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Annotation. In this paper we discuss the on-going joint work contributing to the IIASA (International Institute 

for Applied Systems Analysis, Laxenburg, Austria) and National Academy of Science of Ukraine projects on “Modeling 

and management of dynamic stochastic interdependent systems for food-water-energy-health security nexus” (see [1-2] 

and references therein).  
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The project develops methodological and modeling tools aiming to create Intelligent multimodel Decis ion 

Support System (IDSS) and Platform (IDSP), which can integrate national Food, Water, Energy, Social models with the 

models operating at the global scale (e.g., IIASA GLOBIOM and MESSAGE), in some cases ‘downscaling’ the results 

of the latter to a national level. Data harmonization procedures rely on new type non-smooth stochastic optimization 

and stochastic quasigradient (SQG) [3-4] methods for robust of-line and on-line decisions involving large-scale machine 

learning and Artificial Intelligence (AI) problems in particular, Deep Learning (DL) including deep neural learning or 

deep artificial neural network (ANN).  

Among the methodological aims of the project is the development of “Models’ Linkage” algorithms which are 

in the core of the IDSS as they enable distributed models’ linkage and data integration into one system on a platform 

[5-8]. The linkage algorithms solve the problem of linking distributed models, e.g., sectorial and/or regional, into an 

inter-sectorial inter-regional integrated models. The linkage problem can be viewed as a general endogenous reinforced 

learning problem of how software agents (models) take decisions in order to maximize the “cumulative reward". Based 

on novel ideas of systems’ linkage under asymmetric information and other uncertainties, nested strategic-operational 

and local-global models are being developed and used in combination with, in general, non-Bayesian probabilistic 

downscaling procedures.  

In this paper we illustrate the importance of the iterative “learning” solution algorithms based on stochastic 

quasigradient (SQG) procedures for robust of-line and on-line decisions involving large-scale Machine Learning, Big 

Data analysis, Distributed Models Linkage, and robust decision-making problems. Advanced robust statistical analysis 

and machine learning models of, in general, nonstationary stochastic optimization allow to account for potential 

distributional shifts, heavy tails, and nonstationarities in data streams that can mislead traditional statistical and machin e 

learning models, in particular, deep neural learning or deep artificial neural network (ANN). Proposed models and 

methods rely on probabilistic and non-probabilistic (explicitly given or simulated) distributions combining measures of 

chances, experts’ beliefs and similarity measures (for example, compressed form of the kernel estimators). For highly 

nonconvex models such as the deep ANN network, the SQGs allow to avoid local solutions. In cases of nonstationary 

data, the SQGs allow for sequential revisions and adaptation of parameters to the changing environment, possibly, based 

on of-line adaptive simulations. The non-smooth STO approaches and SQG-based iterative solution procedures are 

illustrated with examples of robust estimation, models’ linkage, machine learning, adaptive Monte Carlo optimization 

for cat risks (floods, earthquakes, etc.) modeling and management.  

 

Keywords: ASI, Intelligent multimodel Decision Support System (IDSS), Platform (IDSP), neural network 

(ANN).

 

Linking optimization models under 

ASI  

In the following, we illustrate the 

application of an iterative SQG-based solution 

procedure to a problem of distributed models’ 

linkage, i.e., linking the individual models in a 

decentralized fashion via a central planner 

(central “hub”) without requiring the exact 

information about models’ structure and data 

(in the conditions of asymmetric information 

and uncertainty). The sequential SQG solution 

procedure organizes an iterative computerized 

negotiation between sectorial (food, water, 

energy, environmental) systems (models) 

representing Intelligent Agents (IA). The 

convergence of the procedure to the socially 

optimal solution is based on the results of non-

differentiable optimization providing a new 

type of machine learning algorithms.  

 

 

 

The linkage problem can be viewed as a 

general endogenous reinforced learning 

problem of how software agents (models) take  

neural network (ANN). 

decisions in order to maximize the 

“cumulative reward”. Similar computerized  

negotiation processes between distributed 

models (agents) have been developed for the 

design of robust carbon trading markets and 

for water quotas allocation. The SQG iterative 

algorithms define a “searching” process, 

which resembles a sequential adaptive 

learning and improvement of decisions from 

data and simulations, i.e., the so-called 

Adaptive Monte Carlo optimization.  

Detailed sectorial and regional models 

have traditionally been used to anticipate and 

plan desirable developments of respective 

sectors and regions. These models operate 

with a set of feasible decisions and aim to 

select a solution optimizing specific objective 

function. Sectors and regions are 
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interconnected through the utilization of 

common resources. For example, the energy 

and agricultural sectors often compete for the 

same land and water resources, which are 

needed for crops and biofuel production, 

hydroelectric power generation, and coal 

mining. To improve the interdependent 

developments, the sectorial and regional 

models may be linked together to find an 

efficient integrated solution.  

We consider the problem of linking 

sectorial and regional LP models under ASI 

when sectors and regions are not able to share 

information about their models. This lack of 

full common information about the LP 

submodels of the IMs makes LP methods 

inapplicable for integrated modeling under 

ASI. Uncertain common full information on 

goals, feasible decisions, constraints, and 

corresponding data sets are typical for systems 

with Big Data and Decision Sets, requiring 

practically impossible solutions of hard data 

and decisions harmonization tasks. In the 

following we introduce an equivalent 

nonsmooth optimization model and a specific 

subgradient algorithm generating a sequence 

of linkages converging to an optimal linkage 

of LP models under ASI.  

Our approach for linking LP models 

under ASI is based on the parallel solving of 

equivalent nonsmooth optimization model by 

a simple iterative subgradient algorithm 

converging to an optimal linkage. It does not 

require full common information about 

models’ specification, and this approach can 

be viewed as a new type machine learning of 

robust decisions with respect to ASI. In this 

way, we avoid a “hard linking” of the models 

in a single code. The approache enables 

parallel distributed solutions of sectorial and 

regional models instead of a “harmonized” 

large scale integrated LP model. This also 

avoids the practically impossible Big Data 

harmonization under asymmetric information. 

Using linked detailed sectorial and regional 

models also allows for taking into account 

critically important local details, which are 

usually hidden within aggregate data.  

 

Sectorial/regional models  

As we noted, integrated solution of 

separate (distributed) sectorial and regional LP 

models under ASI cannot be accomplished by 

LP methods. In this section we consider an 

equivalent nonsmooth optimization model.   

Consider 𝐾 models of sectors and 

regions utilizing some common resources. The 

problem of their linkage can be formulated as 

follows. Let 𝑥(𝑘) be a vector of decision 

variables in sector/region 𝑘 and assume that 

each sector/region aims to maximize its net 

profits  

⟨𝑐(𝑘), 𝑥(𝑘)⟩ → 𝑚𝑎𝑥,  (1) 

subject to constraints  

𝑥(𝑘) ≥ 0, (2)                                                                                                                    

𝐴(𝑘)𝑥(𝑘) ≤ 𝑏(𝑘)
,  (3)                                                                                                          

𝐵(𝑘)𝑥(𝑘) ≤ 𝑦(𝑘)
,   (4)                                                                                                        

where ⟨𝑐(𝑘), 𝑥(𝑘)⟩ = ∑ 𝑐𝑗
(𝑘)

𝑗 𝑥𝑗
(𝑘)

,  

𝑘 = 1,2, . . . , 𝐾. 

Here, net unit profits 𝑐(𝑘), vectors 𝑏(𝑘)and 

matrices 𝐴(𝑘) and 𝐵(𝑘) define the marginal 

contribution of solutions into the total demand, 

resource use, and environmental impact. Thus, we 

distinguish between the constraints (3) that are 

specific to sector/region k  and the constraints (4) 

that are part of a common inter-sectorial/inter-

regional constraint with sectorial/regional quotas of 

resources 
)(ky .  

Linking the submodels is carried out by 

“linking” vectors  𝑦(𝑘). There is a nonempty set of 

linking vectors   𝑦(𝑘) characterizing the feasible 

conditions of linkage described by linear constraints  

∑ 𝐷(𝑘)𝑦(𝑘) ≤ 𝑑𝐾
𝑘=1 .  (5)                                                                                                     

Here matrix 𝐷(𝑘) defines the marginal 

sectorial/regional resources use with a vector of 

resources 𝑑, 𝑑 ≥ 0. The problem of models’ 

linkage under full information can be formulated 

as a total net profit maximization  

∑ ⟨𝑐(𝑘), 𝑥(𝑘)⟩𝐾
𝑘=1 → max     (6)                                                                                             

s. t. to constraints (2)-(5), 𝑘 = 1,2, . . . , 𝐾.  
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By asymmetric information (ASI) of 

sectors/regions we mean that a sector/region 𝑘 

does not know 𝑏(𝑘), 𝑐(𝑙), 𝐴(𝑙), 𝐵(𝑙), 𝑥(𝑙) of other 

sectors/regions, 𝑙 ≠ 𝑘. Therefore, the integrated 

LP model (2)-(6) under ASI cannot be solved by 

LP method due to the lack of common 

information about submodels.  

 

Nonsmooth model 

Let us formulate a basic nonsmooth 

optimization model that is equivalent to the 

integrated LP model under ASI. This basic 

model can be solved by a specific iterative 

subgradient linkage algorithm.  

For a given vector 𝑦 = (𝑦(1), . . . , 𝑦(𝐾)) let 

us denote by 𝐹(𝑦) the optimal value of function 

(6) under constraints (2)-(4). Therefore, 

 

𝐹(𝑦) = ∑ 𝑓(𝑘)(𝑦)𝐾
𝑘=1 , 

 

where 𝑓(𝑘)(𝑦) = (𝑐(𝑘), 𝑥(𝑘)(𝑦)) are concave 

nonsmooth functions. In this function 𝑥(𝑘)(𝑦) 

are optimal solutions of (1)-(4).   

The required linkage algorithm is defined 

as a subgradient procedure maximizing function 

𝐹(𝑦) s.t. the joint constraints (5). These 

constraints define the feasible set of the 

algorithm, which can be denoted also as 𝑌. 

Therefore, an optimal solutions maximizing 

𝐹(𝑦), 𝑦 ∈ 𝑌, defines also an optimal linkage or 

a solution of the integrated LP model under ASI. 

In the following we assume the existence of 

solutions 𝑥(𝑘)(𝑦), 𝑦 ∈ 𝑌, for all 𝑘.  

 

Iterative linking under ASI 

  

Iterative linking  

Let us consider a sequence of approximate 

solution 𝑦𝑠 = (𝑦𝑠(1), . . . , 𝑦𝑠(𝐾)) for iteration 𝑠 =
1,2, … of the algorithm. For given quotas 𝑦𝑠 

independently and in parallel, sectors/regions 

solve models (1)-(4), 𝑘 = 1,2, … , 𝐾, and obtain 

primal solutions 𝑥𝑠(𝑘) = 𝑥𝑠(𝑘)(𝑦𝑠) together 

with the corresponding solutions (𝑢𝑠(𝑘), 𝑣𝑠(𝑘)) of 

the dual problems 

  

⟨𝑏(𝑘), 𝑢(𝑘)⟩ + ⟨𝑦(𝑘), 𝑣(𝑘)⟩ → min,    (7) 

                                                                              

𝐴(𝑘)𝑢(𝑘) + 𝐵(𝑘)𝑣(𝑘) ≥ 𝑐(𝑘),             (8) 

                                                                 

                          

𝑢(𝑘) ≥ 0, 𝑣(𝑘) ≥ 0, 𝑘 = 1,2, … , 𝐾.   (9) 

                                                                               

The next approximation 𝑦𝑠+1 =

(𝑦𝑠+1(1), … , 𝑦𝑠+1(𝐾)) is derived by a social 

planner (hub) as  

 

𝑦𝑠+1 = 𝜋𝑌(𝑦𝑠 + 𝜌𝑠𝑣𝑠),   

𝑠 = 1,2, . ..,                                (10)   

                                                                         

where 𝜌𝑠 is an iteration-dependent step-size 

multiplier and 𝜋𝑌(⋅) is the orthogonal projection 

operator onto set 𝑌.  

Vector 𝑣𝑠 is a generalized gradient or a 

subgradient of function 𝐹(𝑦) at 𝑦 = 𝑦𝑠. The 

step-size 𝜌𝑠 is chosen from rather general and 

natural requirements: 𝜌𝑠 ≥ 0, 𝜌𝑠 → 0, 
∑ 𝜌𝑠

∞
𝑠=1 = ∞, (e.g. 𝜌𝑠 = 1/𝑠), because 

subgradients (generalized gradients) are not, in 

general, the increasing directions of functions. 

The proposed linkage algorithm for problems 

under ASI (10) requires additional condition 

∑ 𝜌𝑠
2∞

𝑠=1 < ∞ to enable the convergence of not 

only function 𝐹(𝑦𝑠) but also of the solutions 𝑦𝑠 

(see Annex). This allows us to propose a simple 

stopping criterion (see Step 4, Algorithm) 

enabling parallel optimization of interdependent 

sectors by (10).  

 

Algorithm  

Let us assume, there is a network of 

distributed computers connecting submodels, 

say sectors, with a central hub computer. The 

linkage algorithm can be summarized as 

follows: 

Step 0: Initialization. Sector 𝑘, 𝑘 =
1, . . . , 𝐾, chooses initial vectors 𝑦0(𝑘) of resource 

quotas and submits it to the central computer 

(hub). The computer projects 𝑦0 =
(𝑦0(1), . . . , 𝑦0(𝐾)) onto the set 𝑌 defining a first 

feasible approximation  𝑦1 = (𝑦1(1), . . . , 𝑦1(𝐾)); 

set 𝑠 = 1  

Step 1: Generic step. Suppose by the 

beginning of iteration 𝑠 the algorithm arrived at 
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vector 𝑦𝑠 = (𝑦𝑠(1), . . . , 𝑦𝑠(𝐾)). Then on iteration 

𝑠 the algorithm proceeds as follows. 

Step 2: All sectors 𝑘 receive 𝑦𝑠(𝑘) and 

solve models (1)-(4) independently. Shadow 

prices 𝜈𝑠(𝑘) of common resources (constraints 

(4)) are submitted to the central computer (hub). 

Step 3: The central computer calculates 

𝑦𝑠 + 𝜌𝑠𝜈𝑠 with a step-size 𝜌𝑠 = 𝑐𝑠/𝑠, where 𝑐𝑠 

is a scaling parameter, 𝑐 ≤ 𝑐𝑠 ≤ 𝑐 for some 

constants 𝑐, 𝑐. It regulates 𝜌𝑠 so that the product 

𝜌𝑠𝜈𝑠 corresponds to the scale of 𝑦𝑠. Vector 𝑦𝑠 +
𝜌𝑠𝜈𝑠 is projected onto the set 𝑌 and defines 𝑦𝑠+1. 

Sectorial/regional computers receive 

corresponding components of 𝑦𝑠+1. 

Step 4: All sectors independently check 

stopping criteria. Sector 𝑘 calculates non-

negative difference 𝜀𝑘(𝑠) = (𝑏(𝑘), 𝑢𝑠(𝑘)(𝑦𝑠)) +
(𝑦𝑠(𝑘), 𝜈𝑠(𝑘)(𝑦𝑠)) − 𝑤𝑘(𝑐(𝑘), 𝑥𝑠(𝑘)(𝑦𝑠)) and 

submits values 𝜀𝑘(𝑠) to the central computer of 

the hub.  

If ∑ 𝜀𝑘𝑘 (𝑠) ≤ 𝜀 ≥ 0, where 𝜀 is an 

admissible accuracy, then the algorithm stops. 

Otherwise, it continues with an iteration 

increment of 1 and returns to step 1.  

The convergence theorem shows that the 

parallel independent optimization and linkage of 

sectors/regions according to this algorithm 

without revealing sectorial/reginal information 

is possible due to the requirement ∑ 𝜌𝑠
2

𝑠 < ∞. 

This allows to prove the convergence of 

solutions (linkages) 𝑦𝑠 rather than the 

convergence of objective function 𝐹(𝑦𝑠).  

The convergence of the proposed linkage 

algorithm under ASI is based on the theory of 

(continuously) non-differentiable optimization. 

  

Conclusions 

Traditional integrated modeling (IM) is 

based on developing and aggregating all relevant 

(sub)models and data into a single integrated 

linear programming (LP) model. Unfortunately, 

this approach is not applicable for IM under 

asymmetric information (ASI), i.e., when 

“private” information about sectoral/regional 

models is not available or it cannot be shared by 

modeling teams (sectoral agencies). The lack of 

common information about LP submodels 

makes LP methods inapplicable for integrated 

LP modeling.  

We discussed a new approach to link and 

optimize distributed sectoral/regional 

optimization models providing a means of 

decentralized cross-sectoral coordination in the 

situation of ASI. Thus, the linkage methodology 

enables to investigate policies in interdependent 

systems in a “decentralized” fashion. For the 

linkage, the sectoral/regional models don’t need 

re-coding or reprogramming. They also don’t 

require additional data harmonization tasks. 

Instead, they solve their LP submodels 

independently and in parallel by a specific 

iterative subgradient algorithm for nonsmooth 

optimization. The submodels continue to be the 

same separate LP models. A social planner 

(regulatory agency) only needs to adjust the joint 

resource constraints to simple subgradient 

changes calculated by the algorithm.  

The proposed computational algorithm is 

based on subgradient methods invented for the 

optimization of non-smooth systems, which may 

be subject to shocks and discontinuities. 

Therefore, these methods will be naturally 

developed further for linking stochastic sectorial 

models with known marginal distributions of 

sectorial uncertainties, into cross-sectorial 

integrated models with joint distributions of 

collective systemic risks induced by sectorial 

uncertainties and decisions maximizing a 

stochastic version of the function (6). It is worth 

noting that the algorithm can also carry out the 

linkage of dynamic systems using the same 

equations. Fundamentally important possible 

extension of the presented method is the case of 

stochastic sectorial/regional models with 

interdependent uncertainties, which can be 

shaped by linking decisions of various agents. 

The mitigation of floods by new land use 

decisions, for example, affect flood scenarios. 

As a rule, this makes it impossible to separate 

scenario generations and optimization processes 

calling for linking both simulation and 

optimization procedures in a similar manner to 

algorithm (10), thus combining simulations of 

scenarios, new optimization steps, new 

simulation of scenarios, and so on. In this case 
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we can think of new type machine learning 

processes.  

While in this paper, we meant linking 

regional and/or sectorial models when referring 

to model linkage, more generally, linking 

models may refer to different local-global scales. 

Therefore, the linkage problem can also be 

formulated much more generally in terms of sub-

models and integrated models and the approach 

presented in this paper can still be applicable.   

The linkage of models is, in a sense, 

opposite to decomposition methods. While in the 

decomposition we split an existing integrated 

optimization model into a number of smaller 

sub-models, in the linkage we obtain an 

integrated model of the system by linking 

existing explicitly unknown sub-models. The 

proposed procedure provides a flexibility 

enabling the simultaneous use of linkage and 

decomposition procedures, in other words, 

endogenously disaggregating models to make 

their further integration (linkage) more efficient.  
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