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Abstract
Planning and operation of the renewable energy system (RES) face challenges of high variabil-
ity and uncertainty. Decisions that consider the evolution of the energy system over multiple
decades under the uncertainty of parameters tend to neglect short-term variability. In contrast,
operation decisions that deal with the short-term variability of RES, such as balancing hourly
energy generation with requirement outputs, would neglect its long-term evolution. Thus, the
harmonization decision of different time scales is a key issue in modeling RES. This report
presents the progress in developing a model to support the long-term planning and short-term
operation of RES. The RES includes renewable energy inputs and storage systems with elec-
trolyzers, hydrogen tanks, and fuel cells. The report includes two main parts. The first part
focuses on connecting the operation and the long-term planning of RES by using aggregated
data in the MESSAGEix framework. The approach developed by Dr. Julian Hunt and Dr.
Behnam Zakeri for dealing with and selecting aggregated data is presented in this part. We also
present the case results for the approach. The second part focuses on establishing a separate
model focus on the operation of a given RES. This model is the basement operational model for
connecting with the planning model of RES. The presented version of the model deals with a
given RES, in which hourly operation decisions will be made to balance the variability of gen-
erated energy with the requirements of stable outputs. The current version of the model is still
at an early stage of development. Future versions can support both planning RES expansion
and multi-product analysis involving hydrogen.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
For any commercial use please contact permissions@iiasa.ac.at
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1 Introduction
The high proportion of unstable renewable energy generation, such as wind and photovoltaic
power, into the grid, puts forward higher requirements for the stability of the power system. In
2020, Sweden generated 20% of its electricity from wind and photovoltaic, followed by Ger-
man, 18%. While in China, wind and photovoltaic power generation accounts for 7.8% and
3.9% of total electricity generation in 2021, respectively 1. Although the proportion of renew-
able energy generation is still at a lower level in China, it is foreseeable that China will have
over 50% electricity from wind and photovoltaic power generation in 2030, according to its
’carbon peaking’ and ’carbon neutrality targets. wind and photovoltaic power will increasingly
participate in power generation and gain a dominant position in the power system. However,
wind and photovoltaic are unstable power suppliers. The fluctuation for wind power can be
up to 80% within a day. The short-term forecasts of wind power generation can be accurate
within a day, but the accuracy of long-term forecasting is poor. The utilization of solar energy
is diurnal and seasonal variation [1]. For this, it is challenging to provide stable power output.
The flexibility and uncertainty of this renewable energy generation have pressured the power
system to balance supply and demand. Then, the importance of energy storage is becoming
increasingly prominent. Energy storage equipment, such as batteries, is mandatory to construct
with at least 2 hours of storage for new wind farms in China. However, such measures can only
support short-term adjustments, there are still challenges to the long-term stable power supply
of the wind farm.

Hydrogen energy storage (HES) systems can supplement renewable energy sources to over-
come the challenges associated with higher penetrations of wind-based electricity both in the
short-term and long-term [2]. The hydrogen energy storage system contains hydrogen produc-
tion, hydrogen storage, and power converting from hydrogen, HES system fills out the lack
of batteries which only offers short-term flexibility services for the electricity network. The
overproduced power can be converted into green hydrogen and stored as compressed gas or
liquid hydrogen for a while. Then, the hydrogen can be converted back into power for supply.
There’s almost no loss during the long-term storage of hydrogen [3]. Moreover, the maturation
of technology in hydrogen energy storage systems now can support hydrogen production from
unstable input power. So, there might be a potential that a wind-hydrogen system, which we
refer to as a wind farm with a co-located HES system, can provide a stable power supply like
traditional thermal power plants.

Harmonization of different time scales is a key research and model-implementation issue.
Investment planning of RES can last for decades. It considers the influence of planning time,
lifespan, and discount rate. The operation of RES focuses on decisions of storage devices to
cope with the variability of the generated energy. The decisions can change in the short-term,
such as by hourly, or in the medium-term, such as seasonal. In planning and operations of
RES, the decision-makers have to consider trade-offs between reachable goals for conflicting
objectives, such as total costs, investment costs, meeting the requirements for the produced
energy. Therefore, the model-based decision support will be based on tools and methods for
Multiple-Criteria Model Analysis (MCMA).

There have been two streams for harmonization of different time scales in modeling renew-
able power systems [4]. One stream is called direct integration. Direct integration is always
applied in energy system optimization models. These models can provide a macroscopic and

1Data from https://www.baogaoting.com/info/219153
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comprehensive description of the evolution of the energy system for multi-years [5]. When
considering inter-temporal transactions, a finer level of time representation (such as seasons
and weeks) will help the model reflect reality, especially in models dealing with different time
period energy storage problems [6]. By using this direct integration, sub-annual variations,
such as daily or seasonal, in demand and supply are represented by time-slices. Data con-
tained in each time-slice will enhance the accurateness of the long-term models (e.g., Models
built on MESSAGE modeling framework). The key issue for this method is how to select the
represented time-slices [7].

The other stream is called soft-link model coupling methodologies, where a soft-link be-
tween the long-term planning and short-term operating models, which only contain a limited
level of temporal and technical detail, is established.

The purpose of the research is to develop a model to harmonize decisions regarding long-
term planning and operations of RES. The work conducted during YSSP explored two streams
of approaches to harmonize decisions across different time scales. Section 2 summarizes the
time-slices selecting approach developed by Dr. Julian Hunt and Dr. Behnam Zakeri. This ap-
proach is the basement for integrating short-term operating conditions of storage into long-term
planning model. Section 3 presents the results of the time-slices selecting approach. Section
4 shows an initial symbolic model specification (SMS) of an operational model. The reported
work has provided a foundation for future analysis.

2 Method for selecting time slices
The processes of the method presented in this section reflect the author’s comprehension of
the approach developed by Dr. Julian Hunt and Dr. Behnam Zakeri. Those were built during
numerous discussions, email exchanges, and analyses of the provided Python code.

2.1 Specification of the data
The following data are used for illustration of the time-slices prototype:
• Hourly data for one year.
• The data provided in XLS are converted into the Python data-frame, here presented as ma-

trix H; its rows and columns are indexed by i ∈ I and j ∈ J , respectively. Therefore,

H = h[i][j], i ∈ I, j ∈ J (1)

where h[i][j] are elements of data matrix H . Members set I index the records; therefore,
I = {0, 1, . . . , 8759}.2 Set J is implicitly defined by eq. (4) below.

Equivalent notation of definition (1):

H = {hij}, (or H = hi,j), i ∈ I, j ∈ J

• Each data record (a row of H) consists of:
⋆ time-stamp composed of two values: calendar day and hour,

2365 days * 24 hrs/day = 8760. If the data is provided for a leap year, then these numbers are increased by 24.
For simplifying the presentation we assume here a year of 365 days.
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⋆ a given number of values considered for each time slot; the values are organized in vectors
denoted as v , i.e.,

v = {vk}, k ∈ K, (2)

where indices k identify elements of the data provided for every day and hour.
For the problem considered in this note these values represent: solar radiation, wind, demand,
hydro, respectively. Therefore,

v = {solar, wind, demand, hydro}. (3)

Components of vector v can easily be modified for various compositions of the hourly data;
such modifications will not require any changes of the applied data structure.

• Therefore the i-th data record can be presented in two equivalent forms, each suitable for a
particular context:

h [i] = {day, hour, v} = {day, hour, {solar, wind, demand, hydro}}, i ∈ I. (4)

2.2 Data preprocessing
The described approach does not require any preprocessing of the provided data. Therefore we
only briefly mention two types of preprocessing that is required for either other data sources or
for extensions of the approach to multi-regions.

2.2.1 Data normalization

Values of all provided data series have been normalized to the range [0, 1].

2.2.2 Preparing data elements for multi-region models

In order to handle day-related variability when dealing with energy transfers between regions
in different time-zones one has to harmonize data using either the local or universal time. This
issue will be considered at a later research stage.

2.3 Approach to defining aggregated data representation
The overall aim of the summarized approach is to describe the algorithm for finding an aggre-
gated representation of original detailed trajectories of data characterizing energy produced by
diverse VREs (Variable Renewable Energy) sources and the energy demand.

2.4 Definitions of the used terms
The following terms are used in the note:
• Time-slice represents data within a period. The data is organized into a corresponding matrix

containing (possibly processed) values of the original data-vector v .
• Four-hour time-slice: a matrix, with each row contains data representing 4 consecutive hours,

by four values, each of them corresponding to one component of original data-vector v .
• Day: natural day composed of 24 one-hour time-slices denoted by 0:00 through 23:00.

www.iiasa.ac.at 7



• aDay: artificial day consisting of given number time-slices, representing 24 one-hour time-
slices.

• Week: an ordered set of 42 four-hour3 consecutive time-slices.
• Season: an ordered set of 2190 one-hour time-slices or 547 four-hour time-slices.
• P is an auxiliary data structures used for defining {D1, D2}.
• Load duration curve: k type of data with a descending order, which sorted based on the value

of k type of data from the highest to the lowest.4

2.5 Overview of the approach
The goal of the approach is to find a representation of the original annual hourly data by eight
objects (four pairs of {D1, D2}; each pair representing original data in one of four seasons),
each of them composed of six time-slices. Figure 1 illustrates the flows between basic elements
of the algorithm; these elements are defined in detail in subsequent sections.

The process runs for each of the four seasons independently. Therefore, for the sake of
brevity, after illustrating the split of data between seasons, we show the flow only for the first
season.

In the first stage the original is processed in two parallel streams in order to prepare data
structures needed for defining P :
• In the first stream the original data (defined for one-hour time-slices) is processed in the

following steps:
1. The data is divided into seasons, see Section 2.6.1
2. For each season, matrix C is created to store sorted values of attributes v of H , see Sec-

tion 2.6.2
3. For each season matrix R composed of the the maximum and minimum values of data

attributes are defined, see Section 2.6.3
• The second stream deals with the data aggregated into four-hour time-slices through the fol-

lowing steps:
1. The one-hour time-slices are aggregated into four-hour time-slices, see Section 2.7.1
2. The aggregated data is divided into seasons, see Section 2.7.2.
3. For each season the data is split into aWeeks, see Section 2.7.3.

After completing the first stage the two data objects are available for further processing:
• From the first stream: matrix R containing maximum of minimum values of each of the

original data.
• From the second stream: data structures for each of 13 aWeeks (artificial weeks for each

season) containing six 4-hour time-slices for each of the aDays of the corresponding aWeek.
The second stage consists of the iterative procedure defined in Section 2.8 below.

3Six slices for each of seven consecutive days.
4The load duration curve is defined as the curve between the load and time in which the ordinates representing

the load, plotted in the order of decreasing magnitude. In our data, there are four kinds of load: solar, wind, hydro
and demand. The load duration curve reflects the duration time of one load at different production or demand
levels.
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Figure 1: Overview of the algorithm.
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2.6 First stage: first stream
2.6.1 Split of one-hour slices into seasons

One-hour time-slices stored in H are split into four subsets Hs, respectively, each subset cor-
responding to a calendar season. This is done by defining subsets of the corresponding row-
indexing set I into four (not overlapping) subsets, i.e.,

I = {Is}, s ∈ S, S = {0, 1, 2, 3}, (5)

where members of S index annual seasons (Winter, Spring, Summer, Autumn). The subsets Is
are defined based on calendar days as follows:
• I0 = {0, 1, . . . , 2189},
• I1 = {2190, 2191, . . . , 4379},
• I2 = {4380, 4381, . . . , 6569},
• I3 = {6570, 6571, . . . , 8759}.

2.6.2 Sorted values of attributes

Create auxiliary matrix C composed by sorted values of attributes v stored in H . Pseudo-code
of such a mapping is shown in Fig. 2.

1: for s ∈ S do
2: for k ∈ K do
3: for i ∈ Is do ▷ store values in auxiliary vector x .
4: x[i] = H[i].v[k]
5: end for
6: x = sort(x ) ▷ Sort the vector by decreasing values.
7: for i ∈ Is do ▷ store values in auxiliary vector x .
8: C[s][i][k] = x[i] ▷ Create k-th column of C by sorted values.
9: end for

10: end for
11: end for

Figure 2: Pseudo-code for H → C mapping.

2.6.3 Defining ranges of attribute values

The ranges of attribute values in matrix H are stored in matrix R composed (for each season)
of two rows, containing minimum and maximum values of each attribute, respectively. The
corresponding pseudo-code is presented in Figure 3.

www.iiasa.ac.at 10



1: for s ∈ S do
2: for k ∈ K do
3: for i ∈ Is do
4: x[i] = H[i].v[k])
5: end for
6: R[s][k][low] = argmin

i∈Is
x

7: R[s][k][upp] = argmax
i∈Is

x

8: end for
9: end for

Figure 3: Calculation of the seasonal ranges of values of attributes v .

2.7 First stage: second stream
2.7.1 Aggregation of hourly data

In this step four consecutive one-hour time-slices are aggregated into one corresponding four-
hour slices and stored in matrix is denoted as H4. In order to distinguish indexing (by i ∈
I) one-hour time-slices of H , we index four-hour time-slices of H4 by t ∈ T , where T =
{0, 1, . . . , 2189}.5 Therefore elements of H4 are denoted by h4[t][j], t ∈ T, j ∈ J . As the
result of such an aggregation the values v are defined for each t-th time-slice. Rows of H4
have the same structure as rows of H , see (4), namely:

h4[t] = {day, hour, v} = {day, hour, {solar, wind, demand, hydro}}, t ∈ T. (6)

The following algorithm (outlined by the corresponding pseudo-code shown in Figure 4)
defines mapping H → H4. We explain here the key elements of this mapping:
• Record h4[0] is set to be equal to h[0], representing Jan 1, 0:00.
• All other data records of H4 are defined by aggregations of four consecutive records of H ,

starting with h[1], which corresponds to Jan 1, 1:00.
• The records of H4 have the time-stamps of the last of each four aggregated records of H .
• The last three records (corresponding to hours 21:00, 22:00, 23:00) are aggregated with the

first record of the next day (0:00).
• The last three records of Dec 31 in H are ignored.

2.7.2 Split aggregated data into subsets corresponding to four seasons

In order to provide convenient access to subsets of time-slices belonging to each calendar sea-
son, the set of indices t ∈ T of H4 is split into four subsets Ts:

T = {Ts}, s ∈ S, S = {0, 1, 2, 3}, (7)

where the subsets are defined based on calendar days as follows:
• T0 = {0, 1, . . . , 546},

5365 days * 6 four-hour time-slices/day = 2190.
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1: i = 0 ▷ current time-slice of H
2: for t ∈ T do
3: if i == 0 then ▷ First time-slice of H is copied (without aggregation) to H4.
4: h4[t].day = h[i].day
5: h4[t].hour = h[i].hour
6: for k ∈ K do
7: h4[t].v[k] = h[i].v[k]
8: end for
9: i = i + 1

10: else ▷ All but first four subsequent time-slices of H are aggregated.
11: h4[t].day = h[i+ 3].day
12: h4[t].hour = h[i+ 3].hour
13: for k ∈ K do

14: h4[t].v[k] = (
i+3∑
p=i

h[p].v[k])/4

15: end for
16: i = i + 4
17: end if
18: end for

Figure 4: Pseudo-code for H → H4 mapping.

• T1 = {547, 548, . . . , 1093},
• T2 = {1094, 1095, . . . , 1640},
• T3 = {1641, 1642, . . . , 2188}.

2.7.3 Data defining artificial weeks

We consider artificial weeks (aWeek)6 each composed of seven consecutive days of the H4.
Each day of H4 is represented by 6 four-hour time-slices; therefore, data for each aWeek
consists of data (values of v ) of 42 consecutive time slices of H4. For each season 13 weeks
are defined; thus we have 52 weeks in a year representing 364 days, i.e., 2184 four-hour time
slices. Thus, five time-slices of H4 that don’t fit any week are ignored.

The data (values of v ) corresponding to each week are accessed through subsets of consec-
utive time-slice defined for each season. Weeks are indexed by w ∈ W, W = {0, 1, . . . , 12}
(same for all seasons) and two subsets of slices are denoted by Tsw and T2sw, s ∈ S,w ∈
[0, 12].

6We call them artificial weeks because they do not correspond to calendar weeks.
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2.8 Second stage
In the second stage we define for each season two artificial days, named D1[s] and D[s], each of
them composed of six consecutive 4-hour time slices; each time-slices consists of values of four
attributes (elements of v ). Values in D1[s] and D2[s] are defined using the algorithm shown in
Fig. 5, which uses the data structures defined above, specifically matrices C, R, and H4 and
the corresponding indexing sets. Additionally, we define weights q for each data-type of v :

q = {qk ≥ 0, k ∈ K} :
∑
k∈K

qk = 1. (8)

Discussion of the specification of q is beyond the scope of this note.
We summarize now the basic elements of the algorithm presented in Fig. 5:

1. Each season is considered independent of all other seasons.
2. We use time-slices of H4 in subsets of each consecutive week of each season.
3. The time-slices for each week are selected in an iterative way, and placed in the auxiliary

structure P , which is composed of 12 slices. For each selection, the following is observed:
• First six consecutive slices are selected. For the first iterations, this subset starts with the

first slice of the week. For the next iteration, the starting slice is the next one after the first
slice of the previous selection. There are 42 slices each week. Therefore, the first slice
of the last selection is the 37th slice of the week. Thus, there are 36 selections for each
week. Such six slices are placed in P as the top six slices.

• Next, four other slices are selected from the same week. In order to provide for repeata-
bility of the results, we select the other four slices in the following way. We select the
next or previous (immediately after or before the above selected six slices) four slices, for
the first or second 18 selections/iterations. These slices are defined in T2sw.

• The last two slices of P are filled by low- or upper-bounds stored in the auxiliary matrix R.
Note that only values of v are stored in P , i.e., no time-stamps are stored there.

4. The columns of P (corresponding to attributes of the corresponding components of v are
sorted in descending order.

5. A difference between P (composed of 12 slices) and C is computed as defined in the
pseudo-code. Note the use of weights q defined by (8).

6. If such a difference is the smallest amongst all computed in the season, then the slices of P
define the D1 and D2 in the way shown in the pseudo-code.

www.iiasa.ac.at 13



1: mCmp = 1e+ 9
2: iCmp = 182 ▷ Number of C slices used for comparisons with each P slice.
3: for s ∈ S do
4: for w ∈ W do
5: for t ∈ Tsw do ▷ Loop for the slice that starts a subset of 6 time-slices.
6: for m ∈ [0, 5] do ▷ Loop of 6 selected slices.
7: for k ∈ K do
8: P [m][k] = h4[t+m].v[k]
9: end for

10: end for
11: end for
12: for t ∈ T2sw do ▷ Loop for four other selected slices.
13: for m ∈ [0, 3] do ▷ Loop of four lower P slices.
14: for k ∈ K do
15: P [m+ 6][k] = h4[t+m].v[k]
16: end for
17: end for
18: end for
19: P [10][k] = R[s][k][upp]
20: P [11][k] = R[s][k][low]
21: for k ∈ K do ▷ Sort each column of P in by decreasing values.
22: x = P [k]
23: x = sort(x ) ▷ Sort the vector by decreasing values.
24: P [k] = x ▷ Replace the column in P by its sorted values.
25: end for
26: cmp = 0.
27: for t ∈ [0, 11] do ▷ Time-slices in P.
28: for k ∈ K do
29: for m ∈ [0, iCmp] do ▷ Comparisons with iCmp consecutive C slices.
30: cmp = cmp+ q[k] · (C[Ts][0] +m]][k]− P [t][k])2

31: end for
32: end for
33: end for
34: if cmp < mCmp then
35: for t ∈ [0, 5] do ▷ Time-slices in D1 and D2.
36: for k ∈ K do
37: D1[s][t][k] = P [t][k]
38: D2[s][t][k] = P [t+ 6][k]
39: end for
40: end for
41: mCmp = cmp
42: end if
43: end for
44: end for

Figure 5: Pseudo-code for defining representative artificial days D1 and D2.

www.iiasa.ac.at 14



3 Results for selecting time slices
The key objective of the selection method outlined above is to identify representative time slices
that effectively capture the trends in renewable energy generation and demand throughout the
year. In this section, results obtained from the aforementioned approach are presented. We
selected 48-time slices, each containing three types of hourly data (solar, wind, and demand)
to represent the trend of hourly changes in the west of China. The red line in Fig.6 represents
the original data for 8760 hours, while the blue line represents the selected 48-time slices, as
shown in the figure.

Fig.6 presents a comparison of the annual load duration curves between the original data
(8760 hours) and a selection of 48-time slices.

Figure 6: Annual results of 48-time slices and its comparison with original data.

Fig.7, Fig.8, and Fig.9 illustrate a seasonal load duration curve comparison between the
original data and the selected 48-time slices, separately for solar, wind, and demand.
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Figure 7: Seasonal wind results of 48-time slices and its comparison with original data.

Figure 8: Seasonal solar results of 48-time slices and its comparison with original data.

It is worth noting that the selected time slices closely align with the trend of the original
data, whether observed over the course of a year or on a seasonal basis. This demonstrates the
effectiveness of our approach in capturing the key trends in renewable energy generation and
demand, providing valuable insights for further analysis and modeling.
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Figure 9: Seasonal demand results of 48-time slices and its comparison with original data.

4 Operational model framework
In the previous sections, we discussed the approach for selecting time slices and presented the
results obtained from this approach. These results serve as input data for the direct integra-
tion of short-term variations into long-term models. In this section, we introduce a detailed
operational model framework that is used to establish a soft link with the long-term model.

we consider a single wind-hydrogen system operator that is the owner of an onshore wind
farm with a co-located compressed-gas-based hydrogen energy storage (HES) system. We
assume that the system operator should sign a one-year contract with a steel industry at the
beginning of the year. The contract stipulates the amount of electricity the operator should
supply to the steel industry per hour. It is also agreed that the fluctuation of the total amount
of electricity per week should be within a certain range. The goal of the system operator is to
maximize the cumulative profit over time by computing the amount of electricity to commit to
delivery during the time t. Figure 10 shows the framework of the model.

4.1 Indexing structure
The model uses the following indices and the corresponding sets:
• t ∈ T discrete-time index corresponding to the decision epoch which represents the time

period t.

4.1.1 Decision variables

Decision-makers control the modeled system by decision (control) variables:
• xt the amount of electricity we commit to deliver during time t.
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Figure 10: Model framework

• eint the amount of electricity used to produce hydrogen during the time t.
• eout the amount of electricity generated from the fuel cell and delivered to the industry during

the time t.

4.1.2 Outcome variables

Outcome variables are used for evaluation of the consequences of implementation of the deci-
sions; therefore, at least one of them is used as the optimization objective.

In the model prototype 2 outcomes (both used as criteria in multiple-criteria model analysis)
are defined:
• profit the total profit of the system, and
• penal the total penalty for not delivering electricity as a commitment

4.1.3 Exogenous variables

The variables define the state of the system, of which the values are given and independent
change from other variables.
• yt electricity generated from the wind farm during the time t− 1.
• pt electricity price in market 1 for electricity delivered as a commitment during the time t.
•Wt = (yt, pt): Exogenous state of the system at time t.

4.1.4 State variables

The variables defining the state of the system:
• yht hydrogen generated from the electrolyzer during the time t.
• rt hydrogen energy storage level in the hydrogen tank during the time t.
• St = (yht, rt,Wt) State of the system at time t.

4.1.5 Auxiliary variables

All other variables used in the SMS:
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• xst electricity delivered from the system during the time t.
• shortt electricity shortage between the system can delivery and the commitment during the

time period t.
• xww the amount of electricity delivered during the week w (every 168 hours).

4.2 Parameters
The following model parameters are used in the model relations specified in Section 4.3:
• values of indices (members of sets) specified in Section 4.1.
• ints, s ∈ S: initial state of storage device s.
• efss, s ∈ S: self discharge of storage devices s.
• efis, efos, s ∈ Sh: storage efficiency during charge and discharge.
• efcc, c ∈ C: energy converting efficiency.
• invss: unit investment cost of storage device s.
• invcc: unit investment cost of energy converting device c.
• omcses: unit operational cost of storage device s storing energy e.
• omccec: unit operational cost of energy converting device c generating energy e.
• det: demand of energy e in the time period t.
• pe: price of energy e in the time period t.
• qe: penalty for shortage of energy e.
• caps, s ∈ S: the capacity of storage device s. lcaps ≤ caps ≤ ucaps.
• pows, s ∈ S: the amount of charging/discharging power required for a storage device s.
lpows ≤ pows ≤ upows.

4.3 Relations
In this section, we list the main relations of the above model. The relations include energy
balance, energy storage, penalty, benefits, and others. Details are as follows:
• Energy balance:

yt+1 = einet + eoutwt t ∈ T (9)

yht = eth · einet (10)

hinst = yht (11)

houtst = efs · hinst (12)

eoutft = eff · houtst (13)

• Electricity delivered from the system:

xst = (eoutwt + eoutft) (14)

• Electricity shortage:
shortt = xt − xst (15)

• Hydrogen storage:

rt+1 =


rmax if rt + hinst ≥ rmax

rt + hinst if xt ≤ yt+1, rt + hinst < rmax

rt − houtst if yt+1 ≤ xt < xst

0 if xt ≥ xst

(16)
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rt+1 = rt + hinst − houtst, t ∈ T (17)

• Ensure the hydrogen energy storage is available:

pt
qt

< λ · eth · efs · eff (18)

• Penalty:
penalt = qt · shortt (19)

• Profit:

profitt =

{
pt · xt, if xt ≤ xst

pt · xt − qt · shortt, if xt > xst
(20)

profitt = pt · xt − qt · shortt (21)

• fluctuation:
|xww+1 − xww| ≤ ϵ (22)

5 Conclusion
Renewable energy generation puts forward opportunities and challenges to the energy system.
The high variability and uncertainty associated with renewable energy sources require careful
consideration of energy storage to balance the supply and demand dynamics. In this report, we
present the progress made in developing a model to support the long-term planning and short-
term operation of renewable energy systems. The approach developed by Dr. Julian Hunt and
Dr. Behnam Zakeri for dealing with and selecting aggregated data is reviewed. Results obtained
from this approach are presented. Additionally, we present a symbolic model framework for the
operation of a given renewable energy system. This work serves as the foundation for future
analysis of harmonizing different time-period decisions in energy systems. Future work is
needed to extend the model to support the planning of renewable energy system expansion and
multi-product analysis involving hydrogen. This will allow for a more comprehensive analysis
of the potential of renewable energy systems in meeting the energy demands of the future while
taking into account the complexities and uncertainties associated with these systems.
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