or antecedents, in making their decisions. We call this process sequential
decision-making.

Ability and primary choice of a respondent. The ability of the n-th respondent,

denoted by pn, is defined as the probability of making the correct choice independently. We

call such an independent choice the primary choice. Let us denote the first respondent’s

option in the binary choice as s and the other option not selected as t. The primary choice of

the n-th responder, denoted by Xn, can be either s or t, where Xn = s or Xn = t indicates that

the primary choice is identical or opposite to the first respondent’s answer, respectively. We

assumed that pn is between 0.5 and 1; 0.5 is the worst success probability when the decision is

made by coin-flipping, and 1 is the best probability when the individual always makes the

correct choice. To avoid tie resolving complications, we assumed that the abilities of two dif-

ferent responders differ, even slightly, from each other (i.e. pn 6¼ pm if n 6¼m). For the n-th

individual’s primary choice, the ratio of the probabilities of making a correct choice to an

incorrect choice, pn/(1 − pn), is called the odds ratio. We also assumed that for any pair of dif-

ferent subsets S and T(S 6¼ T) of the set {1, 2, . . ., N} of responders (the numeral represents

the order of decision-making), the product of the odds ratios of individuals belonging to each

set differs from each other, (∏m2S pm/(1 − pm) 6¼ ∏m2T pm/(1 − pm) to simplify later

discussion.

Synthesizing primary choice and antecedents’ answers. All respondents, except the first,

of sequential decision-making observe the answers given by the antecedents, revise their pri-

mary choices by considering the antecedents’ choices, and make their final decisions, which

we call answers. Therefore, the n-th respondent’s answer, denoted by Yn, can be different from

his/her primary choice Xn, and depends on his/her own primary choice and the antecedents’

answers: Yn = Yn|Xn, Yn−1, Yn−2, � � �, Y1. We assumed that each primary choice is not shared

with other individuals, while each answer can be observed by them. Similar to primary choice,

the value of the answer is either s or t(Yn = s or Yn = t) depending on whether the answer is

identical to that of the first respondent.
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Optimal answers maximizing conditional performances. Using these definitions, we

describe the detailed process of sequential decision-making. The first respondent decides and

answers independently, relying only on his/her primary choice (Y1 = X1 = s). Therefore, the

probability of his/her answer being correct equals his/her ability p1. For n� 2, the n-th respon-

dent observes the answer(s) of the antecedent(s). We assumed that the n-th respondent knows

his/her individual and antecedents’ abilities (p1, p2, � � �, pn), antecedents’ answers (Y1, Y2, � � �,

Yn−1), and his/her own primary choice Xn. The respondent then attempts to maximise the cor-

rect option selection probability under these conditions. We call this maximised probability of

a respondent to answer correctly conditional performance and this decision-making method

the optimal behaviour. Although optimum decision-making for group performance maximisa-

tion is interesting, we limit our discussion to the maximisation of individual performance con-

ditional to antecedents’ answers in this study. We assumed that each individual knows that

his/her antecedents behave optimally. We clarify our assumption on the information available

for the n-th respondent to make the hierarchy-based optimal decision similar to that of ToM

[33–35]. The first respondent makes an independent choice. We call such an optimum choice

the level-0 optimum. The second respondent relies on both his/her own primary choice and

the level-0 optimum answer to make his/her optimum choice, which we call a level-1 opti-

mum. This procedure continues recursively. The n-th respondent relies on his/her own pri-

mary choice and n − 1 antecedent optimum answers, i.e., from a level-(n − 2) optimum answer

of the (n − 1)-th respondent to a level-0 optimum answer of the first respondent, to make his/

her optimum decision called a level-(n − 1) optimum. Individual respondents do not need to

know such a hierarchical information structure when making their decisions (they only need

to know the sequence of answers taken by the antecedents and their presumed or known abili-

ties); however, this helps to clarify the knowledge structure assumed in this study.

Optimal behaviour can be regarded as a weighted majority vote in the following sense:

answering an option that leads to a greater conditional performance can be realised when suf-

ficiently high weights are assigned to individuals (antecedents and respondent) who choose

the option based on the antecedents’ given answers and abilities, as shown in the Results

section.

Mean performance. As individuals’ primary choices are made randomly according to

their abilities, the answers of antecedents who behave optimally also form a random sequence

in each sequential decision-making process. With a fixed set of abilities and the answering

orders of antecedents, we defined the mean performance of a respondent as the mean of the

conditional performance over possible antecedents’ answers and his/her primary choice. The

nature of sequential decision-making can be characterised by the mean performance of each

respondent, i.e., the expectation of the correct answer from the respondent. We illustrated this

through the sequential decision-making of three individuals and individuals with the same

abilities (the section ‘Specific cases’).

Optimum weights in simultaneous decision-making

Weighted majority vote. To discuss the implications of optimal behaviour in sequential

decision-making, we need to briefly summarise the previous results of optimally weighted

majority vote for maximising simultaneous decision-making accuracy [16–18]. In the simulta-

neous decision-making of a binary choice, individuals vote their primary choices indepen-

dently, which are then aggregated with their weights. More precisely, the outcome of the

simultaneous decision-making of N individuals is to adopt the option that receives the highest

weighted vote. We denote by S and T the set of indices of individuals who choose the alterna-

tives s and t, respectively, where S [ T = {1, 2, � � �, N}.
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Likelihood of opinion distribution. We denoted the weight assigned to an individual n
by wn and normalised it as

PN
n¼1

wn ¼ 1. The aggregated votes to s and t are W(S) = ∑n2S wn

and W(T) = ∑n2T wn, respectively. If s is correct, the probability that this opinion distribution

is obtained is L(S) = P(S)Q(T), where P(S) = ∏n2S pn and Q(T) = ∏n2T (1 − pn) are the probabil-

ities that all answers of individuals in group S are correct and in group T are incorrect, respec-

tively. pn denotes the ability of the n-th individual (n = 1, 2, � � �, N). L(S) is also regarded as the

likelihood that s is correct, given the opinion distribution with S and T. Similarly, the probabil-

ity that this opinion distribution is obtained if t is correct, or the likelihood that t is correct

given the opinion distribution, is L(T) = P(T)Q(S).

Optimum weights. Here, we discuss the weight assignment to responders such that the

option that is selected by the weighted majority vote should always have a higher probability of

being correct than the other, under the given vote distribution (sets S and T for options s and t,
respectively) among responders. This is possible as follows [16, 17] (S.1.1 in S1 Text). Suppose

that option s is selected by the weighted majority vote, i.e., W(S) = ∑n2S wn>W(T) = ∑n2T wn.

The probability that the observed distribution of opinions occurs under the abilities p1, � � �, pn
of respondents is Ls = ∏n2S pn∏n2T (1 − pn) if s is correct and Lt = ∏n2S(1 − pn) ∏n2T pn if t is

correct. The option selected by the weighted majority vote has a higher probability of being

correct if Ls> Lt or ∏n2S [pn/(1 − pn)] > ∏n2T [pn/(1 − pn)]. Therefore, the optimum weights

w1, � � �, wn must have following the property:

X

n2S

wn >
X

n2T

wn implies that
Y

n2S

pn
1 � pn

>
Y

n2T

pn
1 � pn

: ð1Þ

A property identical to (1) should be satisfied with the roles reversed between S and T. One

way to realise this property is to assign the weight of each respondent to the logarithmic odds

ratio of his/her credibility, as shown below.

Log-odds ratio as an optimum weight. It is well known that if the abilities vary between

individuals, the log-odds ratios of individual abilities give a set of optimum weights that maxi-

mise the weighted majority vote accuracy [17, 18, 21]. Indeed, we can show that by assigning a

weight to an individual as

wn / r�n ¼ log
pn

1 � pn
;

the above relationship (1) for optimality always holds because the inequality on the right-hand

side of (1) is written as the summation of r�n as

Y

n2S

pn
1 � pn

>
Y

n2T

pn
1 � pn

,
X

n2S

r�n >
X

n2T

r�n:

While r�n provides a simple solution for the efficient majority vote of agents with different abili-

ties, it is not a unique way to weigh agents optimally, as Shapley and Grofman [18] noted, and

is shown in Fig 1.

Although quite useful, these results are applicable only when the respondents make their

decisions simultaneously, where there is no room for the opinions to correlate with each other.

In sequential decision-making, the opinions of respondents are no longer independent, as

each respondent refers to the antecedents’ answers when he/she makes a decision. Therefore,

we need to develop a theory for the optimum behaviour of each respondent in sequential deci-

sion-making that maximises conditional performance, as discussed in the following sections.
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Results

Casting vote

First, let us consider the second respondent’s optimal decision. By definition, the first respon-

dent decided based only on his/her primary choice. The second individual decides using the

first individual’s answer Y1 and his/her primary choice X2, knowing that his/her and the first

individual’s abilities are p2 and p1, respectively. Since the primary choice X2 is independent of

answer Y1, we can apply the optimum weight rule of simultaneous decision-making discussed

in the section ‘Optimum weights in simultaneous decision-making’, to find the optimal behav-

iour of the second individual. If p1 > p2, the second individual should always choose the same

answer as the first individual (s) irrespective of his/her primary choice. By contrast, if p1 < p2,

the second individual should always adopt his/her primary choice, irrespective of the answer

of the first individual (S.1.2 in S1 Text). Particularly, his/her primary choice determines the

majority vote in the binary-choice problem in her inner process of finding an optimum

answer. We call this primary choice casting vote. An important point is that an individual’s

answer is independent of the antecedents’ answers if the individual’s primary choice is the cast-

ing vote.

The third respondent can evaluate the likelihood of each choice being correct from his/her

abilities and the observed answers Y1 and Y2 of the two antecedents. As he/she knows the abili-

ties p1 and p2 of the antecedents and that the second individual behaved optimally, she can

evaluate the probability of observing these answers when Y1 = s is correct, as well as the corre-

sponding probability when alternative t, not taken by the first, is correct, as follows. If p1 < p2,

Y1 and Y2 must be independent of each other, because the primary choice of the second indi-

vidual is the casting vote. Therefore, if the answers of the first and second respondents are the

same (Y1 = Y2 = s), then the likelihood that the answer of the first, Y1 = s, is correct is p1p2,

whereas the likelihood that the answer t is correct is (1 − p1)(1 − p2). However, if Y1 = s and

Y2 = t, the likelihoods of s and t being correct are p1(1 − p2) and (1 − p1)p2, respectively. By

Fig 1. Summary of the region of optimum weights wn for individual n (n = 1, 2, 3) in the simultaneous decision-

making involving three individuals. The largest triangle exhibits the 2-simplex {w = (w1, w2, w3); w1 + w2 + w3 = 1},

where W1, W2, and W3 denote (1,0,0), (0,1,0), and (0,0,1), respectively. Each smaller triangle exhibits the region of

optimum weights when each inequality for r�
1
, r�

2
, and r�

3
holds. For example, when the ability of individual 1 is so high

that r�
1
> r�

2
þ r�

3
is satisfied, the optimum weights should satisfy w1 > 0.5, i.e., w2 + w3 < 0.5, which corresponds to the

upper red triangle, and these weights correspond to the expert rule governed by individual 1.

https://doi.org/10.1371/journal.pone.0282062.g001
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contrast, if p1 > p2, their answers must always be the same (Y1 = Y2 = s) because the second

respondent must follow the first answer; thus, the likelihoods of s and t being correct are p1

and 1 − p1, respectively. p2 does not affect these likelihoods when p1 > p2 because the second

individual adopts the same answer as the first, regardless of his/her primary choice. We can

then inductively show the following theorem, the casting vote theorem, for the probabilities of

observing the antecedents’ answers (the formal proof of which is shown in Section S.2.1 of

S1 Text).

Let Y1, � � �, Yn−1 be the answers and p1, . . ., pn−1 be the abilities of n − 1 antecedents of the

n-th respondent in sequential decision-making (2� n� N) as described in Model section.

Let Sn−1, Tn−1, and Rn−1 be subsets of antecedents who were casting voters and answered s,
casting voters and answered t, and non-casting voters whose primary choices were not casting

votes. By definition, the first respondent, 1, is included in Sn−1. Sets Sn−1, Tn−1, and Rn−1 are

mutually exclusive and jointly cover all respondents from the first to (n − 1)-th respondents:

Sn−1 [ Tn−1 [ Rn−1 = {1, 2, � � �, n − 1}. Each respondent is assumed to be rational in the sense

that he/she chooses her answer to maximise the probability of answering correctly under the

condition shown in Model section.

Theorem. (Casting vote theorem)

1. (Alternative) The optimal behaviour of the n-th individual is either i) to provide his/her pri-

mary choice as the answer regardless of his/her antecedents’ answers or ii) to disregard his/

her own primary choice and answer based only on his/her antecedents’ answers. Particu-

larly, his/her own primary choice is either perfectly adopted or ignored in the optimal deci-

sion, with no partial incorporation of his/her primary choice.

2. (Likelihoods) The probability of observing the given subsets Sn−1 of casting voters who

chose s, Tn−1 of casting voters who chose t, and Rn−1 of non-casting voters is given by

P Sn� 1ð ÞQ Tn� 1ð Þ ¼
Q

m2Sn� 1
pm
Q

m2Tn� 1
1 � pmð Þ when the first respondent answered correctly

(i.e. if s was correct), and Q Sn� 1ð ÞP Tn� 1ð Þ ¼
Q

m2Sn� 1
1 � pmð Þ

Q
m2Tn� 1

pm when t was correct.

Particularly, these probabilities (likelihoods) are solely determined by the abilities of the

casting voters.

An interpretation of the casting vote theorem is that the n-th individual can know and use

the information on the primary choice of the m-th individual (m< n) only when the m-th

individual is a casting voter, i.e., m 2 S [ T; in this case, Ym = Xm always holds.

Optimal behaviour

Now, we describe how the optimum choice of the n-th respondent is made using the casting

vote theorem (see S.1.1 and S.2.1 in S1 Text for detail). The criterion for the optimum choice

differs slightly depending on whether the primary choice is identical to that of the first respon-

dent. Hence, we first consider the case where the primary choice of the n-th respondent is

identical to that of the first respondent s (Xn = s). The likelihood of s and t being correct are P
(Sn−1)Q(Tn−1)pn and Q(Sn−1)P(Tn−1)(1 − pn), respectively, according to the casting vote theo-

rem, given the antecedents’ answers included in either Sn−1, Tn−1 or Rn−1. Therefore, the opti-

mal answer of the n-th respondent is s if the likelihood ratio P(Sn−1)Q(Tn−1)pn/(Q(Sn−1)P(Tn−1)

(1 − pn))> 1, and t otherwise. These conditions can be written using the sum of the log-odds

ratio, r�n ¼ log pn= 1 � pnð Þ½ �, of individual credibility, which plays a key role in simultaneous

decision-making, as discussed in the section ‘Optimum weights in simultaneous decision-

making’. Since the logarithm of the above likelihood ratio can be rewritten as

log P Sn� 1ð ÞQ Tn� 1ð Þpn= Q Sn� 1ð ÞP Tn� 1ð Þ 1 � pnð Þð Þ½ � ¼ r�n þ
P

m2Sn� 1
r�m �

P
m2Tn� 1

r�m, where
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log[P(X)/Q(X)] = 0 if set X is empty, the optimal answer of the n-th respondent when Xn = s is

YnjXn¼s ¼

s; if r�n >
X

m2Tn� 1

r�m �
X

m2Sn� 1

r�m;

t; if r�n <
X

m2Tn� 1

r�m �
X

m2Sn� 1

r�m:

8
>><

>>:

ð2Þ

Similarly, if the primary choice of the n-th respondent is t(Xn = t), the optimal answer of the

n-th respondent when Xn = t is

YnjXn¼t ¼

s; if
X

m2Sn� 1

r�m �
X

m2Tn� 1

r�m > r�n;

t; if
X

m2Sn� 1

r�m �
X

m2Tn� 1

r�m < r�n:

8
>><

>>:

ð3Þ

Note that, as expected from the casting vote theorem, the optimal decisions are independent

of the decisions made by non-casting voters (Rn−1); thus, non-casting voters have no contribu-

tion to the optimum decision criteria in (2) and (3).

The next task is to determine to which subset (Sn, Tn, or Rn) the focal n-th respondent

will belong. The primary choice of the n-th respondent is a casting vote if

j
P

m2Sn� 1
r�m �

P
m2Tn� 1

r�mj < r�n. This corresponds to the case where the liabilities for the deci-

sions made by antecedent casting voters who chose s and t are comparable, i.e. the difference

between the summations of log-odds ratios is less than r�n, the log-odds ratio of the primary

choice of focal respondent n. In this case, the n-th respondent is a casting voter who answered

s (n 2 Sn) and t (n 2 Tn) if his/her primary choices were s (Xn = s) and t (Xn = t), respectively.

By contrast, if j
P

m2Sn� 1
r�m �

P
m2Tn� 1

r�mj > r�n, the n-th respondent is a non-casting voter.

The two procedures described in the preceding two paragraphs provide a recursive algo-

rithm to determine the optimum decisions in sequential decision-making, which are summa-

rised in Table 1. We can recursively determine, without any uncertainty, whether each, say the

n-th respondent, is a casting voter by using the abilities (p1, . . ., pn) and the sets Sn−1 and Tn−1.

If the n-th individual is a casting voter (n 2 Sn−1 [ Tn−1), his/her primary choice is always

observed by the others through his/her answer. When the n-th individual is a non-casting

voter (n 2 Rn−1), while his/her primary choice cannot be known by the others, the latter can

behave optimally without using his/her primary choice.

Table 1. Algorithm for optimal decision determination in sequential decision-making. See text for the definitions

of subsets S, T, and R, the log-odds ratio of the n-th respondent’s ability, r�n, and binary-choice alternatives, s and t. ϕ is

an empty set.

1: S = {1}, T = ;, R = ;

2: for 2� n � N do

3: if
P

m2S r
�
m �

P
m2T r

�
m > r�n then

4: R R [ {n}, Yn = s
5: else if

P
m2T r

�
m �

P
m2S r

�
m > r�n then

6: R R [ {n}, Yn = t
7: else if j

P
m2Sn� 1

r�m �
P

m2Tn� 1
r�mj < r�n then

8: if Xn = s then

9: S S [ {n}, Yn = s
10: else

11: T T [ {n}, Yn = t
12: end if

13: end if

14: Sn = S, Tn = T, Rn = R
15: end for

https://doi.org/10.1371/journal.pone.0282062.t001
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By optimal behaviour, each respondent, say the n-th, can always select the choice with a

higher likelihood of being correct. In this way, he/she maximises his/her conditional perfor-

mance πn(Sn−1, Tn−1, Rn−1, Xn) based on his/her primary choice Xn and the distribution (Sn−1,

Tn−1, Rn−1) of the antecedents’ answer. Conditional performance πn(Sn−1, Tn−1, Rn−1, Xn) is

then obtained by dividing the joint probability of the optimal choice being correct and the

opinion distribution of the antecedents’ answers and primary choice being (Sn−1, Tn−1, Rn−1,

Xn) by the probability of the opinion distribution being (Sn−1, Tn−1, Rn−1, Xn):

pn Sn� 1;Tn� 1;Rn� 1;Xnð Þ ¼

max P Sn� 1ð ÞQ Tn� 1ð Þpn; Q Sn� 1ð ÞP Tn� 1ð Þ 1 � pnð Þf g

P Sn� 1ð ÞQ Tn� 1ð Þpn þ Q Sn� 1ð ÞP Tn� 1ð Þ 1 � pnð Þ
; if Xn ¼ s;

max P Sn� 1ð ÞQ Tn� 1ð Þ 1 � pnð Þ; Q Sn� 1ð ÞP Tn� 1ð Þpnf g

P Sn� 1ð ÞQ Tn� 1ð Þ 1 � pnð Þ þ Q Sn� 1ð ÞP Tn� 1ð Þpn
; if Xn ¼ t:

8
>>><

>>>:

ð4Þ

Specific cases

Three persons with arbitrary abilities. Here, we consider a specific case of sequential

decision-making by only three individuals and analyse their optimal behaviours in greater

detail (the complete calculation is in S.2.2 in S1 Text).

If an individual is the first to answer, he/she bases her response only on his/her primary

choice. Therefore, his/her performance always equals ability p1. By the definition of s and Sn, 1

is included in set S1. For the second respondent, the preceding vote distribution is always the

same: Sn = {1}, T1 = ;, and R1 = ;, where ; denotes the empty set. Therefore, his/her condi-

tional performance, π2(S1, T1, R1, X2), is equivalent to his/her mean performance E[π2(S1, T1,

R1, X2)]. The optimal behaviours of the second and third respondents markedly differ depend-

ing on which of the first and second’s abilities is larger, as shown in the following.

First, if p2 > p1, that is, r�
2
> r�

1
, the second respondent should answer his/her primary

choice regardless of the first respondent’s answer, as discussed in the section ‘Casting vote’.

Therefore, 2 2 S2 if X2 = s and 2 2 T2 if X2 = t. The conditional and mean performances of the

second respondent are then equal to his/her ability: π2(S1, T1, R1, X2) E[π2(S1, T1, R1, X2)] = p2.

The preceding vote distribution for the third respondent is either (S2, T2, R2) = ({1,2}, ;, ;) or

(S2, T2, R2) = ({1}, {2}, ;). Note that, in either case, both the first and second respondents are

casting voters. Taking them together with the third respondent’s primary choice, he/she has

three independent votes before deciding on his/her answer. Therefore, the optimal answer of

the third respondent is the same as the optimal decision in the simultaneous decision-making

involving three individuals discussed in the section ‘Optimum weights in simultaneous deci-

sion-making’. Particularly, i) if r�
3
> r�

1
þ r�

2
, the third respondent takes his/her primary choice

as his/her answer, ii) if r�
2
> r�

1
þ r�

3
, the third respondent follows the answer from the second

respondent, and iii) if neither is the case, the third respondent follows the unweighted majority

of the three votes, two answers by the first and second respondents and his/her primary choice.

Note that no such case exists with r�
1
> r�

2
þ r�

3
under our assumption of p2 > p1. The mean

performances of the third respondent are p3, p2, and p1p2p3 + (1 − p1)p2p3 + p1(1 − p2)p3 +

p1p2(1 − p3)(≔M) for cases i), ii), and iii), respectively.

Second, if the first respondent has a higher ability than the second (p1 > p2, i.e. r�
1
> r�

2
), the

second respondent should always follow answer s by the first irrespective of his/her primary

choice (see the section ‘Casting vote’), i.e., his/her primary choice is not a casting vote (2 2 R2).

The second respondent’s conditional and mean performances are p1, which is greater than

accuracy p2 of an independent decision. Unlike in the previous case, the answers of the first

and second respondents are no longer independent of each other. The third respondent then
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always sees the same preceding vote distribution: (S2, T2, R2) = ({1},;,{2}). If the primary choice

X3 is s, then by applying the rule in Eq (2), the third respondent should answer s. If X3 = t, we

apply the rule in Eq (3) to see that he/she should answer s when r�
1
> r�

3
, i.e., p1 > p3 and

answer t when r�
1
< r�

3
, i.e., p1 < p3. The third individual’s mean performance is p1 and p3

when p1 > p3 and p1 < p3, respectively. The optimal behaviour of the three-individual sequen-

tial decision-making is summarised in Fig 2.

Fig 3 shows the mean performance E[π3] = E[π3(S2, T2, R2, X3)] of the third individual

when p3 = 0.7 by its contours and phase diagram. In the contours of the mean performance

(Fig 3(a)), we observe that E[π3] drops significantly at the diagonal line showing p1 = p2 from

the region of p1 < p2 to that of p1 > p2. Under the diagonal line (p1 > p2), there is no region in

which E[π3] takes the value of M, which is the accuracy of the simultaneous unweighted major-

ity vote of three individuals. The value of M is greater than p1 when p1(1 − p2)(1 − p3)< (1 −
p1)p2p3 is satisfied or when the first individual is not expert enough for his/her log-odds to out-

perform the sum of the other two (r�
1
< r�

2
þ r�

3
). This is because

p1 ¼ p1p2p3 þ p1p2 1 � p3ð Þ þ p1 1 � p2ð Þp3 þ p1 1 � p2ð Þ 1 � p3ð Þ

< p1p2p3 þ p1p2 1 � p3ð Þ þ p1 1 � p2ð Þp3 þ 1 � p1ð Þp2p3 ¼ M:
ð5Þ

Fig 2. Optimal behaviours of the second and third individuals. The diagram on the right-hand side shows the

resulting influential relationship among three individuals by the arrows, each pointing to the individual that one

follows. For example, the top diagram (a1) reveals that the second individual incorporates the answer by the first

individual, and the third individual decides without referring to others.

https://doi.org/10.1371/journal.pone.0282062.g002
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Similarly, M is greater than p3 when the third individual is not expert. Therefore, in the

inner region above the diagonal line, where the first individual is not expert and the first and

second are not that much inferior to the third, the mean performance of the third respondent

dramatically changes according to whether or not p1 > p2 because the mean performance of

the third cannot be M when p1 > p2.

Arbitrary number of persons with the same ability. In this section, we consider the opti-

mal behaviour in the sequential decision-making involving an arbitrary number of individuals

having the same ability p (see S.2.3 in S1 Text for detailed derivations of the results shown

below). The criteria of Eqs (2) and (3) for the optimal answer Yn of the n-th respondent is sim-

plified for p1 = p2 = � � � = pN = p as follows. If his/her primary choice is the same as that of the

first respondent (Xn = s),

YnjXn¼s ¼
s; if Sn� 1j j � Tn� 1j j þ 1ð Þr� � 0;

t; if Sn� 1j j � Tn� 1j j þ 1ð Þr� < 0;

(

ð6Þ

where |Sn−1| and |Tn−1| denote the number of casting voters who answered s and t, respectively,

out of n − 1 antecedents (|Sn−1| + |Tn−1|� n − 1) and r� = log[p/(1 − p)], where |X| denotes the

number of elements in set X. In addition, we assumed that if the equalities in Eq (6) hold

under the conditions of their odds ratios so that either choice is equally likely to be true, the n-

th respondent selects his/her primary choice. As r� is positive by assumption (p> 0.5), Eq (6)

Fig 3. Mean performance of the third individual E[π3(S2, T2, R2, X3)] in sequential decision-making. (a) E[π3(S2, T2, R2, X3)] in sequential decision-

making when p3 = 0.7 is exhibited by contours. The horizontal and the vertical axes show the abilities p1 and p2 of the first and second individuals,

respectively. The brighter colour stands for the higher mean performance. (b) E[π3(S2, T2, R2, X3)] is shown by red text. The horizontal and

vertical axes are the same as that in panel (a). Each region corresponds to each case of a1) to b3) in Fig 2. The coordinates of α and β are
ffiffiffiffiffip3

p
=

ffiffiffiffiffip3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p3

p� �
;
ffiffiffiffiffip3

p
=

ffiffiffiffiffip3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p3

p� �
and (p3, p3), respectively.

https://doi.org/10.1371/journal.pone.0282062.g003
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is equivalent to

YnjXn¼s ¼
s; if Sn� 1j j þ 1 � Tn� 1j j;

t; if Sn� 1j j þ 1 < Tn� 1j j:

(

ð7Þ

In other words, he/she should answer s if the sum of his/her primary vote (Xn = s) and the

votes to s by preceding casting voters is equal to or greater than the votes to t by preceding cast-

ing voters. By contrast, he/she should answer t if, even with his/her primary vote to s, the sum

of the votes to s by him/her and preceding casting voters is less than the votes to t by preceding

casting voters. Similarly, if the n-th respondent’s primary choice is t(Xn = t), the optimal

answer should be

YnjXn¼t ¼
s; if Sn� 1j j > Tn� 1j j þ 1;

t; if Sn� 1j j � Tn� 1j j þ 1:

(

ð8Þ

The difference, dn = |Sn−1| − |Tn−1|, in votes to s and t by the preceding casting voters of the

n-th respondent can be regarded as a random walk on the integer steps from −2 to 2. While dn
is in −1, 0, or 1, the n-th respondent is a casting voter, and dn+1 increases or decreases by 1

from dn depending on his/her primary choice. Once dn reaches either 2 or −2, it stops chang-

ing, and all the subsequent respondents, including the n-th, will be non-casting voters. The

magic numbers 2 and −2 of vote difference are therefore absorbing states in the sequential

decision-making of respondents with equal abilities. Once one of the absorbing states is

reached by a ‘random’ vote of a casting voter relying only on his/her primary choice, there will

be no improvement in the collective intelligence accuracy thereafter (i.e. collective intelligence

dies there, the decision of the last casting voter enters the hall of fame, and everyone thereafter

stops thinking and follows it). Collective intelligence lives only until the preceding votes are

too close to a call (|dn|� 1).

The mean performance E[πn] = E[πn(Sn−1, Tn−1, Rn−1, Xn)] of the n-th individual can be

written as:

E pn½ � ¼
p2 þ p 1 � pð Þ 1 � 2pð Þ 2p 1 � pð Þ½ �

k� 1

p2 þ 1 � pð Þ
2

: ð9Þ

As 1/2< p< 1 is assumed, p(1 − p)(1 − 2p) is negative, and 2p(1 − p)< 1. Therefore, E[πn]

increases for every odd number n and approaches an upper bound πmax(p) = p2/[p2 + (1 − p)2]

in the limit of infinitely large n. Fig 4 shows the simulation and analytical results of E[πn] plot-

ted against n, for each ability p of individuals. The analytical result was calculated using Eq (9).

The simulation result was calculated based on an agent-based simulation, where each individ-

ual makes his/her primary choice, recursively updates sets Sm, Tm, and Rm(m = 1, . . ., n − 1)

using the algorithm in Table 1, and determines the optimal choice according to dn using Eqs

(7) and (8). The sequential decision-making was simulated for 10,000 runs, and the n-th indi-

vidual’s performance was derived as the proportion of the number of correct answers by the n-

th individual to the total number of runs (10, 000).

For comparison, we also considered the mean performance E pCn
� �

in simultaneous deci-

sion-making with a majority vote among n individuals whose abilities are p. The mean perfor-

mance E pCn
� �

can be calculated as follows:

E pCn
� �

¼
Xn

m¼ nþ1ð Þ=2

n

m

 !

pm 1 � pð Þ
n� m

; ð10Þ
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where n is odd, as generally assumed in the literature on collective intelligence [2]. It is well

known that by the Condorcet jury theorem, limn!1 E pCn
� �

¼ 1, provided that p> 1/2. We

determine what number, ne, of voters in simultaneous decision-making is necessary to make

the mean performance as large as the upper bound of the mean performance in sequential

decision making:

Xne

m¼ neþ1ð Þ=2

ne
m

 !

pm 1 � pð Þ
ne � m ¼

p2

p2 þ 1 � pð Þ
2
¼ pmax pð Þ: ð11Þ

We call ne the effective number of voters for sequential decision-making. We found from

Eq (11) that, irrespective of how large the total number N of respondents in sequential deci-

sion-making is, the effective number remains small: 3−5 when 0:5 < p < 3þ
ffiffiffi
3
p� �

=6 � 0:79

and 5−7 when 3þ
ffiffiffi
3
p� �

=6 < p < 1. Therefore, individuals are apt to perform much less in

sequential decision-making than in simultaneous decision-making; even if a large number of

individuals participate in sequential decision-making, the majority vote of just three to five

individuals would suffice if the individuals’ abilities fall between 50% and 80%, or a majority

vote of just five to seven individuals would suffice if the abilities of the individuals are even

higher (80–100%). In this sense, simultaneous decision-making, where independent answers

are aggregated, is better than sequential decision-making.

As discussed earlier, the n-th individual’s primary choice is the casting vote only when he/

she observes |dn| = ||Sn−1| − |Tn−1||� 1 in the answers of her antecedents. Once an individual

observes |dn| = 2 in the answers of her antecedents, he/she and all subsequent persons will be

Fig 4. Mean performance versus order. Simulation (blue circles) and analytical (red triangles) results of mean

performance E[πn] (ordinate) versus order n (abscissa) are exhibited for each individual ability p in each panel. The

horizontal grey line shows the value of πmax(p).

https://doi.org/10.1371/journal.pone.0282062.g004
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non-casting voters. Therefore, the number of antecedents assigned to either Sn−1 or Tn−1

should be much lower than that assigned to Rn−1 at the n-th individual’s decision-making for

large n. The n th individual cannot use the information on the primary choices of antecedents

in Rn−1. Thus, he/she cannot have a high performance that could be realised when answers by

his/her antecedents are independent of each other.

One person having a higher ability than others. The above analyses pertain to the case

in which every respondent has the same ability. Here, we explore the case where one individ-

ual, called an expert, has a higher ability q than others having abilities p(q> p). The order

decided by the expert is denoted by n, and the mean performance is denoted by E[πn,q]. Here,

we investigated the mean performance of the expert considering two contrasting cases for the

awareness of the expert regarding his/her ability.

First, we considered a case wherein the expert knows his/her ability q. The optimal behav-

iour is shown to be identical to that of the n-th respondent with the same ability p as others if

q< p2/(p2 + (1 − p)2) = πmax(p), i.e., he/she should respond with his/her primary choice when

|dn|� 1, while he/she should follow the majority vote of the preceding voters when |dn| = 2.

Contrarily, if q> πmax(p), the expert should always respond with his/her primary choice

regardless of the preceding casting vote distribution. The mean performance of the expert

when he/she is the n-th respondent is

E pn;q

h i
¼

p2

p2 þ 1 � pð Þ
2
�

p2

p2 þ 1 � pð Þ
2
� q

 !

2p 1 � pð Þ½ �
k� 1
; if q < pmax pð Þ;

q; if otherwise

8
><

>:
ð12Þ

where k = (n + 1)/2 if n is odd, and k = n/2 if n is even. When q< πmax(p), the later the expert

makes his/her decision, the greater the performance, which approaches πmax(p) for an infi-

nitely late decision. By contrast, when q� πmax(p), the order of the decision does not affect the

performance at all and is equal to q.

Second, we considered the case wherein the expert is not aware of his/her superiority over

others in terms of ability. In this case, the expert responds with his/her primary choice when |

dn|� 1 and follows the majority vote in the preceding votes when |dn| = 2. Therefore, the

mean performance of the expert is

E pn;q

h i
¼

p2

p2 þ 1 � pð Þ
2
�

p2

p2 þ 1 � pð Þ
2
� q

 !

2p 1 � pð Þ½ �
k� 1
: ð13Þ

Interestingly, while the mean performance of the expert increases with the decision order n
when q< πmax (p) as in the case where he/she is aware of his/her superiority in terms of ability,

it decreases with the decision order n if q> πmax (p) (Fig 5). In other words, a person who is

exceptionally gifted but is not aware of it should answer earlier to get better performance,

although he/she should answer later if his/her ability is not sufficiently higher than others.

Discussion

We investigated the sequential decision-making of individuals who attempt to maximise their

individual accuracies in solving a binary choice problem by observing the answers of their

antecedents. We call the primary choice of an individual the casting vote if his/her optimum

answer is to choose his/her primary choice, regardless of the antecedents’ answers. We also

suggested an algorithm for finding casting voters among antecedents. By considering the abili-

ties and answer distribution of only casting voters, one can calculate which of the two alterna-

tives has a higher likelihood of being correct. By applying this theory to the optimal behaviour
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for sequential decision-making involving three individuals, we observed a counterintuitive

phenomenon where the mean performance of the third respondent worsened when the first

respondent had a higher ability than the second. We also investigated the sequential decision-

making of an arbitrary number of individuals with the same ability. The results revealed that

individuals could improve their mean performance by answering questions as late as possible.

We also found that for a large number of respondents, their mean performance is only compa-

rable to that of simultaneous decision-making of at most five respondents. Therefore, when an

individual with sufficiently high ability joins the sequential decision-making of respondents

with homogeneous ability, he/she is never motivated to consider others’ answers.

Casting voters, as a result of their optimal behaviours, give the later answering respondents

information on their primary choices, which help later respondents to improve their mean

performance. In one’s decision-making, the likelihood of an alternative being correct can be

derived from the opinion distribution of the primary choices of antecedent casting voters.

These primary choices are stochastically determined and unobservable by others. However,

individuals can always correctly guess the primary choices of casting voters because answers

by casting voters are always as valuable as their primary choices.

Our analysis explained why the opinion correlation generated by non-casting voters nega-

tively affects the mean performance of later respondents. We revealed that in the sequential

decision-making involving three individuals, the performance of the third individual was

lower when the ability of the first was greater than that of the second. In this case, the second

individual was a non-casting voter and only followed his/her antecedent to generate an opin-

ion correlation between them. Our study also showed that, in the sequential decision-making

Fig 5. Mean performance E[πn,q] of the expert with ability q when the expert believes that his/her ability is p. Each

panel exhibits E[πn,q] as the other individuals have the ability p = 0.6, 0.7, 0.8 or 0.9. The colour of the plots stands for

the value of q. The horizontal line (grey) shows the value of πmax(p).

https://doi.org/10.1371/journal.pone.0282062.g005
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of arbitrary number of individuals with the same ability, respondents become non-casting vot-

ers and give correlated answers once the difference in antecedents’ votes to two options

reaches 2. Accordingly, the mean performance of respondents never exceeds the accuracy of

simultaneous decision-making involving only seven individuals. Previous studies have also

discussed that, if individuals incorporate social information to improve their decision accu-

racy, their opinions become correlated to each other and their diversity eventually decreases,

leading to a deterioration of collective intelligence [2, 23, 25, 38]. In our model of sequential

decision-making, the causality between the correlation among answers and deterioration of

the decision accuracy of later respondents was clear, indicating that some of the respondents

did not open their primary choices to the public by following their antecedents, which pre-

vented later respondents from referring to them.

Respondents’ optimal decision-making significantly depends on the decision order of indi-

viduals with the heterogeneous abilities and can be sometimes counter intuitive. One may

think that the n-th respondent should decide by him/herself without considering antecedents’

answers if he/she has a higher ability than all the antecedents. However, even when he/she has

the highest ability, he/she should be a non-casting voter and use the collective intelligence

effect generated by antecedents if the difference in total weights voted to two options by pre-

ceding casting voters is larger than his/her weight. Our results also suggest that all respondents

other than the first become non-casting voters if the first respondent has the highest ability of

all. This can be shown similarly to the calculation of optimal behaviour in the case of three per-

sons with arbitrary abilities (the section ‘Specific cases’); the n-th respondent becomes a non-

casting voter if p1 > pn and from the second to the (n − 1)-th respondents are non-casting vot-

ers. In this case, all respondents answer the same option as the first. Note that, while an infor-

mation cascade, when the first respondent answers incorrectly all the other individuals answer

incorrectly, can occur, being a non-casting voter is the optimal strategy for each to obtain the

highest mean conditional performance.

We predicted that if individuals are allowed to decide when to answer by themselves in col-

lective decision-making, those who have low abilities can face a dilemma: each wants others

with low abilities to answer quickly but they themselves want to answer late. How the decision

order of individuals with different levels of information is self-organised has been an attractive

question in the literature on collective decision-making [30, 39–41]. We revealed that a gifted

individual with sufficiently higher ability than all others with the same ability can perform well

whenever he/she answers. By contrast, individuals with lower abilities can increase their per-

formance by waiting to consider several antecedents’ answers for as long as possible. There-

fore, the motivation to wait for others’ opinions is much higher for individuals with low

abilities. However, at the same time, a low-ability individual can achieve a higher performance

when other individuals with low abilities answer the earliest because the correlation among the

antecedents’ answers is suppressed in such a decision order.

In our sequential decision-making model, we showed that the procedure of optimal deci-

sion-making based on the antecedents’ decision is simple and robust to small errors in infer-

ring others’ abilities. In this study, we assumed sequential decision-making where each

respondent attempts to maximise his/her conditional performance knowing that each of the

antecedents behaved optimally. Intuitively, such optimal decision-making requires informa-

tion on the inner decision process or unobservable primary choices of all antecedents. We

showed that each can reduce the computational cost of his/her optimal behaviour by ignoring

the answers of non-casting voters. Furthermore, he/she can guess the primary choices of cast-

ing voters without any uncertainty. His/her optimal behaviour is also determined without any

uncertainty by comparing the summation of the log-odds ratios of the casting voters’ abilities,

which are well-known optimum weights in simultaneous weighted majority vote. One factor
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which simplifies the optimal decision calculation is the assumption that individuals know the

abilities of their antecedents and themselves. While the precise estimation of others’ abilities

for a given problem is difficult in practice, people can estimate them through repeated social

interaction [42] or records of others’ decision-making. For example, some platforms of future

forecasts or crowdsourcing record the guesses or performance of agents for reference [6, 9].

Moreover, optimal decision-making in this study is determined by evaluating inequalities

rather than equalities (Eqs (2) and (3)). Regarding the condition in Eq (2), for example, a

respondent should consider two regions determined by whether the difference in total weights

voted to two options by preceding casting voters is larger than the weight of the focal respon-

dent. He/she then determines the region to which the point of optimum weights r�
1
; . . . ; r�n

� �

falls, in his/her optimal behaviour. Here, even when the estimated values of optimum weights

slightly deviate from the true values, the deviated point should still fall into the same region in

many cases. Therefore, the optimal behaviour is robust against small errors in the estimation

of abilities. In contrast, a large deviation of ability estimation from the true value can hinder an

individual’s optimal decision-making. Such deviation can occur in practice for various rea-

sons; for example, some antecedents may deceive others. Similarly, an individual having a

strong social impact may receive more weight than expected with his/her actual ability. It

should be interesting to study how the failure in ability estimation or weighing affects the deci-

sion accuracy of each respondent.

In future work, we would like to empirically investigate whether humans can judge a pre-

ceding individual as a casting voter and whether they tend to ignore the opinions of non-cast-

ing voters, as our study of optimal decision-making suggests. Empirical studies have also

revealed that when subjects cannot estimate others’ abilities because of the absence of repeated

social interaction, they weigh others’ opinions based on expressed confidence [15, 43–45],

which is motivated by the confidence-accuracy relationship. A possible question is whether

individuals can weigh their antecedents and themself nearly optimally based on their confi-

dence in sequential decision-making.

Supporting information

S1 Text. Supplementary information of casting votes of antecedents play a key role in suc-

cessful sequential decision-making. In this paper, we presented a detailed calculation for

determining the optimal behaviour and performance of individuals in simultaneous decision-

making and sequential decision-making.
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