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Abstract 

Key message  We propose a framework to derive the direct loss of aboveground carbon stocks after the 2020 
wildfire in forests of the Chornobyl Exclusion Zone using optical and radar Sentinel satellite data. Carbon stocks were 
adequately predicted using stand-wise inventory data and local combustion factors where new field observations are 
impossible. Both the standalone Sentinel-1 backscatter delta (before and after fire) indicator and radar-based change 
model reliably predicted the associated carbon loss.

Context  The Chornobyl Exclusion Zone (CEZ) is a mosaic forest landscape undergoing dynamic natural disturbances. 
Local forests are mostly planted and have low ecosystem resilience against the negative impact of global climate and 
land use change. Carbon stock fluxes after wildfires in the area have not yet been quantified. However, the assessment 
of this and other ecosystem service flows is crucial in contaminated (both radioactively and by unexploded ordnance) 
landscapes of the CEZ.

Aims  The aim of this study was to estimate carbon stock losses resulting from the catastrophic 2020 fires in the CEZ 
using satellite data, as field visitations or aerial surveys are impossible due to the ongoing war.

Methods  The aboveground carbon stock was predicted in a wall-to-wall manner using random forest modelling 
based on Sentinel data (both optical and synthetic aperture radar or SAR). We modelled the carbon stock loss using 
the change in Sentinel-1 backscatter before and after the fire events and local combustion factors.

Results  Random forest models performed well (root-mean-square error (RMSE) of 22.6 MgC·ha−1 or 37% of the 
mean) to predict the pre-fire carbon stock. The modelled carbon loss was estimated to be 156.3 Gg C (9.8% of the 
carbon stock in burned forests or 1.5% at the CEZ level). The standalone SAR backscatter delta showed a higher RMSE 
than the modelled estimate but better systematic agreement (0.90 vs. 0.73). Scots pine (Pinus sylvestris L.)-dominated 
stands contributed the most to carbon stock loss, with 74% of forests burned in 2020.

Conclusion  The change in SAR backscatter before and after a fire event can be used as a rough proxy indicator of 
aboveground carbon stock loss for timely carbon map updating. The model using SAR backscatter change and back-
scatter values prior to wildfire is able to reliably estimate carbon emissions when on-ground monitoring is impossible.
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1  Introduction
A disaster at the Chornobyl (Chernobyl) Nuclear Power 
Plant in northern Ukraine (1986) was ranked as the sec-
ond largest (after the Bhopal tragedy, India, 1984) tech-
nogenic catastrophe in human history (Tikhomirov 
& Scheglov 1994). A substantial amount of long- and 
medium-lived artificial radionuclides were deposited in 
the surrounding natural environment and across human-
modified landscapes such as croplands (Evangeliou et al. 
2016). A distinct area around the Chornobyl Nuclear 
Power Plant encompassing abandoned farmlands and 
planted forests affected by high radioactive contamina-
tion rates was set aside as the Chornobyl Exclusion Zone 
(CEZ) (Yoschenko et  al. 2017). Highly limited silvicul-
ture and uncontrolled natural succession across former 
croplands accelerated the transition of the CEZ area to a  
complex mosaic of forest and non-forest vegetation, 
with spatial aggregations of homogeneous planted  
forest and heterogeneous naturally vegetated patches. 
In the last decade, this complex landscape configuration 
has been dynamically shaped by multiple wildfire events 
(Beresford et al. 2021).

Wildfires are among the most important agents of natural  
forest disturbances in regions such as Fenno-Scandia 
(Clear et  al. 2014), Central Europe (Neumann et  al. 
2022), Northern Asia (Feurdean et  al. 2020), Australia 
(Tran et al. 2020), and Pacific North America (Halofsky 
et al. 2020). The extent, frequency, and severity of these  
fires are increasing under global climate change (Zheng 
et al. 2021). In Ukraine, a majority of wildfires are caused 
by humans: the practice of illegal stubble grass burning 
by farmers remains the main reason for ignitions (Ager 
et al. 2019). Due to access restrictions and the low den-
sity of the human population in the vicinity of the CEZ, 
the area is prone to catastrophic fire events. Scots pine 
(Pinus sylvestris L.) forests represent a typical Soviet-era 
legacy when even-aged monocultures were perceived by 
conventional forest regeneration practices as the only 
possible option, disregarding changes in socio-economic  
and ecological conditions (Shvidenko et  al. 2017). Lack 
of conventional forest management (i.e. absence of  
silvicultural treatments such as regular thinning and 
dead wood removal) in these forests led to accumula-
tion of fuels, thus increasing the risk of ignitions and the 
rate of spread of wildfires occurring near CEZ borders  
(Matsala et al. 2021b).

Wildfires cause increased carbon emissions (loss to the 
atmosphere) from forests due to direct burning of bio-
mass (tree foliage, understorey, litter, partial consump-
tion of standing live and dead trees, downed tree boles, 
and small branches) and indirectly by causing mortality 
of damaged trees that emit carbon via decomposition. 
A number of empirical and modelling approaches exist 

to account for carbon emissions during forest wildfires 
(Gerrand et  al. 2021). Methods based on remote sens-
ing (satellite), mostly using optical bands, are frequently 
applied across the globe for that purpose (Cruz-Lopez 
et al. 2019; Gale and Cary 2022). This type of data, how-
ever, only partially represents forest biomass compart-
ments (stem and crown biomass visible from above). That 
is, only indirect estimation can be made for understorey 
biomass compartments using a correlation from allo-
metric relationships between growing stock volume and 
understorey.

Delta (difference) of the normalized burn ratio (NBR) 
index based on optical infrared band values is the most 
frequently applied remote-sensing indicator of wildfire 
severity (e.g. Tran et  al. 2018; Sannigrahi et  al. 2020). 
Additionally, it was extensively used to derive biomass 
change estimates (including loss caused by natural and 
human disturbances) extracted from temporal segmen-
tation algorithm outputs (Nguyen et  al. 2020). Another 
common approach is to assign empirical combustion 
factors (percent of biomass compartment typically lost 
during burning) to pre-fire biomass stock estimates (e.g. 
Volkova et  al. 2019; 2022). However, NBR reflects only 
spectral changes and cannot fully address biomass loss, 
as, inter alia, dead trees continue to store carbon. Back-
scatter satellite data acquired by synthetic aperture radar 
(SAR) spacecraft have shown an additional capacity to 
characterize changes in forest structure and biomass 
stocks (Tanase et al. 2019; Bruggiser et al. 2021). In con-
trast to optical satellite data, it captures the differences 
in the textural sharpness of the surface. That is, trees 
killed by fire with burned canopies are assumed to reflect 
slightly less microwave backscatter (fewer leaves and 
twigs decrease the volume scattering effect), while the 
relative spectral loss expressed by delta NBR is assumed 
to be higher and tends to overestimate the real instant 
carbon loss (Tanase et al. 2015). The combination of these 
types of satellite data has become extremely efficient with 
the launch of the Sentinel-2 mission (2015) in addition to 
Sentinel-1 SAR spacecrafts (2014).

Dense time series of satellite imagery provide a robust 
background to fit spatially explicit statistical models of 
biomass or carbon stocks. Recent studies have shown 
that reliable biomass estimates over time can also be 
achieved using a single-date inventory of forest attributes 
(needed to calculate carbon storage, Nguyen et al. 2020). 
This is crucial for carbon inventories in the CEZ, which 
is characterized by a dynamically changing environment 
and has limited human access due to radioactive con-
tamination. The Russian military invasion of 2022 caused 
new restrictions on visits to the area near the state bor-
der of Ukraine (including the CEZ) and on any aerial data 
acquisitions to monitor burned sites. Thus, we attempted 
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to estimate carbon loss from forest ecosystems following 
the largest CEZ wildfire that burned in 2020 based on a 
single-date forest inventory (2016), local forest biomass 
combustion factors, and satellite data from the Sentinel 
time series. We relied on the post-fire change in Senti-
nel-1 backscatter instead of the difference in the optical 
range of the electromagnetic spectrum (e.g. delta NBR) 
to minimize possible carbon loss overestimation. That is, 
we suggest that the delta of radar backscatter can more 
comprehensively capture the change in carbon stock in 
the main biomass compartment — stemwood. Our spe-
cific objectives were two-fold: (1) to map carbon stocks 
using both optical and SAR Sentinel imagery and (2) to 
compare modelling approaches estimating relative car-
bon loss (%) after the 2020 wildfire using two approaches. 
The first approach is based on the standalone Sentinel-1 
backscatter delta predictor, which simply depicts the dif-
ference between pre- and post-fire Sentinel-1 imagery. 
The second approach is based on the regression model 
that fits the carbon loss using four Sentinel-1 predictors 
(two pre-fire backscatter indicators and their post-fire 
delta). We believe this mapping effort may uncover the 
paramount importance of SAR satellite data to derive 
accurate and cost-effective estimates of forest carbon 
change after catastrophic fires in regions with similar 
biogeographic conditions.

2 � Material and methods
2.1 � Study area and local fire regime
The CEZ, with an area of 2600 km2, was set aside after the 
1986 nuclear disaster in northern Ukraine. The CEZ was 
formed to encompass the forests with the highest level of 
contamination by 137Cs, 90Sr, and transuranium elements 
(Tikhomirov & Scheglov 1994). The CEZ territory is rep-
resented by a portion of the Eastern European Plain (ele-
vation does not exceed 200 m above sea level) with low, 
swampy left and high right banks of the Prypiat River. 
The main area on the right bank of the Prypiat River is 
covered by forests and abandoned croplands reverting to 
forest. The dominant local tree species are Scots pine, sil-
ver birch (Betula pendula Roth.), black alder (Alnus gluti-
nosa (Gaertn.) L.), and European oak (Quercus robur L.).

The tree cover in the CEZ according to remote-sensing 
data was 41% in 1986 (Matsala et al. 2021a) and reached 
59% in 2020. Forest management activities were strictly 
limited, and agricultural activities were fully prohib-
ited. The absence of thinning has largely contributed to 
fuel accumulation (Ager et al. 2019) and therefore to the 
occurrence of catastrophic wildfires.

The recent catastrophic wildfire in April 2020 was 
ignited outside the western border of the CEZ. Fire 
moved through young forest regrowth and dead wood 
accumulated after the 2015 wildfire to mature Scots 

pine forests in the central part of the CEZ. Other fire 
events (in April 2020) were located south of the Chor-
nobyl Nuclear Power Plant, in the southern part of the 
CEZ, and on the left bank of the Prypiat River. In total, 
the 2020 wildfire burned ~ 38,000 ha of forest in the CEZ 
(Fig. 1).

2.2 � Forest attribute training and validation data
The main source of training data for the regression model 
of carbon stocks was a dataset of forest polygons inven-
toried in 2016 (Fig.  2). Each polygon (~ 40,000 in total) 
represented a distinct forest patch with common forest 
characteristics and tree species composition. Mean stand 
characteristics within each polygon were defined by vis-
ual inspection by trained members of inventory crews 
by calipering tree diameters at breast height (DBH) and 
measuring heights of selected trees using altimeters.

We randomly sampled two stratified datasets from the 
CEZ forest polygon dataset: one for the calibration of 
the carbon stock model and another for the validation 
of model performance. Both datasets were stratified by a 
combination of stand age and main tree species in a stand 
(Table 1).

Each sample group (Table  1) contained 381 polygons 
to train the model and 205 polygons for validation. The 
number of ‘model training’ polygons was defined to 
obtain a 95% confidence level with a 5% margin of error 
associated with a total ‘population’ of 40,000 (total num-
ber of polygons). The number of ‘validation’ polygons was 
defined under the same conditions but with a 7% margin 
of error.

Forest attributes for each polygon (mean stand DBH, 
average tree height, relative stocking (value between 0 
and 1), site index (according to the Ukrainian encoding  
system), stand age, and dominant tree species) were 
used to calculate the size of biomass compartments and  
carbon stocks.

2.3 � Carbon estimation
We approximated the biomass (both live and dead) stocks 
for all sample groups using allometric models described 
in Bilous et  al. (2017), Lakyda et  al. (2019), and Myro-
niuk et al. (2020). Biomass stocks were calculated based 
on forest polygon attributes for aboveground live (stems 
outside bark, tree branches and foliage, understorey, 
green forest floor) and dead (snags, logs, fine litter, and 
coarse (d > 1 cm) branches) biomass. The carbon content 
was assumed to be 50% of the biomass, except for crown 
foliage, understorey, green forest floor (49%), and fine  
litter (37%).

The calculated carbon stocks for all biomass compart-
ments were summed to derive the total estimates used in 
model training and validation.
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2.4 � Remote‑sensing data and regression carbon stock 
model

We used the median composites of Sentinel-1 and  
Sentinel-2 images acquired during the on-leaf sea-
son (25 April — 25 September) in 2016. We used the 
top-of-atmosphere reflectance multispectral images 
because the surface reflectance data were available only 
starting in April 2017. Multispectral variables from 
cloudless median composites included three visible 
(red, green, blue), near-infrared (NIR), four red-edge, 
and two shortwave-infrared band values. Additionally, 
the normalized difference vegetation index (NDVI) 
based on NIR and red values was computed. Radar 
variables included backscatter values at two polariza-
tions of Sentinel-1 C-band ground range detected data: 

vertical–vertical (VV) and vertical-horizontal (VH)  
converted to decibels. These two datasets were corrected 
on the Google Earth Engine platform (thermal noise 
removal, radiometric calibration, and terrain correction). 
Then, radar datasets were filtered with a Lee speckle fil-
ter. In total, 13 variables were used to calibrate the car-
bon stock random forest (RF, Breiman 2001) model.

We also tested alternative predictor combinations: 
‘visible’ and infrared predictors, ‘visible’ and Sentinel-1 
backscatter predictors, and two standalone Sentinel-1 
backscatter predictors. The first combination (‘visible’ 
and infrared predictors) represents a classic option 
when only optical data are available. The second combi-
nation is designed based on our assumption that infra-
red band values can underestimate carbon in burned 

Fig. 1  Chornobyl Exclusion Zone (CEZ) with forest mask (grey, as for 2020 based on Matsala et al. (2021b)) and fire perimeters (orange, a). The black 
dashed line shows the CEZ boundary at a larger geographical scale (b). Aerial image acquired over the example part of the study area (marked by a 
red circle on a) (c). Delta of Sentinel-1 backscatter of VH polarization for the example part of the study area (d). Delta NBR levels for the example part 
of study area (e)
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areas (as standing dead trees without foliage — snags — 
severely lack chlorophyll content to reflect in infrared 
part of the electromagnetic spectrum), and ‘visible’ and 
Sentinel-1 backscatter predictors could predict total 
aboveground carbon with lower bias. The third option 
was used to understand how forest carbon stocks could 
be predicted ignoring the optical characteristics of tree 
species and chlorophyll content at all.

The model was trained based on explanatory variables 
extracted from the median Sentinel-1 and Sentinel-2 
composites. The RF model was run with default hyper-
parameters: the number of decision trees in an ensemble 
was 500, and the number of variables selected at each 
decision tree split was a square root of the number of 
variables, i.e. √13. The RF approach was chosen among 
different machine learning methods because it is fast, 
produces reliable outputs without long hyperparameter 

Fig. 2  General workflow of the study. Stand-wise CEZ forest inventory data and Sentinel satellite imagery are used to predict the aboveground 
carbon stock for 2016. Then, the forest area burned in 2020 is defined using delta NBR zones. Post-fire carbon on training forest polygons is 
calculated by applying local combustion factors. The relative carbon loss is derived using the stand-alone delta of backscatter at VH polarization or 
based on the model calibrated with four SAR-based predictors

Table 1  Stratification of training and validation data on forest 
attributes

Sample group Stand age, year

Young Scots pine 1–40

Middle-aged Scots pine 41–80

Mature Scots pine  > 80

Young silver birch 1–20

Middle-aged silver birch 21–50

Mature silver birch  > 50

Young and middle-aged black alder 1–40

Mature black alder  > 40

European oak Any

Common aspen (Populus tremula L.) Any
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tuning, and returns the relative importance of model var-
iables based on the increase in model errors if excluding 
such variables from the set.

We estimated the performance of the carbon stock RF 
regression model based on the root-mean-square error 
(RMSE) and its relative value (% to the mean of a sam-
ple). Additionally, an agreement coefficient (AC) was cal-
culated based on geometrical mean functional regression 
(GMFR) between the observed and predicted values (Ji & 
Gallo 2006; Riemann et al. 2010). GMFR is a symmetric 
regression function where both observed and predicted 
values could be a source of error. According to Riemann 
et al. (2010), it is used to derive a systematic and unsys-
tematic difference. The systematic agreement coefficient 
(ACsys) shows the difference between the 1:1 line and 
the GMFR fit. The unsystematic agreement coefficient 
(ACuns) shows a variation in the data points around the 
GMFR fit. AC is a product of ACsys and ACuns; all three 
metric values range between 0 and 1, with 0 indicating a 
lack of agreement and 1 representing full agreement. All 
performance metrics were computed for the validation 
sample polygon dataset (for 2016), which was not used in 
model calibration.

The model was calibrated in the R environment, and 
raster data were downloaded from the Google Earth 
Engine platform (Gorelick et al. 2017).

2.5 � Carbon loss modelling
We modelled carbon loss in four steps. First, we 
extracted burned areas from Sentinel-2 composites using 
the change in NBR values (delta NBR) between 2020 and 
2019. Burned areas were then classified into three dis-
crete levels of fire severity outlined in Key and Benson 
(2006) with the following delta NBR thresholds: severe 
loss (0.67 and higher); moderate loss (0.33–0.66); and low 
loss (0.10–0.32). Modal NBR values calculated within for-
est inventory polygons and fire severity levels were used 
as a reference to predict relative carbon loss.

Second, we calculated carbon loss for each forest 
inventory polygon within the area burned in 2020. We 
used 2282 polygons of forest stands dominated by Scots 
pine, 94 polygons with black alder stands, and 339 poly-
gons with silver birch stands. We used completely burned 
forest polygons in 2020 that were not burned during the 
large April 2015 wildfires.

Field data collection within the CEZ was strictly lim-
ited due to the radioactive contamination and related 
legal access restrictions since 1986, and since 2022, it 
has been rather impossible due to landmine dissemina-
tion and military activities. Hence, the ground truth of 
relative carbon loss was derived from forest inventory 
polygons using modelling. Carbon loss for each polygon 
was calculated using combustion factors and three fire 

severity levels. Combustion factors are relative propor-
tions of biomass (or carbon) stocks totally burned during 
wildfire and are dependent on the delta NBR level. These 
combustion factors for the CEZ (Table 2) are a product 
of an extensive literature review for temperate forests and 
conversations with CEZ forest managers who visited sites 
burned in 2020.

Third, we predicted relative (%) carbon loss only for 
the forest area burned in 2020. This predicted percent-
age could be applied to pre-fire carbon stock to update 
it and thus calculate post-fire carbon stock. We followed 
two strategies to predict carbon loss: using a standalone 
Sentinel-1 backscatter predictor as a proxy indicator and 
fitting a specific regression model. To fit the latter, we 
used four Sentinel-1 backscatter predictors, i.e. 2016 pre-
fire Sentinel-1 backscatter values of VV and VH polari-
zation and their relative % change values compared to 
2020 post-fire backscatter values. Initial visual examina-
tions of Sentinel-1 backscatter data showed that the stan-
dalone Sentinel-1 backscatter (VH polarization) relative 
(%) delta could be used as a contrasting proxy indicator 
of relative carbon loss. Both outputs (agreement with 
this standalone Sentinel-1 backscatter % change and 
regression model predictions) were tested for systematic 
(ACsys) and unsystematic (ACuns) agreement and the level 
of RMSE compared to the ground truth of relative carbon 
loss.

In the fourth step, the carbon stock in burned for-
est areas (2020) was calculated as the initial carbon 
stock (2016) adjusted by the relative carbon loss (%). We 
derived carbon loss estimates by attributing them to the 
tree species map. The tree species map originated from 
the RF classification of forest masks based on inventory 
data and spectral (Sentinel-1 and Sentinel-2 band values) 
and auxiliary (elevation from Shuttle Topographic Radar 
Model, 2000) predictors for 2016. Carbon was estimated 

Table 2  Local combustion factors used in the study

Values range from 0 (0% of biomass (carbon) loss during wildfire) to 1 (100%)

Biomass compartment Combustion factor based on delta 
NBR level

Low Moderate Severe

Stem bark 0 0.1 0.3

Branches in tree crowns 0 0.1 0.2

Foliage in tree crowns 0 0.4 0.6

Understorey 0.1 0.6 1

Green forest floor 0.5 0.7 1

Snags 0 0 0.3

Logs 0 0.3 0.6

Fine litter 0.5 0.7 1

Litter of coarse branches 0 0.3 0.5
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for five mapped classes: forests dominated by Scots pine,  
black alder, European oak, silver birch, and areas burned 
in 2015. We applied the approach described in Olofsson  
et  al. (2014) to derive 95% confidence intervals (CI) of 
area estimates per class. The same approach was used  
to derive the margin of error for mean estimates of  
predicted carbon loss (1):

where ME — margin of error, Mg C·ha−1; SD — stand-
ard deviation of predicted estimates, Mg C·ha−1; and 

√
n 

— square root of sample size per strata. CI (95%) was 
defined as ± ME and with z-score as 1.96.

We derived the uncertainty of total carbon stock loss 
estimates for Scots pine, silver birch, and black alder 
stands (as stands of European oak and areas burned in 
2015 were not represented in model calibration) (2):

where Closs — total carbon loss estimated per strata (area 
of strata multiplied by mean carbon loss per strata); 
%CIarea — CI of area estimate per strata relative to this 
area estimate (%); and %CIstock — CI of carbon loss esti-
mate relative to the mean estimate of predicted carbon 
loss (%).

(1)ME = z
SD
√
n

(2)Uncertainty = Closs · (%CIarea+ %CIstock)

The data and code to generate models and build graphs 
are available at the Zenodo repository (Matsala et al. 2023).

3 � Results
3.1 � Carbon stock model based on inventory, Sentinel‑1, 

and Sentinel‑2 data
We found that all red-edge band predictors from the 
training dataset contributed the least to model perfor-
mance. Thus, those were excluded from the final RF 
model of carbon stock. The carbon stock model per-
formed well on the validation dataset: 22.6 Mg C·ha−1 
of RMSE or 37% of the mean (Fig.  3a). The devel-
oped model showed good (60%) unsystematic agree-
ment and strong systematic agreement (84%) despite 
a clearly visible trend to underestimate high carbon 
values. The most relatively important predictors 
(Fig. 3b) were SWIR2, NIR, and SAR backscatter of VV 
polarization.

The RF model trained on all (‘visible’, infrared, and SAR 
backscatter) predictors generally performed better than 
the other three options (Fig. 4). For all four options, the 
ACsys metric was quite similar (slightly above 0.80), indi-
cating an almost equal symmetric distribution of pre-
dicted values along the fit line. In all cases, the models 
had a bias, resulting in underestimation of the high car-
bon stocks. However, the variation in predicted values 
increased for alternative variable set options; a lower 

Fig. 3  Carbon model performance (validation data of 2016, a). Relative importance of Sentinel-1 and Sentinel-2 predictors defined by the RF 
algorithm (b)
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number of predictors resulted in lower ACuns values. The 
carbon stock (2016) map for CEZ forests is illustrated in 
Fig. 5; areas damaged by 2015 fires are clearly visible in 
the western and central parts of the CEZ. It also shows a 
difference between mature planted forests and scattered 
patches of young natural forests occurring on abandoned 
croplands.

3.2 � Carbon loss modelling using Sentinel‑1 backscatter 
predictors

The standalone Sentinel-1 backscatter delta of VH polari-
zation showed close agreement with the relative car-
bon loss values calculated using inventory data, delta 
NBR levels, and empirical combustion factors (Fig.  6a). 
Dependence on discrete NBR levels resulted in low 
unsystematic agreement (27%), but the level of bias was 
generally low (90% systematic agreement). The carbon 
loss model (2016–2020) calibrated using all four Sen-
tinel-1 backscatter predictors also showed adequate 
performance: the RMSE was lower, namely, 3.9% of the 
relative carbon loss (42% of the mean relative carbon 
loss). The model showed slightly higher bias (73% of sys-
tematic agreement) but also lower unsystematic agree-
ment and a tendency to underestimate relative carbon 
loss values > 20%.

The total loss of carbon stock resulting from the 2020 
catastrophic wildfire was estimated at 156.3 Gg C or 9.8% 
of the 2016 carbon stock in damaged forests (Table  3). 
Scots pine stands were the most affected by carbon loss. 
The next highest total relative carbon loss (11.4% of the 
2016 carbon stock) was observed in silver birch stands, 
which also had the second highest forested area burned 
in 2020 (17%). The small total carbon loss to black alder 
and European oak stands could be attributed to the insig-
nificant stand area and the high site humidity. Median 
estimates of relative (%) carbon loss within a specific 

hexagonal grid are illustrated in Fig. 7. Given the carbon 
stock predicted by the stock model for the entire CEZ 
area (2016), the wildfire that occurred in 2020 resulted 
in a 1.5% instant loss of carbon stock. Almost 3/4 of this 
instant carbon loss was contributed by Scots pine for-
ests (Table 3); this pattern is clearly visible in Fig. 8c and 
d. Higher losses of aboveground carbon stocks in these 
Scots pine stands (Fig.  8d) could be visually linked to 
higher delta NBR levels (Fig. 8b).

4 � Discussion
4.1 � Carbon stock model based on inventory, Sentinel‑1, 

and Sentinel‑2 data
We predicted forest aboveground carbon stocks in a 
spatially explicit manner using optical and SAR remote-
sensing data. Our RF model, trained on single-date 
inventory data, achieved good results in terms of both 
RMSE and bias estimated on the validation dataset 
(Fig.  3a). We revealed that optical (with red-edge band 
values excluded) and microwave predictors together 
provide better precision (lower RMSE), which conforms 
with other studies (Cutler et al. 2012; Silveira et al. 2022). 
For instance, Silveira et al. (2022), in their country-wide 
forest biomass mapping in Argentina, discovered that 
Sentinel-1 VH polarization is superior in predicting tree 
heights and basal area, while VV polarization largely con-
tributes to canopy cover estimation. In our study, Senti-
nel-1 predictors were also among the most important in 
the RF model (Fig.  4b). The attempt to predict carbon 
using standalone SAR (without optical covariates) data 
(Fig. 5c) showed poorer performance than other predic-
tor combinations; however, biomass mapping can report-
edly rely only on this type of satellite data (e.g. study of 
Santoro et al. (2021) for boreal forests in Sweden). Addi-
tionally, SAR data have been frequently used to map 
forest biomass, carbon, and their changes over tropical 

Fig. 4  Carbon model performance (validation data of 2016) of alternative variable options: ‘visible’ and infrared range of spectrum (a); ‘visible’ and 
microwave range of spectrum (b); microwave range of spectrum only (c)
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Fig. 5  Aboveground carbon stock prediction (2016) based on the RF model with predictors representing ‘visible’, infrared, and microwave ranges of 
electromagnetic spectrum. Map is at 10-m spatial resolution

Fig. 6  Agreement between the standalone predictor of SAR backscatter of VH polarization and carbon loss based on inventory data (a). Carbon 
loss model performance (b)
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regions, as optical sensors cannot penetrate the persis-
tent equatorial cloud cover occurring almost all year (e.g. 
Debastiani et al. 2019). Since cloudless Sentinel-2 scenes 
in spring and autumn seasons are rather rare in the CEZ 
area, SAR data are exclusively used for timely carbon 
map updating (e.g. after disturbances).

There is a relatively long record of utilizing L-band 
SAR data to map continuous forest attributes; this 
microwave wavelength (23 cm) is considered to reliably 

capture changes in vegetation structure (Basuki et  al. 
2013; Santoro et  al. 2021), as tree trunks and large 
branches contribute to measured radar backscatter. 
However, the spatial resolution of images acquired by 
these satellites is lower (e.g. ALOS-PALSAR-2 pixel 
is 25  m). The Sentinel-1 C-band has a shorter wave-
length and is harnessed to capture both textural dif-
ferences and the water content of surfaces. This study 
highlighted C-band sensitivity to changes in biomass 

Table 3  Estimated carbon loss from forest burned in the 2020 wildfire classified by dominant tree species (as of 2016)

Tree species Carbon loss

Area burned, ha (%) Area CI, ha (%) Total, Mg C (%) Uncertainty, Mg C Mean ± SD 
Mg C·ha−1

Scots pine 15,477 (67)  ± 436 (2.8) 114.5 (73.7)  ± 4.9 7.4 ± 2.8

Silver birch 3766 (17)  ± 170 (4.5) 17.7 (11.4)  ± 1.4 4.7 ± 1.5

Black alder 925 (4)  ± 54 (5.8) 4.4 (2.8)  ± 0.6 4.8 ± 1.6

European oak 289 (1)  ± 43 (15.0) 1.6 (1.0) – 5.5 ± 1.5

Area burned in 2015 2610 (11)  ± 204 (7.8) 17.5 (11.3) – 6.7 ± 2.2

Total 23,067 (100) – 155.7 (100) – 6.8 ± 2.7

Fig. 7  Hexagonal grid with averaged estimated carbon loss within the area burned in 2020. Each hexagon is 10 ha in area
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accumulation due to the volume scattering nature of 
the radar signal; a higher density of branches, twigs, 
and foliage results in higher energy reflection. Our 
findings supported the advantage of using Sentinel-1 
backscatter values of both polarizations (VV and VH) 
to attain more reliable carbon estimates. However, 
spectral characteristics of forest vegetation are still 
important; our predictor combinations that excluded 
Sentinel-2 infrared bands provided less precise results. 
The RF model trained only on Sentinel-1 backscatter 
values clearly showed a smooth pattern of predicted 
carbon stock; there were no visible differences between 
coniferous Scots pine stands (typically with higher bio-
mass and carbon stock) and broadleaved forests along 
rivers and streams.

4.2 � Carbon loss modelling using Sentinel‑1 backscatter 
predictors

We hypothesized that relative carbon loss (%) could 
be efficiently approximated using standalone Senti-
nel-1 backscatter values. Our assumption was primar-
ily based on the essence of carbon storage principles; 
even during severe crown fires (except those in young 
stands), stem wood biomass remains in the ecosystem 
for a rather long time. Despite direct or post-fire tree 
mortality, carbon is stored in deadwood long term. 
Although NBR (or other infrared-based predictors) is 
designed to detect wildfires, it can only reliably cap-
ture live biomass (green vegetation) stock changes. For 
example, Hettema et al. (2022) studied post-fire stands 
in the USA and revealed that optical imagery (Landsat 

Fig. 8  The part of the CEZ with predicted carbon stock on areas burned in 2020 (2016 stock adjusted by carbon loss model (a). Example area with 
delta NBR levels (b). Tree species distribution map for example area (c). Predicted carbon loss (%) by carbon loss model for example area (d)
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and Sentinel-2) showed a substantially higher correla-
tion with measured live aboveground forest carbon 
(R2 = 0.76) than with total carbon stock (R2 = 0.35). 
The difference might be explained in severely burned 
areas by carbon retention in snag stem wood, which 
is not well reflected in the infrared range of the elec-
tromagnetic spectrum. Additionally, low-severity fires 
could lead to litter and understorey consumption, but 
untouched tree canopies cannot be penetrated by opti-
cal sensors. We suggest that Sentinel-1 backscatter data 
could robustly reflect short-term carbon dynamics after 
abrupt disturbance events, as SAR returns are mainly 
dependent on the total volume of structures (i.e. live 
and dead plants and their parts).

We found that the relative change in Sentinel-1 back-
scatter (%) (Fig. 6a) had large variation compared to the 
estimated carbon loss based on combustion factors. In 
general, both percentages do not exceed 35% in severely 
damaged forests, and relative carbon loss could be esti-
mated using four Sentinel-1 backscatter-based predic-
tors with a good level of systematic agreement and low 
RMSE (Fig. 6b). Despite lacking direct carbon inventory 
data from ground sample plots in post-fire CEZ forests, 
we found that our estimates (mean carbon loss based on 
inventory data, 9.3 ± 5.1%; mean predicted carbon loss, 
11.0 ± 4.1%) are in line with other studies. For example, 
Keith et  al. (2014) found that temperate Australian for-
ests experienced 6–7% biomass loss as a result of low-
severity wildfires and 9–14% biomass loss as the result 
of high-severity wildfires. Volkova et  al. (2022) found 
that a loss of just 1% biomass could be detected between 
low- and high-severity fires with foliage and partial bark 
combustion and unburned stem wood. The average pro-
portion of the stem wood biomass compartment (exclud-
ing bark) in aboveground carbon storage in CEZ forests 
is 63%. This limits the use of NBR to approximate carbon  
loss (but not to detect and map burned areas) and supports 
the approach of modelling these values using Sentinel-1 
backscatter data.

We found that the highest relative carbon loss values 
(37%), along with highly flammable Scots pine stands, 
were obtained for the areas previously burned in 2015. 
The latter was untreated, with hitherto remaining snags 
of mainly coniferous trees. The RF model also predicted 
quite high absolute numbers (median 6.7 ± 2.2 Mg C·h−1) 
of carbon loss on previously burned land, while a higher 
median can be found only for Scots pine stands. Given 
that mature Scots pine stands have substantially higher 
carbon stocks than the dead remnants of forest stands 
burned in 2015, we hypothesize that snags and logs repre-
senting the legacy of the 2015 wildfire were burned in the 
2020 wildfire. That is, our RF model seems to be able to 

reliably report carbon loss in different environments con-
trolled by different disturbance regimes.

4.3 � Limitations, potential improvements, and implications
This study is not supported with empirically estimated 
combustion factors appropriate for Ukrainian or East 
European temperate conditions. We relied on subjec-
tively defined combustion factors to derive carbon loss 
estimates in burned forest stands. Importantly, in  situ 
estimation of combustion factors is always time- and 
resource-consuming; it requires either performing labo-
ratory experiments or relying on prescribed burning in 
controlled conditions. Ongoing military activities and 
martial law restrictions severely limit the capacity to 
organize the latter both in the CEZ and in wider Ukraine. 
A possible solution may be to acquire post-fire aerial 
three-dimensional data and speculate on how much veg-
etation carbon was consumed by fire based on high-res-
olution stereophotogrammetrical products. For instance,  
Fernandez-Carrillo et  al. (2019) used aerial imagery to 
derive burn severity and then predict it with SAR satellite 
data. However, carbon loss calculations are more complex 
than severity estimates, and aerial acquisitions in Ukraine 
for research purposes are also limited by ongoing war.

Importantly, we assume that our proposed approach 
is still suitable for wider applications. While the ongo-
ing Russian–Ukrainian war sets additional restrictions 
for forest research in the region, it simultaneously drives 
an urgent need to estimate degraded forest area, carbon 
emissions, loss of ecosystem services, and biodiversity. 
The sources of data we used for the CEZ study are highly 
scalable; similar combustion factors can be developed 
for other regions, and stand-wide (polygon-level) forest 
inventory data are available for all countries. We applied 
radiometrically corrected satellite data from freely avail-
able repositories when Sentinel missions are expected to 
continuously supply Earth observation data in the follow-
ing years. This study illustrated that the estimation of car-
bon loss occurred mainly in Scots pine forests. This tree 
species is dominant not only in one-third of Ukraine’s 
forests (including the southern and eastern regions most 
affected by the war) but also in Central (e.g. Poland) and 
Northern (e.g. Sweden, Finland) Europe.

Thus, we documented the high applicability of Sen-
tinel-1 backscatter data to predict relative carbon loss 
(%) as the result of wildfires in complex ecosystems 
such as CEZ forests. To derive reliable estimates of 
aboveground carbon storage, satellite radar data should 
be used in combination with optical data (collected by 
optical sensors). However, we suggest that Sentinel-1 
backscatter predictors could be used to estimate car-
bon change after abrupt disturbance events such as 
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wildfires instead of infrared-based predictors. Given 
that CEZ forest ecosystems are experiencing ongoing 
fuel accumulation and all treatments are prohibited due 
to landmine contamination, new wildfires are expected 
to occur. We propose a straightforward solution for 
carbon dynamics reporting in the CEZ area, where 
ground and aerial surveys are impossible for the fore-
seeable future.

5 � Conclusion
In this study, we demonstrated the combined use of opti-
cal and microwave Sentinel imagery to estimate above-
ground carbon stocks, as well as to update this estimate 
within burned areas. We demonstrated the sensitivity 
of the standalone Sentinel-1 VH polarization delta to 
roughly approximate relative carbon loss (with low bias: 
coefficient of systematic agreement = 0.90), which can be 
used for timely carbon map updating in the case of dis-
turbance events during cloudy seasons. Moreover, our 
random forest regression model estimated relative car-
bon loss with lower variance (3.9% of carbon loss).

Future efforts should be made to address the issue 
of lack of empirical data for direct carbon loss meas-
urements within contaminated (by radionuclides and 
unexploded ordnance) areas of the CEZ. Potentially, 
satellite-based models can utilize combustion factors 
derived from post-fire aerial stereophotogrammetrical 
surveys. We suggest that our approach is cost-efficient 
and scalable since it fully relies on freely available data. 
The paramount importance of this investigation is sup-
ported by the urgent need to estimate degraded areas 
and carbon emissions in war-affected forests of Ukraine 
where on-ground calibration is currently impossible.
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