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A B S T R A C T   

Most knowledge about species and habitats is in-homogeneously distributed, with biases existing in space, time 
and taxonomic and functional knowledge. Yet, controversially the total amount of biodiversity data has never 
been greater. A key challenge is thus how to make effective use of the various sources of biodiversity data in an 
integrated manner. Particularly for widely used modelling approaches, such as species distribution models 
(SDMs), the need for integration is urgent, if spatial and temporal predictions are to be accurate enough in 
addressing global challenges. 

Here, I present a modelling framework that brings together several ideas and methodological advances for 
creating integrated species distribution models (iSDM). The ibis.iSDM R-package is a set of modular convenience 
functions that allows the integration of different data sources, such as presence-only, community survey, expert 
ranges or species habitat preferences, in a single model or ensemble of models. Further it supports convenient 
parameter transformations and tuning, data preparation helpers and allows the creation of spatial-temporal 
projections and scenarios. Ecological constraints such as projection limits, dispersal, connectivity or adapt-
ability can be added in a modular fashion thus helping to prevent unrealistic estimates of species distribution 
changes. 

The ibis.iSDM R-package makes use of a series of methodological advances and is aimed to be a vehicle for 
creating more realistic and constrained spatial predictions. Besides providing convenience functions for a range 
of different statistical models as well as an increasing number of wrappers for mechanistic modules, ibis.iSDM 
also introduces several innovative concepts such as sequential or weighted integration, or thresholding by 
prediction uncertainty. The overall framework will be continued to be improved and further functionalities be 
added.   

1. Introduction 

Species distribution models (SDM) are the most widely used 
ecological modelling approaches when the aim is to infer, predict and 
project species assets (or other biodiversity features) in space and time 
(Elith and Leathwick, 2009). These models usually rely on statistical 
relationships between species occurrences and environmental covariates 
based on the niche concept (Araújo and Guisan, 2006; Blonder et al., 
2014; Guisan and Thuiller, 2005). Measures and indicators derived from 
SDM outputs are for example commonly used to inform biodiversity 
survey efforts (Fois et al., 2018), identify areas of potential conservation 
value (Jung et al., 2021) or project the impact of changes in land-use, 
management intensity or climate (Leclère et al., 2020; Leitão et al., 
2022; Santini et al., 2021). Nevertheless there are calls that inferences 
made by SDMs should be more critically interrogated in terms of the 

processes and responses they are able to capture (Evans et al., 2016; 
Hannemann et al., 2016; Lee-Yaw et al., 2022; Weber et al., 2017), 
especially since - as a data-driven method - SDMs are heavily dependent 
on the good availability and quality of data at adequate scales. 

Accurate estimation of changes in biodiversity requires sufficient 
monitoring, which however can be financially and taxonomically (e.g. 
required expertise to survey a species) costly. Most biodiversity occur-
rence data are collected opportunistically, often by citizen scientists, and 
which has resulted in spatial, environmental and temporal biases 
(Hughes et al., 2021; Meyer et al., 2015). Modelling approaches such as 
SDMs usually reach better performance with well curated or systemat-
ically collected datasets as response functions stabilize and spurious 
correlations with some covariates are minimized (Hannemann et al., 
2016; Smith and Santos, 2020). Yet, the reality is that complete or un-
biased sampling coverage for any given species and data source is rarely, 
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if ever achieved. Instead, scientists and landscape managers usually are 
left with multiple heterogeneous data sources, such as range maps, 
citizen-science data, structured surveys and checklists or species traits 
(Isaac et al., 2020; Jetz et al., 2019). This has subsequently lead to 
renewed calls for better data integration in biodiversity syntheses across 
scales (Heberling et al., 2021). 

Species distribution models are particular sensitive to geographical 
or environmental biases in underlying biodiversity data (Baker et al., 
2022; Botella et al., 2020). And although several methods have been 
developed to account to some extent for sampling biases (Chauvier et al., 
2021; Warton et al., 2013), it can be argued that more information on 
the biology of a species is usually known (for example where a species 
broadly persist), that what is usually provided as input to an ecological 
model. Historically, SDM approaches have mostly relied on only single 
data sources (e.g. presence-only records from databases such as GBIF). 
New modelling approaches and frameworks have been developed to 
integrate different data sources into one combined prediction (Fletcher 
et al., 2019; Isaac et al., 2020; Miller et al., 2019). These so-called ‘in-
tegrated’ SDMs have the promise of providing in many cases more ac-
curate, less biased representations of a species niche while also 
accounting for some of the biases that plague biodiversity datasets. 

Integrated SDMs were originally proposed as a method to integrate 
presence-only and presence-absence information to account for biases in 
either (Koshkina et al., 2017). The promise of such an approach is that a 
“high quality” or multiple datasets combined with abundant, but often 
biased or faulty data, such as citizen science records, can improve 
overall parameter estimation by balancing opposing strengths (quantity 
against quality). Previous work has shown that integrating additional 
data can improve the precision of species trend estimates (Hertzog et al., 
2021), account for biases in underlying biodiversity data (Fithian et al., 
2015; Pacifici et al., 2019), help the prediction of species distributions 
(Koshkina et al., 2017; Merow et al., 2017; Peel et al., 2019) and modify 
response functions by accounting for prior knowledge of species- 
environment relationships (Hofner et al., 2011). And although there is 
some evidence that integrated SDMs do not necessarily always perform 
better than standard SDMs using a single data source (Ahmad Suhaimi 
et al., 2021; Simmonds et al., 2020), it is beyond doubt that the necessity 
for data or model-based integration will only increase in the SDM 
literature in the coming years. 

Much of the development of integrated SDMs has been enabled by 
thinking of them as regression formulations. Assuming exclusively 
presence-only information about a species is available, a species distri-
bution can be inferred through a Poisson process (Renner et al., 2015), 
which is statistically equivalent to the popular Maxent framework 
(Renner and Warton, 2013). A particular advantage of this modelling 
paradigm is that – rather than creating “pseudo-absence” points of a 
species as required for example by logistic regressions – modellers are 
able to estimate and project the distribution using randomized (or tar-
geted) “background” samples that can be used to infer the relative in-
tensity of occurrence (Guillera-Arroita et al., 2014; Warton and 
Shepherd, 2010), which comes with fewer assumptions about the true 
absence of a species, while being congruent to logistic regressions 
(Warton and Shepherd, 2010). Additionally, SDMs inferred from a 
Poisson process easily allow the integration of spatial-explicit priors 
through offsets (Merow et al., 2017, 2016), priors (Fletcher et al., 2019) 
or model-based bias controls through integration of other datasets or by 
forcing a certain value (such as maximum sampling bias) during the 
projection phase only (Fithian et al., 2015; Phillips et al., 2009; Warton 
et al., 2013). The paradigm of formulating a SDM as a regression 
formulation has furthermore facilitated the development of methods 
where properties of individual datasets (e.g. presence-only vs presence- 
absence) are taken explicitly into account. These types of model-based 
integration, theoretically based on joint likelihood estimation, are 
among the most elegant but also computationally demanding types of 
integrated SDMs currently in existence (Doser et al., 2021; Fithian et al., 
2015; Isaac et al., 2020; Miller et al., 2019). Given these developments, 

there is a need for an adaptable SDM framework that easily allows to 
integrate the various types of biodiversity information that are out there. 

At this point readers might wonder of the exact gap that yet another 
statistical SDM package is trying to fill, especially given the wealth of 
software already available to researchers (Sillero et al., 2023; Thuiller 
et al., 2009). Although new R-packages for joint inference using multiple 
likelihoods have become recently available (Doser et al., 2021; Mostert 
et al., 2022), they do not offer all the flexibility of integration outlined 
by Fletcher et al., such as for the ability to add offsets, priors or en-
sembles (Fletcher et al., 2019). In addition, there does not yet exist a 
software solution that situates a PPM modelling framework in the 
context of integrated modelling while also allowing for scenario pro-
jections with typical constraints such as dispersal (Seaborn et al., 2020). 
With the ibis.iSDM package (https://iiasa.github.io/ibis.iSDM/) I intend 
to fill this gap, providing a generic wrapper package to integrate various 
types of biodiversity information, and in a way that is modular and 
easily expandable with additional functionalities in the future. The 
package is presented here in terms of its design, structure and key 
functionality as well as through a series of different exemplary use cases 
for constructing integrated SDMs and scenarios. Less emphasis is given 
here to different parameters and supporting modules since those will be 
incrementally added, and in depth detailed on the help pages of the 
pages as well as the online website. 

2. Modelling framework 

2.1. Design philosophy 

The Integrated model for BiodIversity distribution projectionS (or 
ibis.iSDM, https://iiasa.github.io/ibis.iSDM/) aims to provide a series of 
convenience functions for fitting integrated SDMs. It captures in func-
tionality all the different types of integration, such as ensembles, offsets 
and covariates, priors or joint modelling, outlined by Fletcher et al. 
(2019), while also being specific to the biodiversity type to be estimated. 
For example presence-only biodiversity datasets added to a distribution 
object are estimated by default through an inhomogeneous Poisson 
point process model (PPM), which assumes that the true number of in-
dividuals N(y) can be approximated as relative observation intensity λ 
integrated over an area A, e.g. N(y) ≈ Poisson

( ∫

Aλ(s)ds
)
. The intensity λ 

can be estimated as log(λs) = β0 + βkxs + εs based on thinned observa-
tions s, β being the 1 to k coefficients in the model including an intercept 
(β0), x being the covariate values in given area and ε being the model 
error. Inferring environmental suitability through PPMs is usually 
preferable way if only presence-only data is available (Renner et al., 
2015; Warton and Shepherd, 2010), although the ibis.iSDM package 
also supports the common practice of adding “pseudo-absence” points to 
datasets (Fig. 4). 

Most code in the ibis.iSDM package is highly modular as the main 
functionalities have been created in an object-oriented way by making 
use of a object structure inspired by the tidyverse (Wickham, 2016), 
allowing to retain data and functions contained within each object to 
facilitate reuse through other functions (Fig. 1, SI Fig. 1). Not only does 
this facilitate cleaner coding overall, it also makes the code more 
modular with regards to adding datasets or integrating other methods. 
For example, the existing implementation allows to directly add two 
different dispersal simulators, KissMiG (Nobis and Normand, 2014) and 
MigClim (Engler et al., 2012) to constrain future projections (see also 
scenario section below). 

A typical ibis.iSDM workflow begins with defining a modelling 
background (e.g. the area over which a SDM is to be created) to which 
biodiversity data or covariates can then be added (SI Fig. 1). It should be 
noted that preparation of input data is left to the users and can be easily 
achieved through a range of external packages (Sillero et al., 2023; Zizka 
et al., 2019). Additionally, any other information on biodiversity- 
relevant data, such as priors and offsets for habitat preferences or 
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Fig. 1. Schematic and typical workflow of the ibis.iSDM package, where biodiversity and covariates datasets and combined with a series of auxiliary or optional 
modules. Through the use of different engines, response functions towards certain covariates and species distributions can be inferred. Each individual entry 
(hexagon) has its own function and stores internal data that can be accessed in a modular way. Many of the function have multiple variants (indicated by the {*}) 
allowing different data or parameter types to be added. A full list of all functions and examples can be found online (https://iiasa.github.io/ibis.iSDM/) and example 
code can be found in SI Fig. 1. Icons are created by the authors or are under public domain (CC-0). 

Fig. 2. The suitable habitat estimated with a SDM can vary depending on how different datasets are integrated as shown for the European ground squirrel (Sper-
mophillus citellus). The available information for the species is combined either by a) data pooling, b) data pooling but with dataset specific weights, c) mean ensemble 
of different models, d) sequential estimation, e) inclusion of its range as predictor or f) as an offset, g) use of auxiliary climatic limits and priors or h) integrated 
estimation through joint likelihoods. All code and data with covariates to recreate the figures can be found in the supplementary materials. 
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known areas of occurrence, can also be added to the same object (SI 
Fig. 1). Finally, after specifying an engine and training the model, the 
resulting fit can then be visually interrogated, summarized and vali-
dated (Fig. 1) or passed on to construct a ‘scenario’ with different 
(temporal) predictors. The sections below highlights the package func-
tionalities in more depth and also include demonstrations with example 
code and data for each. 

2.2. Integration 

The ibis.iSDM package supports all types of integration outlined by 
Fletcher et al. (2019), some even in multiple different ways (Fig. 2). The 
decision on which type of integration is preferable is specific to the types 
of data available in a given modelling problem. The easiest form of 
integration is to simply combine all point datasets (“pooling”) and the 
package supports pooling with and without weights (Fig. 2a-b), the 
latter can for example give higher weight to potentially fewer, but more 
accurate records (Fig. 2b). Besides data pooling there is support for 
creating model ensembles (“ensemble(…)”) for instance through means 
weighted by performance statistics (e.g., AUC) from independent data 
(Guisan and Thuiller, 2005; Valavi et al., 2021). Ensembles can also be 
constructed for model projections (e.g., scenarios up to 2050) as well as 
for response functions (“ensemble_partial(…)”). However often there 
are not enough data available to reliably fit every type of model, espe-
cially given the demanding nature of some machine learning ap-
proaches, and computation time can be a considerable limitation as 
well, such as for more demanding Bayesian models. The package will 
raise warnings and highlighted messages in case the provided informa-
tion is not sufficient for inferring a species distribution. 

Not always are there multiple point occurrence datasets available for 
a given species, although rarely are they the only information known 
about the biology of a species. In many cases expert information on 
habitat preferences, or a broad delineation of a species range can also 
provide contextual information about a species (Brooks et al., 2019; 
Merow et al., 2017). Ibis.iSDM supports as another type of integration 
the addition of expert delineated - or previous created model predictions 
- as covariates to model objects (Domisch et al., 2016), for example for 
species ranges (“add_predictor_range()”) or elevational limits which 
transforms an elevational covariate into lower and upper bounded 
variables(“add_predictor_elevationpref()”). Alternatively, such infor-
mation could also be added through offsets that affect a regression fit 
and similar methods (e.g. “add_offset_range()” or “add_offset_elevation 
()”) have been implemented in the package (Merow et al., 2017, 2016). 
Specific to each individual engine (defined as algorithmic approach for 
inference and projection, see below) there is also support for adding 
priors on the coefficients towards certain covariates via “add_priors 
(…)”. Priors are usually specified either directly on the coefficients 
(magnitude and sign) or their direction, using for example monotonicity 
constraints (e.g. specifying that a certain variable have to be positive, 
Fig. 2g). Many priors can be particularly useful to avoid non-sensical 
response functions (Hofner et al., 2011), for example when owing to 
differences in grain a known forest-associated species the intended 
directional response towards this variable tends towards a particular 
trend. 

Extending Fletcher et al., there are also options to use dataset specific 
weights or factor interactions to account for differences in included 
datasets (Leung et al., 2019). All these types of integration are also 
supported for inference on single datasets or can be used in sequential 
estimation. For example a potential use case easily enabled by ibis.iSDM 
could be to first fit a model using one biodiversity data source and a 
specific set of covariates such as broad climatic data, and then use the 
output of the resulting prediction as an offset to estimate the distribution 
with a different biodiversity or covariate data. Lastly, integration is also 
possibly through a dedicated model that combines multiple presence- 
only and presence-absence datasets together through a joint likelihood 
in a Bayesian setting (Fithian et al., 2015; Fletcher et al., 2019; Koshkina 

et al., 2017). These models are usually the most computationally 
intensive, but also the most elegant as all integration is done through 
dataset specific likelihoods (Fig. 2h). 

2.3. Different engines 

The backbone of any SDM modelling are the algorithm used for 
inference which in ibis.iSDM are called “engines”. To this date ibis.iSDM 
supports a total of 7 different engines for inferring or projecting the 
relative habitat suitability of biodiversity features. Those can broadly be 
classified into engines using either regressions and or non-parametric 
machine learning approaches and being frequentist or Bayesian in na-
ture. Engines supported are regularized elastic net regressions through 
the glmnet package as also used by the maxnet package (Friedman et al., 
2010; Phillips et al., 2017), Bayesian regularized “Spike-and-Slab” re-
gressions with the BoomSpikeSlab package (Scott, 2022), Bayesian ad-
ditive regression trees through dbarts (Carlson, 2020; Dorie, 2022), 
monotonic gradient descent boosting via mboost (Hofner et al., 2011; 
Hothorn et al., 2022), Extreme Gradient Boosting through xgboost (Chen 
et al., 2023), Bayesian spatial regressions with INLA and inlabru (Bachl 
et al., 2019; Lindgren and Rue, 2015) and general Bayesian regressions 
with stan (Gabry and Češnovar, 2022; Stan Development Team, 2022). 
The glmnet, stan and Bayesian regularized regressions only support 
linear response functions, while the other engines can also make use of 
non-linear estimation. 

Although some engines support only linear response functions, non- 
linearity can be introduced through specific transformations of cova-
riates such as hinge, threshold, quadratic or product derivates, as done 
in the popular maxent/maxnet modelling approach (Merow et al., 2013; 
Phillips et al., 2017). Functionalities to create such derivates are readily 
available when adding covariates to a distribution model (see SI Fig. 1 
and code examples in the supplementary materials). Each of the 
different engines support different types of integration, with some en-
gines being more flexible than others. For example, priors on coefficients 
can in some cases only constrain the directionality of response functions 
(Hofner et al., 2011), and in other cases also the magnitude of expected 
changes in relation to environmental covariates. An comparative over-
view of the capacities of each engine can be found online (https://iiasa. 
github.io/ibis.iSDM/l). 

2.4. Model evaluation 

Model evaluation through independent or withhold data is a critical 
part of the construction of species distribution models (Elith and 
Leathwick, 2009; Valavi et al., 2021). SDMs can be ‘validated’ in both a 
discrete and continuous way, with the former having been criticized for 
being dependent on thresholds applied to predictions of suitable habitat 
(Lawson et al., 2014; Liu et al., 2013). The ibis.iSDM package supports 
both continuous and discrete validation methods via the “validate()” 
function. Continuous validations use error metrics (e.g. RMSE) to infer 
prediction precision (Jung, 2022), while discrete validations can be 
calculated on a-priori mapped thresholded distributions with a range of 
different options from binary to normalized estimation (Fig. 4c). The 
identification of best thresholds for discrete validation can be achieved 
through heuristic searches for local optima in prediction performance 
measures (Márcia Barbosa et al., 2013). Estimated distributions can thus 
be validated (“validate()”, SI Fig. 1) with independent or withheld data 
in a wide range of settings. The ibis.iSDM package does not yet support 
standard approaches such as spatial or spatial-temporal cross splitting 
(using for example the blockCV package, (Roberts et al., 2017)) directly 
in the modelling framework, and users should consider this aspect 
separately in their individual cases as part of the data preparation. 

Lastly it should be highlighted that many commonly applied vali-
dation approaches are not necessarily appropriate when several 
different sources of information exist and best practices in the validation 
of integrated SDMs are still an open research topic as also highlighted by 
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Isaac et al. (2020). This is since (a) the consideration of all available data 
is one of the main points of model-based integration, (b) appropriate 
validation metrics are less straight-forward than for single datasets as 
biases and sampling methods can differ, and (c) any validation dataset 
might not represent the niche and environmental parameters estimated 
by the integrated model. For example, the standard practice of with-
holding parts of the training data for validating a model often means that 
both training and testing data suffer from the same spatial and envi-
ronmental biases (Baker et al., 2022). If, however prior knowledge of the 
biology of a species is integrated in a SDM through a prior or offset, thus 
“nudging” or constraining response functions towards a more sensible 
outcome and ultimately different prediction, the use of any (biased) 
withheld data would likely indicate a reduced predictive performance 
compared to a model without such priors. One idea could be to validate 
SDMs not only based on their spatial predictions, but also on the 
magnitude and direction of their response functions (Smith and Santos, 
2020). Certainly, more conceptual work is needed to design appropriate 
validation schemes for integrated SDMs. 

2.5. Fitting and constraining projections in space and time 

One of the objectives of species distribution modelling is to project 
the likely distribution or suitable habitat of a species into presence, past 
and future. In the simplest case SDM projections are usually made by 
multiplying the coefficients obtained from a previously fitted model 
with a matrix of (future) predictors (Elith et al., 2010; Thuiller et al., 
2009). Such projections can be useful for making future projections and 
often show acceptable realism in independent assessments (Morán- 

Ordóñez et al., 2017; Soultan et al., 2022). Yet, such naïve projections 
assume that species are in equilibrium with their environment and often 
– but not always – neglect factors such as biotic interactions, adaptation 
and dispersal (Araújo and Guisan, 2006; Elith et al., 2010). 

The ibis.iSDM package can project the distribution of biodiversity 
assets to different time periods, by supplying future covariates as multi- 
dimensional array using the “stars” R-package (Pebesma, 2022). Future 
projections can be defined via the “scenario(model)” function which 
requires a previously fitted ibis.iSDM model. After a scenario of pro-
jections has been created it can be summarized through a range of 
metrics (Fig. 3a). Similar as during the model inference, predictor 
transformations and thresholds can be flexibly added (see supplemen-
tary materials). After a scenario has been created, different summary 
methods and metrics of change can be obtained which are useful in 
model-based projections of biodiversity indicators (Leclère et al., 2020). 
As with other functions of the package, users should understand the 
implications of adding certain constraints to a model projection and 
apply reasoning and biological knowledge as appropriate. 

Most SDMs tend to either overfit (leading to a prediction that re-
produces the data) or indicate areas as suitable habitat that might be 
unreachable for the species or not suitable owing to other non- 
considered factors (see Fig. 2). A common and practical way to partly 
address such issues is to constrain the projection to a certain area or 
neighbourhood, although model-based integration can also act as a 
constraint on the parameter space (Miller et al., 2019; Peel et al., 2019). 
Besides the incorporation of spatial constraints during the model 
parametrization, such as by adding projection limits (“distribution(…, 
limits = layer)”) (Cooper et al., 2018) or the inclusion of spatial 

Fig. 3. Future projections of suitable habitat for a virtual species up to the year 2095, with each scenario being run with or without certain constraints related to 
dispersal, barriers or niche limitations. (a) Shows the projected average suitable habitat from 2015 to 2095 (10 year steps) for various scenarios that include 
constraints. (b) Change in thresholded suitable habitat between 2015 and 2095 for a scenario without any constraints (blue line in a). The colour of grid cells in-
dicates which areas have been gained, lost or remained stable between the start and end date. (c) Shows an ensemble of all projections in a) for the year 2095, with 
higher values indicating higher suitability. All code and data with covariates to recreate the figures can be found in the supplementary materials. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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covariates or autocorrelation (“add_spatial_latent()”) (Domisch et al., 
2019), there are furthermore ways to specifically constrain future pro-
jections. The ibis.iSDM package here currently considers dispersal, bar-
rier and adaptability constraints that can be added to a projection 
scenario. 

Adding biological informed constraints to projections of correlative 
SDMs can be seen as another form of data integration, and the resulting 
“hybrid” SDMs have been shown to perform well compared to non- 
constrained SDM when projecting to novel conditions (Zurell et al., 
2016). The most common constrains added to SDMs are those that limit 
or enable the dispersal of populations at the margins of a distribution 
emulating distinct colonization events (Seaborn et al., 2020). The ibis. 
iSDM package supports simple linear and negative exponential dispersal 
kernel that limit dispersal events to certain distances per time step 
(Fig. 3a), as well as more sophisticated simulators based on cellular 
automata such as the popular MIGClM (Engler et al., 2012) or KISSMig R 
packages (Nobis and Normand, 2014). Constraints can also be added on 
suitable habitats, corridors or known boundaries that prevent an 
expansion of a species (Cooper et al., 2018) or on the extent to which a 
species is able to adapt its niche (Bush et al., 2016). Similar as for 
inference, the modular structure of scenario objects and ability to add 
constraints enables convenient expansion of the package (see also 
development plans). 

2.6. Other innovations in the ibis R-package 

There are several other smaller innovations in the ibis R-package, 
which to our knowledge have never been considered or provided in 
similar form in a SDM framework. Besides having an object-based 
specification for integrated SDMs (Fig. 1), the use of Bayesian SDMs 
for estimation also allows for example to visualize not only the mean 
predicted suitability of a species, but also the pixel-based uncertainty as 
calculated from a single model posterior, which can be summarized in 
statistical moments such as standard deviation or the coefficient of 
variation (Fig. 4). Traditionally, uncertainty has been assessed as vari-
ation among different models in an ensemble (Thuiller et al., 2019) as 
also supported by the “ensemble()” function in ibis.iSDM. This however 
captures mainly uncertainty among models, opposed to the uncertainty 
introduced by the data and inferred response function (Hao et al., 2020; 
Thuiller et al., 2019), which is usually in the investigator's main interest 
when capturing uncertainty. Here the ibis.iSDM provides some plotting 
functionalities to visualize more than one moment from a posterior of a 
single model (Fig. 4b). 

Similarly, having a pixel-based uncertainty for individual models 
also allows to create novel types of thresholds. For example, the ibis. 
iSDM package allows with the option ‘min.cv’ to identify those grid cells 
that have a high mean suitability, but also low uncertainty (Fig. 4b). A 
number of other threshold methods are available, for example by 
maximizing validation statistics such as the Area under the Curve (AUC) 

Fig. 4. Single Poisson process model (PPM) 
of a virtual Scandinavian species using 
Bayesian regularized regression. (a) Shows 
the predicted λ of the PPM summarized as 
mean from the posterior. (b) Bivariate 
visualization of both the mean and the co-
efficient of variation from the model pos-
terior. Areas shown in blue have large 
suitability (expressed as λ) while also hav-
ing low relative variation. (c) Predictions 
from b) that have been thresholded to 
maximize the mean and minimize the co-
efficient of variation. This form of threshold 
avoids the separation of areas that are too 
uncertain to be considered suitable (indi-
cated by arrows). Shown are three different 
output formats where the remaining values 
have either been threshold, binned into 
percentiles or normalized. All code and data 
with covariates to recreate the figures can 
be found in the supplementary materials. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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or True Skill Statistics (TSS) using the “modEvA” R-package (Márcia 
Barbosa et al., 2013), or by thresholding with the minimum presence 
values (e.g. the minimum value across occurrence points), fixed or 
percentile values. Finally, all suitability predictions subject to thresholds 
can be created in binary, categorical percentile and normalized outputs 
(Fig. 4c). Thresholding to a normalized or percentile characterization of 
the distribution retains some of the detail of the projected suitability 
distribution, while also removing uncertain areas and noise. 

A general paradigm of the ibis.iSDM framework is to support data 
type specific modelling, e.g. presence-only records are by default always 
inferred as originating from a Poisson point process. However, there 
might be use cases where it is more convenient, faster or better 
explainable to create pseudo-absences points similar as in most of the 
SDM literature (Phillips et al., 2009; Valavi et al., 2021). Functionalities 
have been added to specify how pseudo-absences should be added to 
available occurrence records, such as by sampling them randomly, 
within a buffer, outside a zonal layer or expert range, or by using a target 
background (Phillips et al., 2009; Ranc et al., 2017) using the occurrence 
of other, closely related species (a common practice that can be 
considered as an integration of external information as well). In a simple 
comparison of different approaches using presence-only records of the 
Iberian frog Discoglossus galganoi (Fig. 5), I find that sampling pseudo- 
absences outside an expert-range and using human population density 
as bias correction performs best (AUC = 0.989, TSS = 0.978), out-
performing even targeted background sampling (AUC = 0.940, TSS =
0.88). Although this simple demonstration should not serve as a 
comprehensive assessment, it again demonstrates the value of using 
additional sources of biodiversity information for the construction of 
SDMs. 

3. Next steps and further development plans 

New advances and literature on how to integrate different data in 
SDM frameworks continue to be published every year. This R-package 
aims to offer support for multiple types of data integration, but it does 
not claim to be the single modelling framework to integrate all different 
approaches, and other packages to fit SDMs might be more useful for 
specific use cases (Sillero et al., 2023). Yet, the package is in continuous 
development and will be gradually improved as time allows. Since many 
of the functions to fit or project SDMs in this package are designed as 
modular in nature, there are imminent opportunities for expanding the 
package with new constraints and integration options. 

There are many methodological ways to integrate different data in 
(spatial) regression model and projections. For example, in a public 
health context Arambepola et al. have developed methods to combine 
polygon and point estimates via disaggregation regressions so as to 
downscale critical health related indicators in the absence of finer 
resolved information (Arambepola et al., 2022). Such approaches 
naturally connect to the design philosophy of the ibis.iSDM package and 
similar approaches could be applied to range maps and presence-only 
records. Other newly developed R-packages allow to infer species oc-
cupancy by integrating structured survey with presence-only records, 
innovatively also making use of nearest-neighbour gaussian process 
regressions for spatially constrained occupancy models (Doser et al., 
2021). Integrated modelling could also be used to incorporate occur-
rence of multiple different species using for example factor interactions 
(Leung et al., 2019), multi-nominal predictions using for example con-
volutional neural networks (Deneu et al., 2021) or co-occurrences 
through jSDM frameworks where feasible in the context of data inte-
gration (Ovaskainen et al., 2017, 2016). Integrated SDMs are likely the 
most useful in situations where only limited high quality data exist, as 
most more advanced modelling techniques are quite demanding with 
regards to the minimum amount of data required (Merow et al., 2014). 
Nevertheless, further work is necessary to comparatively assess the 
performance and accuracy of different types of integration such as those 
outlined in this work. 

Integrating data into SDMs can be beneficial to increase the biolog-
ical realism of predictions. However, especially when making future 
predictions, SDMs have a number of short-comings, for example by 
relying on the assumption that species or habitats are in equilibrium 
with their environment (Elith et al., 2010). One way to account for such 
conditions is to make SDMs temporally explicit, so that response func-
tions are spatially and temporally varying (Soriano-Redondo et al., 
2019), which can help to make better short to medium term forecasts. 
Another option is to make explicit assumptions through pre-defined 
processes in mechanistic SDMs, where specific species-environment re-
lationships and the demographic structure and spatial placement of 
current and future populations can be simulated (Briscoe et al., 2019). 

Mechanistic SDM approaches have long been recognized as being 
particular useful for projections into unknown and non-equilibrium 
environments (Briscoe et al., 2019; Kearney and Porter, 2009), or for 
estimating factors related to demography or the dispersal of individuals, 
which makes them particularly useful for conservation management 
problems that go beyond the conservation of suitable habitats (Zurell 

Fig. 5. Validating different practices of pseudo-absence generation using the Iberian frog Discoglossus galganoi as model species. (a) Showing measures of the area 
under the curve (AUC) and true skill statistic (TSS) calculated on withheld data for models using different practices of pseudo-absence generation in ibis.iSDM. 
Horizontal lines indicate 5% improvement steps. Simulations include pseudo-absence generation through random, distance, minimum convex polygons, zonal, range 
and co-generic targeted background creation. (b) Weighted mean ensemble prediction of individual models, with larger values indicating higher habitat suitability 
for the species. All code and data with covariates to recreate the figures can be found in the supplementary materials. 
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et al., 2022). In the ibis.iSDM package there are already a few dispersal 
simulators implemented (see scenario section above) and there 
furthermore plans to allow for seamless integration with the range-
Shifter eco-evolutionary platform (Bocedi et al., 2021). Another idea is 
to enable support for dedicated equations, for example for population 
growth or microclimatic thresholds (Schouten et al., 2020), and inte-
grate them into inference and projections (Talluto et al., 2016). Yet, 
given the data needs and parameter demands for most mechanistic 
SDMs, and the influence they can have on simulation outcomes, the use 
of fully mechanistic SDMs will likely remain to limited to specific case 
studies and model species. Nevertheless, the consideration of further 
mechanistic modelling approaches can be seen as an important step 
towards more integrated models. 

Code and data availability 

The ibis.iSDM R-package can be openly downloaded at https://gith 
ub.com/iiasa/ibis.iSDM. A R CRAN release is planned in the future. 
All code and example data used to create the figures in this work is made 
openly available in the Supplementary Materials (https://osf. 
io/a6w2k/). 
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Gabry, J., Češnovar, R., 2022. cmdstanr: R Interface to “CmdStan.”. 
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., 2014. Maxent is not a presence- 

absence method: a comment on Thibaud et al. Methods Ecol. Evol. 5, 1192–1197. 
https://doi.org/10.1111/2041-210X.12252. 

Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple 
habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461- 
0248.2005.00792.x. 

Hannemann, H., Willis, K.J., Macias-Fauria, M., 2016. The devil is in the detail: unstable 
response functions in species distribution models challenge bulk ensemble 
modelling. Glob. Ecol. Biogeogr. 25, 26–35. https://doi.org/10.1111/geb.12381. 

Hao, T., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., 2020. Testing whether 
ensemble modelling is advantageous for maximising predictive performance of 
species distribution models. Ecography 43, 549–558. https://doi.org/10.1111/ 
ecog.04890. 

Heberling, J.M., Miller, J.T., Noesgaard, D., Weingart, S.B., Schigel, D., 2021. Data 
integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. U. S. A. 118, 
e2018093118 https://doi.org/10.1073/pnas.2018093118. 
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