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A B S T R A C T

Theoretical studies over the past decades have revealed various factors that favor or disfavor the evolution
of dispersal. Among these, environmental heterogeneity is one driving force that can impact dispersal traits,
because dispersing individuals can obtain a fitness benefit through finding better environments. Despite this
potential benefit, some previous works have shown that the existence of spatial heterogeneity hinders evolution
of dispersal. On the other hand, temporal heterogeneity has been shown to promote dispersal through a bet-
hedging mechanism. When they are combined in a patch-structured population in which the quality of each
patch varies over time independently of the others, it has been shown that spatiotemporal heterogeneity can
favor evolution of dispersal. When individuals can use patch quality information so that dispersal decision is
conditional, the evolutionary outcome can be different since individuals have options to disperse more/less
offspring from bad/good patches. In this paper, we generalize the model and results of previous studies. We find
richer dynamics including bistable evolutionary dynamics when there is arrival bias towards high-productivity
patches. Then we study the evolution of conditional dispersal strategy in this generalized model. We find a
surprising result that no offspring will disperse from a patch whose productivity was low when these offspring
were born. In addition to mathematical proofs, we also provide intuition behind this initially counter-intuitive
result based on reproductive-value arguments. Dispersal from high-productivity patches can evolve, and its
parameter dependence behaves similarly, but not identically, to the case of unconditional dispersal. Our results
unveil an importance of whether or not individuals can use patch quality information in dispersal evolution.
1. Introduction

Dispersal plays an important role at various levels of biological
systems (Clobert et al., 2001). At the population level, the pattern of
dispersal specifies spatial genetic diversity (Wright, 1943; Crow and
Kimura, 1970). Dispersal may also contribute to rescuing a population
from extinction (Levins, 1969; Higgins and Lynch, 2001). At the com-
munity level, the importance of dispersal has been stressed, such as its
impact on community structure and biodiversity (Leibold et al., 2004).

From an individual point of view, dispersal is one of the key
components in the life-history of organisms, and natural selection has
shaped its current form (reviewed in Ronce (2007)). Various mecha-
nisms affecting the evolution of dispersal have been presented (Van
Valen, 1971; Hamilton and May, 1977; Comins et al., 1980; Dieckmann
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et al., 1999; Clobert et al., 2001; Bowler and Benton, 2005; Ronce,
2007). Cost of dispersal is an obvious factor, which disfavors evolution
of dispersal in most cases. Dispersal can mitigate kin competition
between relatives, so dispersal can evolve through indirect fitness bene-
fits (Hamilton and May, 1977; Frank, 1986; Taylor, 1988). In addition,
dispersal may reduce the chance of mating between siblings and hence
contribute to avoiding the harm of inbreeding depression (Bengtsson,
1978; Motro, 1991; Gandon, 1999; Perrin and Mazalov, 1999).

One major benefit of dispersal is that migrants may find a better
environment than the current one. Intuitively, it would seem beneficial
to stay in habitat patches with good living conditions, and disperse to
better ones from harsh conditions. Individuals specialized in resources
available in specific habitats only can be expected to benefit less from
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dispersal than generalists. However, the ability of individuals to distin-
guish those conditions may be limited. The relative quality of habitats
may change in time and that creates unpredictability. Moreover, the
quality of a habitat is determined not only intrinsically but also by a
demographic factor; it is affected by other individuals competing for
the locally available resources. The benefit of dispersal is, therefore,
not obvious in such a game-theoretic situation.

The absence of temporal heterogeneity, in which the local popu-
lation densities and living conditions in each patch do not change in
time (equilibrium dynamics), although they can differ between patches,
has been observed to select against dispersal (Hastings, 1983; Holt,
1985; Cohen and Levin, 1991; Parvinen, 1999; Gyllenberg et al., 2002;
Parvinen, 2006), and dispersal rate can evolve to zero in the absence of
other mechanisms promoting dispersal. Under equilibrium dynamics,
there are typically more individuals in patches of better quality, so
that dispersal on average causes a dispersing individual to encounter
worse living conditions than those it left from. Such effect of spatial
heterogeneity selecting against dispersal has been observed also in
other models (Parvinen, 2002; Parvinen et al., 2020).

Temporal heterogeneity, on the other hand, has been observed to
promote dispersal (Gadgil, 1971; Holt and McPeek, 1996; Doebeli and
Ruxton, 1997; Johst et al., 1999; Parvinen, 1999, 2006) and allow
divergence of dispersal traits through disruptive selection (evolutionary
branching) (Metz et al., 1996; Geritz et al., 1997, 1998). Temporal
heterogeneity can be caused, e.g., by cyclic or chaotic local population
dynamics, environmental heterogeneity or local catastrophes. Under
such circumstances, the living conditions in patches change in time,
promoting dispersal through a bet-hedging mechanism. For example, if
local catastrophes occasionally take place to wipe out a local popula-
tion, non-dispersing strategies will eventually be eliminated from the
system.

There are some articles, in which the evolution of dispersal under
spatiotemporal heterogeneity has been investigated (Cohen and Levin,
1991; McPeek and Holt, 1992; Johst and Brandl, 1997; Parvinen,
2002; Massol and Débarre, 2015). McPeek and Holt (1992) found that
under both spatially and temporally heterogeneous environments but
without the cost of dispersal, dispersal is favored. Parvinen (2002)
studied a continuous-time metapopulation model with infinitely many
patches of two different types, in which the local population growth is
modeled with an ordinary differential equation, and local catastrophes
cause temporal heterogeneity. In that model, dispersal does not evolve
without catastrophes. Increasing the catastrophe rate allowed dispersal
to evolve, but the evolved dispersal rate was observed to be non-
monotonic with respect to the catastrophe rate (Ronce et al., 2000;
Gyllenberg et al., 2002). Furthermore, in Parvinen (2002) spatial het-
erogeneity was observed to disfavor dispersal. Cohen and Levin (1991)
(their ‘‘saturation model’’) and Massol and Débarre (2015) studied a
discrete-time model, in which the population density of adults in a
patch is always at a carrying capacity, but the quality of the patch may
change in time, resulting in spatiotemporal heterogeneity. They showed
that temporal heterogeneity favors dispersal, and Massol and Débarre
(2015) demonstrated the importance of different life-cycle assumptions.

In this article we extend the model of Cohen and Levin (1991)
and Massol and Débarre (2015) to a more general setting in order to
better understand the combined effect of spatial and temporal hetero-
geneity on evolution of dispersal. Specifically, we will study the effect
of patch-quality dependence of dispersal (Bowler and Benton, 2005;
Kokko and López-Sepulcre, 2006). For that purpose the following two
factors are newly introduced. First, patches of different quality may not
be equally likely reached by immigrants, so we introduce arrival bias
as model parameters (Parvinen et al., 2020). We will show below that
introduction of such bias has a considerable impact on evolutionary dy-
namics. Second, organisms may be able to use information cues about
the current patch for emigration, so we consider conditional dispersal
strategies (Parvinen, 1999; Travis et al., 1999; Poethke and Hovestadt,
2

2002; Kun and Scheuring, 2006; Poethke et al., 2011; Parvinen et al., d
2012; Weigang, 2017). We assume that the dispersal probability can
depend on the current quality of the patch. As a consequence, the
evolving strategy is vector-valued. We will show that some evolutionary
outcomes are strikingly different between unconditional and condi-
tional cases. In particular, we find that, except for some special cases,
dispersal probability from low-productivity patches always evolves to
zero.

The paper is structured as follows. We describe our theoretical
model in Section 2. We then analyze the evolution of unconditional dis-
persal with arrival bias in Section 3. We study conditional dispersal in
Section 4. We summarize our results and have discussions in Section 5.

2. Model

2.1. Island model

We employ the model framework proposed by Massol and Débarre
(2015) to study the effects of temporary varying environments on the
evolution of dispersal, and make some extensions to it to consider a
more general case. Specifically, we extend their model by incorporating
(i) different carrying capacities of patches, (ii) arrival bias in immigra-
tion, and (iii) the possibility of conditional dispersal on patch qualities,
as we will describe in detail below.

We consider a population that is subdivided into infinitely many
patches. Each patch is in one of 𝑁 potential quality states affecting
reproduction, immigration and competition. The quality state of a patch
is assumed to vary over time (transition). Various events can happen
in one life-cycle in a different order, but here we pay attention to the
following specific life-cycle. In each season, the following events are
assumed to occur in the order described below:

1. Census: In census at time 𝑡, each patch of quality 𝑘 is assumed to
be fully occupied with population density 𝑛𝑘. Here, we mean by
‘‘density’’ that each patch is occupied with many individuals so
that any effects arising from the finiteness of the local population
size, such as kin selection and demographic stochasticity, can be
neglected.

2. Reproduction: Each individual will reproduce with fecundity,
i.e., expected number of offspring, of 𝛾𝐹𝑘, where 𝛾 → ∞. The
parameter 𝐹𝑘 thus describes relative fecundity in a patch of
quality 𝑘. All adults die after reproduction.

3. Emigration: An individual juvenile with dispersal strategy 𝒎 =
(𝑚1,… , 𝑚𝑁 ), which is genetically encoded, will emigrate from
the natal patch of quality 𝑘 with probability 𝑚𝑘. Each emigrant
will survive dispersal with probability 𝑝.

4. Immigration: Dispersers will immigrate in patches randomly.
The parameters 𝜆𝑘 represent bias to arrive at patches of quality
𝑘. If there is no bias (𝜆1 = 𝜆2 = ⋯ = 𝜆𝑁 ), the probability 𝜙𝑘
to arrive into a patch of quality 𝑘 is equal to the proportion 𝜋𝑘
of such patches. In such case each patch will receive the same
amount of immigrants independent of its quality. Otherwise,
𝜙𝑘 = 𝜆𝑘𝜋𝑘∕

∑𝑁
𝑙=1 𝜆𝑙𝜋𝑙, and patches of different quality will re-

ceive different amounts of immigrants. Note that since there are
infinitely many patches, the chance that an immigrant arrives in
the natal patch is zero.

5. Transition: Each patch will potentially experience transition of
patch quality. Let 𝑃 (𝑗 ← 𝑘) denote the probability that a patch
with quality 𝑘 at time 𝑡 will have quality 𝑗 at time 𝑡 + 1.

6. Competition: Only a fraction of the juveniles present in the
patch (philopatric and immigrant) survive to the next census,
so that the population density in the patch is 𝑛𝑗 , i.e., based on
the new patch quality 𝑗. Note that philopatric juveniles in this
patch were produced with relative fecundity 𝐹𝑘.

The life-cycle above can be called ‘‘(F, D, E, R) life-cycle’’ in the
erminology of Massol and Débarre (2015), where F stands for repro-

uction, D for dispersal, E for environmental change, and R for density
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regulation. Throughout the paper we use symbols that are consistent
with our previous paper (Parvinen et al., 2020) as much as possible.
We note that the model reduces to the model of ‘‘juvenile dispersal
with local density regulation’’ by Massol and Débarre (2015) if we set
our parameter values to: two different patch qualities (𝑁 = 2), the
same patch size (𝑛1 = 𝑛2), no arrival bias (𝜆1 = 𝜆2), and unconditional
ispersal (𝑚1 = 𝑚2 = 𝑚). We shall also employ two different patch
ualities (𝑁 = 2) in our analysis, but make some remarks on a
ethodology applicable to the case of general 𝑁 in Appendix A.

As we noted above, we treat 𝑛𝑘 as density, not as the number
f adults in each patch, which means that each patch has infinitely
any adult individuals. Such a treatment excludes the possibility of

ny form of kin selection acting in our model, and we employ this
ormalism to simplify our analysis. We will discuss this point once again
n Discussion.

The goal of our paper is to study the evolution of dispersal strate-
ies, 𝒎. For that purpose we consider the metapopulation fitness of
utants (Gyllenberg and Metz, 2001; Metz and Gyllenberg, 2001) to

ee whether they can successfully invade the population of residents.
etails of this approach are described in Appendices A and B.

.2. Spatial and temporal heterogeneity

Let us now especially consider the case of two qualities, 𝑞 ∈ {H, L},
representing patches with High and Low productivity, respectively. In
each patch, the transition of quality occurs independently of the other
patches. The transition is governed by a time-homogeneous Markov
chain, in which the transition probabilities 𝑃 (𝑗 ← 𝑖) (𝑖, 𝑗 ∈ {H, L})
describing the probability that the quality of a patch changes from 𝑖
to 𝑗 are
(

𝑃 (H ← H) 𝑃 (H ← L)
𝑃 (L ← H) 𝑃 (L ← L)

)

=
(

1 − 𝛽 𝛼
𝛽 1 − 𝛼

)

(1)

where 0 < 𝛼, 𝛽 < 1. Eq. (1) can be re-written as
(

𝑃 (H ← H) 𝑃 (H ← L)
𝑃 (L ← H) 𝑃 (L ← L)

)

=
(

1 − (1 − 𝜋)(1 − 𝜏) 𝜋(1 − 𝜏)
(1 − 𝜋)(1 − 𝜏) 1 − 𝜋(1 − 𝜏)

)

, (2)

(see Eq. (2) of Massol and Débarre (2015)) with the following transfor-
mation from (𝛼, 𝛽)-space to (𝜋, 𝜏)-space:
{

𝜋 = 𝛼
𝛼+𝛽 ,

𝜏 = 1 − (𝛼 + 𝛽),
(3)

hich maps the region of feasible parameters, {(𝛼, 𝛽) ∣ 0 < 𝛼, 𝛽 < 1}, to
pentagon-like region (Fig. S.1),

(𝜋, 𝜏) ∣ 0 < 𝜋 < 1,max
[

− 𝜋
1 − 𝜋

,−1 − 𝜋
𝜋

]

< 𝜏 < 1
}

. (4)

he new parameter 𝜋 represents the equilibrium proportion of high-
roductivity patches, and 𝜏 represents the temporal autocorrelation
f patch quality between two consecutive censuses (see Massol and
ébarre (2015); see also our Appendix B for details).

.3. Model parameters

In Appendix A we show that the metapopulation fitness, and thus
he evolution of dispersal, depends on the fecundities 𝐹𝑘 and population
ensities 𝑛𝑘 only through their product, 𝐹𝑘𝑛𝑘. In the case of two
ualities, this dependence occurs through the productivity ratio 𝑓 =
H𝑛H∕(𝐹L𝑛L). Without loss of generality we can assume 𝑓 > 1, so that
igh productivity patch type has a larger product, 𝐹H𝑛H > 𝐹L𝑛L.

Concerning arrival-bias parameters 𝜆𝑘, only their relative magni-
ude matters (if multiplied with the same constant, the arrival prob-
bilities 𝜙𝑘 remain unchanged). In the case of two patch qualities,
etapopulation fitness depends on the parameters 𝜆H and 𝜆L only

hrough 𝜆 = 𝜆H∕𝜆L, which measures arrival bias to high-productivity
atches relative to the low-productivity ones.

An explicit expression of the metapopulation fitness of mutants can
e derived (details in Appendix C and the electronic appendix). That
xpression uses the parameters 𝑓 and 𝜆 together with other parameters,
isted in Table 1.
3

Table 1
List of symbols.

Model parameters

0 < 𝑝 ≤ 1 Dispersal survival probability
𝑓 > 1 Productivity ratio
0 < 𝜋 < 1 Proportion of high-productivity patches
−1 < 𝜏 < 1 Temporal autocorrelation
𝜆 > 0 Arrival bias (𝜆 > 1 represents bias towards high-productivity

patches)

Evolving strategies

0 ≤ 𝑚 ≤ 1 Dispersal probability of unconditional strategy
0 ≤ 𝑚H ≤ 1 Dispersal probability from high-productivity patch of

conditional strategy
0 ≤ 𝑚L ≤ 1 Dispersal probability from low-productivity patch of

conditional strategy

3. Evolution of unconditional dispersal

We will first study the evolution of unconditional dispersal, i.e., as-
sume that the patch quality has no effect on the dispersal strategy of
an individual, so that 𝑚1 = 𝑚2 = 𝑚.

3.1. Fitness gradient, singular strategy, and its properties

In Appendix C we derived an explicit expression for the metapop-
ulation fitness 𝑅((𝑚mut,H, 𝑚mut,L); (𝑚H, 𝑚L)) in case of two patch types,
𝑁 = 2. We find that the fitness gradient for unconditional dispersal is
given by (see Appendix D)

𝐷(𝑚) = 𝜕
𝜕𝑚mut

𝑅((𝑚mut , 𝑚mut ); (𝑚,𝑚))
|

|

|

|𝑚mut=𝑚
= 1

�̃�
(𝑍 + 𝑚𝑌 ), (5)

where
�̃� = 𝑝𝑚(1 − 𝜋 + 𝑓𝜋)[𝜆𝑝𝑚(1 − 𝜋 + 𝑓𝜋) + (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)(1 − 𝑚)

× (𝜆𝜋 + 𝑓 (1 − 𝜋))] ⩾ 0,

𝑍 = (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)�̂�0,

�̂�0 = −𝑓 (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆) + 𝑝𝜋(1 − 𝜋)(𝑓 − 1)(𝑓 − 𝜆),

𝑌 = 𝑓 (1 − 𝑝)(1 + (−1 + 𝜆)𝜋)2(1 − 𝜏) − 𝑝(1 − 𝑝)𝜆(1 − 𝜋 + 𝜋𝑓 )2

− (𝜆 − 𝑓 )2𝑝(1 − 𝜋)𝜋.

(6)

Since the denominator �̃� is non-negative, the sign of the fitness
gradient is determined by the expression 𝑍 + 𝑚𝑌 = (1 − 𝜏)(1 −
𝜋 + 𝜆𝜋)�̂�0 + 𝑚𝑌 . Consequently, the zero-dispersal strategy 𝑚 = 0 is
evolutionarily attracting if 𝑍 < 0, or equivalently �̂�0 < 0. The full
dispersal strategy 𝑚 = 1 is evolutionarily attracting if 𝑍 + 𝑌 > 0.
When the zero-dispersal strategy is evolutionarily attracting and the
full-dispersal strategy is evolutionarily repelling, the fitness gradient
is negative for all 𝑚. In such a situation, assuming small mutational
steps, zero-dispersal evolves from all initial strategies (Fig. 1a). In the
opposite case full dispersal evolves (Fig. 1de). Fig. 1d illustrates that for
some parameter combinations, other scenarios are possible with large
mutational steps.

When �̂�0 > 0 and 𝑍 + 𝑌 < 0, both boundary strategies are evolu-
tionarily repelling, and there exists an intermediate singular strategy

𝑚∗ = −𝑍
𝑌

= −
(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)�̂�0

𝑌
, (7)

which is evolutionarily attracting from all initial strategies (Fig. 1bc).
For 𝜆 = 1 our Eq. (7) agrees with Eq. (18) of Cohen and Levin
(1991) and Eq. (13) of Massol and Débarre (2015). Fig. 2a–d illustrates
the dependence of the singular strategy on parameters depicting spa-
tiotemporal heterogeneity, discussed in more detail in Section 3.2. For
comparison purposes, Fig. 2e–h show analogous results for conditional
dispersal, which will be discussed in Section 4.

Whether the singular strategy is uninvadable (evolutionarily stable

strategy, ESS) or not, can be determined based on the second derivative
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Fig. 1. Pairwise invasibility plots illustrating qualitatively different scenarios of unconditional dispersal evolution. Regions, in which 𝑅((𝑚mut , 𝑚mut ); (𝑚,𝑚)) > 1, are plotted in dark
gray, and regions with 𝑅((𝑚mut , 𝑚mut ); (𝑚,𝑚)) < 1 in light gray. In all panels 𝑝 = 0.95. Unless otherwise indicated in the panel heading, 𝑓 = 1.7, 𝜆 = 1 and 𝜋 = 0.5.
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of metapopulation fitness, 𝜕2

𝜕𝑚2
mut

𝑅((𝑚mut , 𝑚mut ); (𝑚,𝑚))
|

|

|

|𝑚mut=𝑚
. Accord-

ing to Theorem D.3, the sign of this second derivative is given by the
sign of −𝜏. Therefore, if 𝜏 > 0 (positive autocorrelation), the evolution-
arily attracting singular strategy is uninvadable, and dispersal evolution
will converge to the singular strategy (Fig. 1b). If, 𝜏 < 0 (negative
autocorrelation), the evolutionarily attracting singular strategy is not
uninvadable, and it is thus a branching point (Fig. 1c). In Fig. 2a, the
black thick line 𝜏 = 0 separates the parameter regions of these two
cases. The branching threshold (𝜏 = 0) corresponds to a case when
the quality of a patch changes fully randomly (i.e., independent of the
previous state). This threshold has already been found by Massol and
Débarre (2015) for the case 𝜆 = 1.

When 𝑚∗ is a branching point (evolutionarily attracting and 𝜏 < 0),
dispersal evolution is first expected to approach 𝑚∗, but then the popu-
lation becomes dimorphic, and disruptive selection will cause the two
strategies present in the population to evolve away from each other. In
other words, evolutionary branching will happen. The expression for
metapopulation fitness derived in Appendix C gives the metapopulation
fitness of a rare mutant in the environment set by a monomorphic
resident only. Therefore, in Appendix D.7, we present results from
numerical simulations illustrating that evolutionary branching in this
model typically leads to the coexistence of highly-dispersing individuals
and almost sessile individuals (see Fig. S.2).

When both boundary strategies are evolutionarily attracting, �̂�0 < 0
nd 𝑍 + 𝑌 > 0, the intermediate singular strategy 𝑚∗ is evolutionarily
epelling, and separates the domains of initial conditions from which
trategies converge either to 0 or 1, so there is bistability in the
volutionary dynamics (Fig. 1f). This scenario is possible only if 𝜆 > 1,
.e., when there is arrival bias towards high-productivity patches. Note
hat Massol and Débarre (2015) showed that bistability is impossible
4

n their model, which assumes 𝜆 = 1. e
.2. Spatiotemporal heterogeneity promotes the evolution of dispersal

According to (5) and (6) (See also Appendix D.2), the zero-dispersal
trategy 𝑚 = 0 is evolutionarily repelling, if �̂�0 = −𝑓 (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆)
𝑝𝜋(1 − 𝜋)(𝑓 − 1)(𝑓 − 𝜆) > 0. The first part of this expression is non-

ositive and the second one is non-negative. Positive dispersal can thus
volve for intermediate 𝜋, when 𝑝 and 𝑓 are large enough.

When patches have high productivity most of the time (𝜋max < 𝜋 ⩽
) or when they have low productivity most of the time (0 ⩽ 𝜋 <
min), there is not much spatial heterogeneity in the model, and the
ero-dispersal strategy is evolutionarily attracting (Fig. 2a, light gray
hading). The thresholds 𝜋min and 𝜋max given by (D.6) in the Appendix
o not depend on 𝜏, and thus the boundaries separating the light-
ray area of zero-dispersal and positive dispersal in Fig. 2a are vertical
ines. As illustrated in Fig. 2b, the singular dispersal strategy typically
eaches its maximal value for intermediate 𝜋. Spatial heterogeneity, in
he form of substantial proportions of both patch types, thus promotes
he evolution of dispersal in this model.

The productivity ratio 𝑓 is another measure of spatial heterogene-
ty. When 𝑓 ≈ 1, there is very little spatial heterogeneity, as patch
roductivities are then similar. In such a situation we have �̂�0 < 0,
nd positive dispersal does not evolve. Theorem D.4 in Appendix D.6
hows that �̂�0 is an increasing function of the productivity ratio 𝑓 .
herefore, the zero-dispersal strategy is evolutionarily attracting only
or 1 < 𝑓 < 𝑓 , and positive dispersal can evolve for 𝑓 > 𝑓 , in
hich the expression for 𝑓 is given in (D.7). This effect is illustrated

n Figs. 2d and 3. Increasing the productivity ratio 𝑓 increases �̂�0 and
hus promotes the emergence of dispersal.

The effect of 𝑓 on the singular dispersal strategy 𝑚∗, however, is
ore complicated. The following properties are proved analytically in
heorem D.4: When 𝜆 ⩽ 1, the singular dispersal strategy 𝑚∗ increases
hen 𝑓 increases (Fig. 3ab). The same is true, when 𝜆 > 1 and 𝑝 is small

∗
nough (Fig. 3c). However, when 𝜆 > 1 and 𝑝 ≈ 1, 𝑚 can decrease
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Fig. 2. Spatiotemporal heterogeneity promotes the evolution of unconditional dispersal (left panels). Singular dispersal strategies of unconditional dispersal 𝑚∗ (left panels) and
singular dispersal strategy components 𝑚∗

H of conditional dispersal (right panels) (a–c,e–g) with respect to autocorrelation 𝜏 and proportion of high-productivity patches 𝜋, when
= 2.5, (d,h) with respect to 𝜏 and productivity ratio 𝑓 , when 𝜋 = 0.5. Other parameters: 𝑝 = 0.95, 𝜆 = 1. Purple curves in (b–d) correspond to branching points, black curves to

volutionarily stable strategies. The conditional dispersal strategy component 𝑚∗
L = 0.
o

(
f
p

hen 𝑓 increases. We can thus conclude that spatiotemporal hetero-
eneity, in the form of substantial differences in the patch qualities,
ostly promotes the evolution of dispersal.

The autocorrelation parameter 𝜏 can be interpreted to measure
emporal heterogeneity (Appendix B). If 𝜏 is close to 1, patch qualities
hange very seldom, so that there is very little temporal heterogeneity.
n the other hand, if 𝜏 is close to −1, patch qualities change almost

every time, which means strong temporal heterogeneity. The quantity
�̂� does not depend on 𝜏. If �̂� > 0, positive dispersal evolves under our
5

0 0 a
assumption 𝜏 < 1. Autocorrelation 𝜏 thus does not affect the emergence
f positive dispersal, but has an effect on the singular strategy 𝑚∗.

According to Theorem D.4, 𝑚∗ is a decreasing function of 𝜏, and 𝑚∗ → 0
as 𝜏 → 1. Furthermore, there exists such a threshold value 𝜏thresh, that
when 𝜏 is small enough, 𝜏 < 𝜏thresh, full dispersal (𝑚∗ = 1) may evolve
Fig. 2c). These effects of 𝜏 on the singular strategy 𝑚∗ were already
ound by Massol and Débarre (2015) for 𝜆 = 1. Theorem D.4 thus
rovides a mathematical proof on this dependence for general 𝜆. The
nalytical expression for 𝜏 is given in (D.10). In Fig. 2a, this is
thresh
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Fig. 3. The singular dispersal strategy 𝑚∗ with respect to productivity ratio 𝑓 for different values of the dispersal survival probability 𝑝. (a) 𝜆 = 0.8, 𝜏 = 0.2 (b) 𝜆 = 1, 𝜏 = 0.2 (c)
𝜆 = 1.6, 𝜏 = 0.5 Common parameters: 𝜋 = 0.5.
i
𝐷

T

𝐴

the thick black curve separating the areas of positive singular strategy
(color shading ranging from blue to red) and full dispersal 𝑚∗ = 1
(dark gray shading). We can thus conclude that temporal heterogeneity
promotes the evolution of dispersal.

The parameter plot of the singular dispersal strategy 𝑚∗ with respect
to the proportion of high-productivity patches 𝜋 and autocorrelation 𝜏
in Fig. 2a illustrates that spatiotemporal heterogeneity promotes dis-
persal. In Appendix D.8 we show that depending on other parameters,
such parameter plots may look qualitatively different. Fig. S.3 shows
all qualitatively different types of such parameter plots for 𝑝 < 1,
and Fig. S.5 for 𝑝 = 1. Furthermore, Fig. S.4 illustrates when each
of these cases occurs depending on the choice of the other remaining
parameters, productivity ratio 𝑓 , dispersal survival probability 𝑝, and
arrival bias 𝜆.

In this section we have observed that spatiotemporal heterogeneity
promotes the evolution of dispersal. In particular, the evolutionarily
attracting singular dispersal strategy 𝑚∗ reaches a maximum for in-
termediate 𝜋. This result is strikingly contrasting with Parvinen et al.
(2020), in which we observed that spatial heterogeneity disfavors
dispersal, so that the singular dispersal strategy reaches a minimum
for intermediate 𝜋. Note that the model investigated in Parvinen et al.
(2020) is otherwise similar to the current one, but no temporal hetero-
geneity was present and local populations were assumed to be finite,
so that kin selection was the only mechanism promoting the evolution
of dispersal. In the model studied in the present paper, kin selection
is absent due to the large size of local populations, and temporal
heterogeneity is the mechanism allowing dispersal evolution. In the
absence of temporal heterogeneity in the current model (𝜏 → 1),
dispersal does not evolve, 𝑚∗ → 0. The results in the present paper
and those in Parvinen et al. (2020) thus show that under different
circumstances (presence or absence of temporal heterogeneity), spatial
heterogeneity can have opposing effects on the evolution of dispersal.

3.3. Larger dispersal survival promotes dispersal

It is relatively easy to see that �̂�0 increases with 𝑝 when 𝑓 >
max{1, 𝜆}. Therefore, increasing 𝑝 promotes the emergence of positive
dispersal. Furthermore, according to Theorem D.4, the singular strategy
𝑚∗ increases with dispersal survival 𝑝 (Fig. 4a), which is again a
generalization of a result by Massol and Débarre (2015) for general 𝜆.

3.4. The effect of arrival bias 𝜆 may be non-monotonic

According to Theorem D.4, when 𝜆 is large, 𝜆 > 𝑓 , both �̂�0 < 0 and
𝐷(1) < 0 hold, which means that dispersal evolves to zero, 𝑚∗ = 0 from
all initial conditions. Using continuity arguments, if �̂�0 > 0 for some
values of 𝜆 < 𝑓 , there exists 𝜆∗ < 𝑓 at which �̂�0 = 0. Furthermore, the
singular strategy is decreasing with respect to 𝜆 for 𝜆 < 𝜆∗ at least when
𝜆 ≈ 𝜆∗. Numerical explorations illustrate (Fig. 4b) that the singular
strategy can either be a decreasing function of 𝜆 for all 𝜆 < 𝜆∗, or a
6

non-monotonic function of 𝜆 (Fig. 4b).
4. Evolution of conditional dispersal

Next, we will study the evolution of conditional dispersal, i.e., as-
sume that the dispersal strategy of a juvenile depends on the quality of
the originating patch. The evolving strategy 𝒎 = (𝑚H, 𝑚L) is therefore
vector-valued. The explicit expression for the metapopulation fitness
𝑅((𝑚mut,H, 𝑚mut,L); (𝑚H, 𝑚L)) is given in Appendix C.

4.1. Fitness gradient

According to Theorem E.1, the fitness gradient for conditional dis-
persal is given by (see Appendix E.1)

𝑫(𝒎) =
(

𝜕
𝜕𝑚mut,H

𝑅(𝒎mut;𝒎), 𝜕
𝜕𝑚mut,L

𝑅(𝒎mut;𝒎)
)

|

|

|

|

|

𝒎mut=𝒎

= (𝐷H(𝑚H, 𝑚L), 𝐷L(𝑚H, 𝑚L)), (8)

n which

H(𝑚H, 𝑚L) = 𝜋𝑓 (𝐵0 − 𝐵H𝑚H + 𝐵L𝑚L)∕𝐴,

𝐷L(𝑚H, 𝑚L) = (1 − 𝜋)(−𝐶0 + 𝐶H𝑚H − 𝐶L𝑚L)∕𝐴.
(9)

he coefficients are given by

=𝑝(𝑚L(1 − 𝜋) + 𝑓𝑚H𝜋)[𝜆𝑝(𝑚L(1 − 𝜋) + 𝑓𝑚H𝜋)

+ (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)(𝜆(1 − 𝑚L)𝜋 + 𝑓 (1 − 𝑚H)(1 − 𝜋))] ⩾ 0

𝐵0 = (1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)((𝑓𝑝 − 1)(1 − 𝜋) − 𝜆(1 − 𝑝)𝜋)

𝐵H = 𝑓𝑝(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋) > 0

𝐵L = 𝜆𝑝2(1 − 𝜋) + (1 − 𝑝)(1 − 𝜏)(1 + (𝜆 − 1)𝜋)2 > 0

𝐶0 = (1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)(𝑓 (1 − 𝜋)(1 − 𝑝) + 𝜆𝜋(𝑓 − 𝑝)) ⩾ 0

𝐶H = 𝑓 (𝜆𝑝2𝜋 + (1 − 𝑝)(1 − 𝜏)(1 + (𝜆 − 1)𝜋)2) > 0

𝐶L = 𝜆𝑝((1 − 𝑝)(1 − 𝜋) + 𝜆𝜋) > 0.

(10)

4.2. Dispersal from low-productivity patches evolves to zero

The evolutionary dynamics of conditional dispersal can be under-
stood by analyzing phase-plane plots (Fig. 5) showing the isoclines
(nullclines) of the components of the fitness gradient,

𝐷H(𝑚H, 𝑚L) = 0 ⇔ 𝑚L = 1
𝐵L

(−𝐵0 + 𝐵H𝑚H),

𝐷L(𝑚H, 𝑚L) = 0 ⇔ 𝑚L = 1
𝐶L

(−𝐶0 + 𝐶H𝑚H),
(11)

together with arrows illustrating the direction of the fitness gradient.
According to Theorem E.2 in Appendix E.2, all qualitatively dif-

ferent phase-plane plots are given in Fig. 5. Furthermore, the final
outcomes of the evolution of conditional dispersal are as follows:

• If 𝑝 = 1, the two isoclines (11) are identical and dispersal
evolution first converges to the isocline but is neutral along it
(Fig. 5bc). The isoclines may reside outside the feasible domain,
in which case 𝑚 evolves to 1 and 𝑚 evolves to 0 (Fig. 5d).
H L



Journal of Theoretical Biology 574 (2023) 111612K. Parvinen et al.

f

𝑝

Fig. 4. The singular dispersal strategy 𝑚∗ (a) with respect to dispersal survival probability 𝑝 for different values of the productivity ratio 𝑓 , (b) with respect to the arrival bias 𝜆
or different values of the dispersal survival probability 𝑝. Parameters: (a) 𝜆 = 1, (b) 𝑓 = 3. Common parameters: 𝜋 = 0.5 and 𝜏 = 0.4.
Fig. 5. Qualitatively different phase-plane plots of evolution of conditional dispersal, illustrating the direction of the fitness gradient. The isoclines of the fitness gradient are shown
with thick yellow (𝐷H = 0) and red (𝐷L = 0) lines. When 𝑝 = 1, these isoclines coincide, and are therefore illustrated with a dashed line in panels b and c. Curves with arrows
illustrate potential trajectories of evolutionary dynamics. When applicable, the unique evolutionary endpoint (𝑚∗

H , 0) is marked with a black dot. Parameters: (a) 𝜏 = 1, 𝑝 = 0.75,
𝜆 = 1, (b) 𝜏 = 1, 𝑝 = 1, 𝜆 = 1, (c) 𝜏 = 0.7, 𝑝 = 1, 𝜆 = 2, (d) 𝜏 = −0.7, 𝑝 = 1, 𝜆 = 2, (e) 𝜏 = −0.75, 𝑝 = 0.95, 𝜆 = 1, (f) 𝜏 = −0.5, 𝑝 = 0.65, 𝜆 = 1, (g) 𝜏 = 0.4, 𝑝 = 0.75, 𝜆 = 1, (h) 𝜏 = 0.9,
= 0.4, 𝜆 = 1.5. All panels 𝜋 = 0.5, 𝑓 = 3.
t
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• If 𝑝 < 1, the dispersal strategy component 𝑚L (dispersal from
low-productivity patches) always evolves to zero. The other com-
ponent, 𝑚H, evolves to (Fig. 5e–h)

𝑚∗
H =

⎧

⎪

⎨

⎪

⎩

0, if 𝐵0 ⩽ 0,
1, if 𝐵0 ⩾ 𝐵H,
𝐵0
𝐵H

, otherwise.
(12)

According to Appendix E.3, in case 0 < 𝑚∗
H < 1, we have

𝑅((𝑚mut,H, 𝑚mut,L); (𝑚∗
H, 0)) < 1 for 𝑚mut,L > 0 and for any 𝑚mut,H

𝑅((𝑚mut,H, 0); (𝑚∗
H, 0)) = 1 for any 𝑚mut,H.
7

(13) D
which means that the boundary-singular strategy (𝑚∗
H, 0) is un-

invadable against mutants with 𝑚mut,L > 0 and neutral against
mutants with 𝑚mut,L = 0. This means that (𝑚∗

H, 0) is an evolu-
tionary endpoint, and no evolutionary branching can happen for
conditional dispersal.

Fecundity 𝐹𝑘 measures reproductive success, and population densi-
ies 𝑛𝑘 alter the probability of surviving competition. Patches with the
arger value of 𝐹𝑘𝑛𝑘 have high productivity. Naively one could have
xpected that it would be better to avoid patches of low productivity,
o that 𝑚L would evolve to some positive value and 𝑚H would evolve
o zero. However, the local conditions individuals observe consist not
nly of 𝐹𝑘 and 𝑛𝑘, but also of the amount of competitors therein.
e will consider the heuristic reasons behind our analytical result in

iscussion.
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Fig. 6. The singular conditional dispersal strategy component 𝑚∗
H with respect to the proportion of high-productivity patches 𝜋 for (a) different values of productivity ratio 𝑓 (b)

different values of autocorrelation 𝜏. When 𝜏 ⩾ 0, the singular strategy 𝑚∗
H is a non-monotonic function of 𝜋, when 𝜆 > 1∕𝑝 and 𝑓 > 𝑓 (panel a, 𝑓 = 3, 5, 30). Panel (b) illustrates,

that when 𝜏 < 0, the condition 𝜆 > 1∕𝑝 and 𝑓 < 𝑓 is only a necessary condition for 𝑚∗
H to be a non-monotonic function of 𝜋. When 𝜏 is small, the value of 𝜋 at which 𝑚∗

H would
reach its maximum (marked in red) may lie outside of the parameter domain. Parameters (a) 𝑝 = 0.8, 𝜆 = 3 > 1∕𝑝 ≈ 1.25, 𝜏 = 0.1, (b) 𝑝 = 0.85, 𝜆 = 2.5 > 1∕𝑝 ≈ 1.18, 𝑓 = 3.
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4.3. Spatiotemporal heterogeneity and evolution of conditional dispersal

According to (9) and (12), positive dispersal from high-productivity
patches, 𝑚∗

H > 0 evolves, if 𝐵0 > 0, or equivalently 𝜏 < 1 and

𝐵∗
0 = (𝑓𝑝 − 1)(1 − 𝜋) − 𝜆(1 − 𝑝)𝜋 > 0. (14)

From this expression we see that positive 𝑚H can evolve, if (1) 𝑝 and 𝑓
are large enough, and (2) 𝜋 and 𝜆 are not too large. The autocorrelation
𝜏 < 1 does not quantitatively affect the emergence of dispersal. If
𝑓 < 1∕𝑝, then 𝐵∗

0 < 0 holds and we have 𝑚∗
H = 0. The condition 𝑓𝑝 > 1

is thus necessary for positive dispersal to evolve.
Substantial spatial heterogeneity is present when 𝜋 is intermediate

and 𝑓 is large. We observed in Section 3 that such conditions favor
unconditional dispersal. In contrast, the evolution of the conditional
dispersal component 𝑚∗

H is promoted by decreasing 𝜋: Assuming 𝑓𝑝 > 1,
which is necessary for positive dispersal to emerge, the quantity 𝐵∗

0 is
a decreasing function of 𝜋. In particular, lim𝜋→0 𝐵∗

0 = 𝑓𝑝 − 1 holds.
Positive dispersal for small 𝜋 thus evolves, when 𝑓 > 1∕𝑝. Furthermore,
lim𝜋→1 𝐵∗

0 = −𝜆(1 − 𝑝) ⩽ 0 holds, which means that 𝑚∗
H = 0 for 𝜋 ≈ 1

(Figs. 2ef and 6). More precisely, we have 𝑚∗
H = 0 for �̃� ⩽ 𝜋 ⩽ 1, in

hich

�̃� =
𝑓𝑝 − 1

𝑓𝑝 − 1 + 𝜆(1 − 𝑝)
< 1. (15)

The motivation for an individual to emigrate from a high-productivity
patch is the hope to immigrate into a low-productivity patch to avoid
competition, which has a very low probability when 𝜋 ≈ 1. Here
we observe that the existence of low-productivity patches together
with their possibility to become high-productivity patches promotes the
evolution of conditional dispersal.

In contrast with unconditional dispersal 𝑚∗, the singular strategy
component 𝑚∗

H of conditional dispersal can either be a monotonically
decreasing or non-monotonic function of 𝜋. Detailed conditions for the
two cases are given by Theorem E.3: If 1

𝑝 < 𝑓 < 1
𝑝2

or 𝑓 > 1
𝑝2

and 𝜆 < �̃�,
here �̃� = 𝑓𝑝−1

𝑓𝑝2−1 > 1, 𝑚∗
H is a non-increasing function of 𝜋 (Fig. 2f). For

⩾ 0, the singular strategy 𝑚∗
H is a non-monotonic function of 𝜋, if

(

𝑓 > 1
𝑝2

and 𝜆 > �̃� =
𝑓𝑝 − 1
𝑓𝑝2 − 1

)

⇔

(

𝜆 > 1
𝑝

and 𝑓 > 𝜆 − 1
𝑝(𝜆𝑝 − 1)

=∶ 𝑓
)

.

(16)

For 𝜏 < 0, the condition (16) is only a necessary condition for the
singular strategy 𝑚∗

H to be a non-monotonic function of 𝜋 (Fig. 6b).
According to Theorem E.3, zero dispersal 𝑚∗

H = 0 evolves for low
roductivity ratios, 1 ⩽ 𝑓 ⩽ 𝑓 , in which 𝑓 is given in (E.18). When the
roductivity ratio is large enough, 𝑓 > 𝑓 , the strategy 𝑚∗ is positive,
8

H

and increases with 𝑓 (Fig. 2h). The productivity ratio 𝑓 can thus
have qualitatively different effects on unconditional and conditional
dispersal, since the unconditional dispersal strategy 𝑚∗ was observed to
be either increasing or non-monotonic with respect to 𝑓 (Figs. 2d and
3). Spatiotemporal heterogeneity, in the form of substantial differences
in the patch qualities, promotes the evolution of conditional dispersal.

Temporal heterogeneity (small 𝜏) promotes evolution of uncondi-
tional dispersal as well as conditional dispersal. According to Theo-
rem E.3, for 𝜏 = 1 we have 𝑚∗

H = 0, and 𝑚∗
H increases when 𝜏 is

ecreased. This dependence is linear as long as 𝑚∗
H < 1. For small

nough 𝜏 we may have 𝑚∗
H = 1 (Fig. 2g).

Analogous to the evolution of unconditional dispersal, the parame-
er plots of the singular dispersal strategy component 𝑚∗

H with respect
o the proportion of high-productivity patches 𝜋 and autocorrelation
(as in Fig. 2e) may have qualitatively different forms depending on

he other parameters. Fig. S.7 shows all qualitatively different types of
uch parameter plots. The details are explained in Appendix E.5. Fur-
hermore, Fig. S.8 illustrates when each of these cases occurs depending
n the choice of the other remaining parameters, productivity ratio 𝑓 ,
ispersal survival probability 𝑝, and arrival bias 𝜆.

.4. Larger dispersal survival promotes dispersal

Positive dispersal 𝑚∗
H > 0 evolves if 𝐵∗

0 > 0. The expression 𝐵0
iven by (14) is an increasing function of 𝑝. Furthermore, the condition
∗
0 > 0 can be written as

> 1 − 𝜋 + 𝜆𝜋
𝜆𝜋 + 𝑓 (1 − 𝜋)

. (17)

According to Theorem E.3, the singular dispersal strategy component
𝑚∗

H is an increasing function of 𝑝 (Fig. 7a). (Note, however, the neutral-
ity of dispersal evolution for 𝑝 = 1, explained in Section 4.2, proved in

heorem E.2.) We can thus conclude that increasing dispersal survival
promotes also the evolution of conditional dispersal.

.5. The effect of arrival bias 𝜆 may be non-monotonic

In Section 4.3 we noticed that positive dispersal may evolve, 𝑚∗
H > 0,

f 𝜆 is not too large. The expression 𝐵0 given by (14) is a decreasing
unction of 𝜆. Therefore, we can write the condition 𝐵∗

0 > 0 as

<
(𝑓𝑝 − 1)(1 − 𝜋)

(1 − 𝑝)𝜋
and 𝑓𝑝 > 1. (18)

Increasing the arrival bias 𝜆 thus hinders the emergence of dispersal.
ts effect on the singular strategy 𝑚∗

H may, however, be non-monotonic.
ccording to Theorem E.3, if 1

𝑝 < 𝑓 < 1
𝑝2

, 𝑚∗
H decreases with respect to

. If 𝑓 > 1 , 𝑚∗ is non-monotonic with respect to 𝜆 (Fig. 7b).

𝑝2 H
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Fig. 7. The singular conditional dispersal strategy component 𝑚∗
H with respect to (a) dispersal survival probability 𝑝 and (b) arrival bias 𝜆. Dispersal evolves to zero (𝑚∗

H = 0),
hen 𝑝 is low or 𝜆 is large. (a) When 𝑝 is increased, 𝑚∗

H increases, until it potentially reaches the strategy boundary 𝑚∗
H = 1. (b) Dispersal 𝑚∗

H is a decreasing function of 𝜆, when
< 1∕𝑝2 (= 1.5625). When 𝑓 > 1∕𝑝2, 𝑚∗

H is non-monotonic with respect to 𝜆 Parameters: (a) 𝜆 = 1 (b) 𝑝 = 0.8. Common parameters in both panels: 𝜏 = −0.4, 𝜋 = 0.5.
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. Discussion

.1. Summary

We extended previous models (Cohen and Levin, 1991; Massol and
ébarre, 2015) of the evolution of unconditional dispersal in which
atch qualities are spatially heterogeneous and temporally fluctuating,
o include a case in which arrivals can be biased towards (𝜆 > 1) or
gainst (𝜆 < 1) the high-productivity patches. Increasing 𝜆 thus makes
ompetition in the high-productivity patches stronger. The extended
odel shows richer dynamics including evolutionary bistability and
on-monotonic parameter dependence with respect to the productivity
atio 𝑓 . We also studied the evolution of conditional dispersal. Sur-
risingly, we found that conditional dispersal from low-productivity
atches never evolves. Furthermore, evolutionary branching occurs for
< 0 in the unconditional case, while it never occurs in the conditional

ase. Phenotypic plasticity can be expected to hinder evolutionary
ranching. Evolutionary bistability can occur only for unconditional
ispersal.

The effects of parameters on the evolutionarily singular dispersal
trategies are summarized in Table 2. For some of the parameters,
heir qualitative effect is similar for both unconditional and conditional
ispersal. First, increasing the dispersal survival probability 𝑝 increases
oth 𝑚∗ (unconditional dispersal) and 𝑚∗

H (conditional dispersal). This
esult is rather intuitive, but note that increasing dispersal survival
as been shown to decrease dispersal in some models (Comins et al.,
980; Gandon and Michalakis, 1999; Heino and Hanski, 2001). Second,
ncreasing the temporal autocorrelation decreases both 𝑚∗ and 𝑚∗

H.
emporal heterogeneity (decreasing 𝜏) thus promotes dispersal. Third,
he singular dispersal strategy either decreases when the arrival bias 𝜆 is
ncreased, or is non-monotonic with respect to 𝜆. For other parameters
𝑓 and 𝜋) there are differences in their qualitative effect.

The productivity ratio 𝑓 is one of the parameters with qualitatively
ifferent effects for unconditional and conditional dispersal: Although
n both cases 𝑓 needs to be large enough for dispersal to emerge,
he conditional dispersal strategy 𝑚∗

H is always increasing with re-
pect to 𝑓 , whereas the unconditional dispersal strategy can also be
on-monotonic with respect to 𝑓 . This can happen only when the
ost of dispersal is small, 𝑝 ≈ 1, and there is arrival bias towards
igh-productivity patches, 𝜆 > 1.

The proportion of high-productivity patches 𝜋 has two qualitatively
ifferent effects on unconditional and conditional dispersal. First, the
nconditional dispersal strategy 𝑚∗ is always non-monotonic with re-
pect to 𝜋, whereas the conditional dispersal strategy 𝑚∗

H is either
ecreasing or non-monotonic with respect to 𝜋. Second, the uncon-
itional dispersal strategy 𝑚∗ = 0 for 𝜋 ≈ 0 or 𝜋 ≈ 1, whereas if

∗ ∗
9

onditional dispersal 𝑚H evolves for some 𝜋, we have 𝑚H > 0 for 𝜋 ≈ 0. 𝜏
he reason for the latter difference is as follows. Positive unconditional
ispersal can evolve, if the average benefit of dispersal from high-
roductivity patches and from low-productivity patches is positive.
hen one patch type dominates the population, the selection pressure

n dominant patches almost exclusively determines 𝑚∗ (and the rare
atches matter very little). Dispersal from the dominant patch type is
ot beneficial, because one may die during dispersal, and survivors
rrive with high probability into a similar patch they left from. This
s the reason why no unconditional dispersal evolves when 𝜋 is close
o either 0 or 1 (see Fig. 2b). Such evolution to no dispersal in a
omogeneous environment has been observed before (Hastings, 1983;
olt, 1985; Cohen and Levin, 1991; Parvinen, 1999; Gyllenberg et al.,
002; Parvinen, 2006). In case of conditional dispersal, the mechanism
escribed above explains also why 𝑚∗

H = 0 for 𝜋 ≈ 1 and 𝑚∗
L = 0 for 𝜋 ≈

. For conditional dispersal, each strategy component affects dispersal
ehavior in the corresponding patch type only. Dispersal from the rare
atch type may evolve, if the living conditions in dominant patches
re better. When high-productivity patches are rare, 𝜋 ≈ 0, individuals
ispersing from high-productivity patches to low-productivity patches
xperience less competition, for which reason positive dispersal 𝑚∗

H > 0
an evolve. In our model, however, we always have 𝑚∗

L = 0, reasons for
which are discussed in Section 5.2.

Consider next the effect of parameters on average dispersal. There
are at least two different ways to take such an average, either from
a patch perspective or from a juvenile perspective. For conditional
dispersal, these averages are defined as

𝑚∗
H𝜋 + 𝑚∗

L(1 − 𝜋) (patch-average) (19a)

𝑚∗
H

𝜋𝑓
𝜋𝑓 + (1 − 𝜋)

+ 𝑚∗
L

(1 − 𝜋)
𝜋𝑓 + (1 − 𝜋)

, (juvenile-average) (19b)

respectively, and our results tell us 𝑚∗
L = 0. For unconditional dispersal

𝑚H = 𝑚L, so both expressions simply become 𝑚∗. In the conditional
ispersal case, the average dispersal rates (19) depend not only on
he evolved dispersal rate from high-productivity patches 𝑚∗

H, but also
n the proportion of high-productivity patches, 𝜋. Although 𝑚∗

H in
ig. 8a decreases with respect to 𝜋, both patch-average and juvenile-
verage dispersal rates are non-monotonic with respect to 𝜋, reaching
maximum at an intermediate proportion of high-productivity patches

Fig. 8). In both unconditional and conditional cases, average dispersal
ate is large when both high- and low-productivity patches are present
n substantial magnitudes and when the productivity ratio 𝑓 is large.
n this sense, we can say that spatiotemporal heterogeneity promotes
ispersal.

As expected, the arrival bias 𝜆 has an effect on the evolutionarily
ingular strategies 𝑚∗ (unconditional) and 𝑚∗

H (conditional), provided
hat spatiotemporal heterogeneity is present. If we would have 𝑓 = 1 or

= 1, positive dispersal would not evolve, so that arrival bias (𝜆 ≠ 1)
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Table 2
How parameters affect the singular dispersal strategies.
Fig. 8. Average dispersal rates are non-monotonic with respect to 𝜋 for both unconditional and conditional dispersal. For unconditional dispersal, 𝑚∗ is both the evolved dispersal
strategy and the average dispersal rate (thin curve). For conditional dispersal, the dispersal strategy component 𝑚∗

H (thin curve) can be decreasing (panel a) with respect to 𝜋,
but both the patch-average dispersal rate (thick blue curve) and the juvenile-average dispersal rate (thick orange curve), given by (19), are non-monotonic with respect to 𝜋.
Parameters: (a) 𝜆 = 1 (b) 𝜆 = 2.5. Common parameters: 𝜏 = 0.1, 𝑝 = 0.9, 𝑓 = 5.
alone does not promote dispersal. As explained above, 𝑚∗ and 𝑚∗
H can

be either decreasing or non-monotonic with respect to 𝜆. However,
including the arrival bias can also change the qualitative effect of other
parameters on 𝑚∗ and 𝑚∗

H. First, for 𝜆 = 1, the unconditional dispersal
strategy is increasing with respect to 𝑓 , but for 𝜆 > 1 the effect of 𝑓 can
be non-monotonic. Second, for 𝜆 = 1, the conditional dispersal strategy
𝑚∗

H is decreasing with respect to 𝜋, but for 𝜆 > 1 the effect of 𝜋 can
be non-monotonic (Fig. S.8). Furthermore, evolutionary bistability of
unconditional dispersal is possible only for 𝜆 > 1. This is illustrated by
Fig. S.4, from which we also observe that the boundaries of the parame-
ter regions (red and purple) allowing for evolutionary bistability cross
at 𝜆 = 1. Analogously, the parameter region for which full dispersal
never evolves (light blue) has a corner at 𝜆 = 1. Consequently, unbiased
dispersal 𝜆 = 1 is a special case, as an infinitesimally small change
of 𝜆 allows richer evolutionary scenarios of unconditional dispersal
evolution.

5.2. Why conditional dispersal from low-productivity patches does not
evolve

One of our major findings is 𝑚∗
L = 0, irrespective of parameter

values. One may naively expect that dispersing offspring from a low-
productivity patch could be adaptive especially when 𝜏 ∼ 1, but this is
not the case. Here we intuitively explain why.

Let us consider one complete life-cycle starting at the moment
immediately after emigration before dispersal survival selection, immi-
gration, and patch-quality transition. At that moment, there are three
different types of juveniles in the population; H-juveniles are those
juveniles who decided to stay in a currently high-productivity patch,
L-juveniles are those juveniles who decided to stay in a currently low-
productivity patch, and dispersing juveniles are those juveniles who
decided to disperse. Consider a special case when resident dispersal
rates are negligible; (𝑚H, 𝑚L) ∼ (0, 0), and hence the former two types
of juveniles are mainly present in the population. Before patch-quality
10
transition, in a high-productivity patch, 𝑛H𝛾𝐹H H-juveniles compete
for adult spots. With probability 1 − 𝛽, the patch quality remains
the same and those H-juveniles compete for 𝑛H adult spots and each
surviving adult produces 𝛾𝐹H H-juveniles in the next generation. Thus,
the average number of H-juveniles produced by a single H-juvenile after
the completion of one life-cycle is

𝑛H
𝑛H𝛾𝐹H
⏟⏟⏟

chance for becoming adult

⋅ (𝛾𝐹H)
⏟⏟⏟

production of H-juveniles

= 1 (20)

multiplied with 1 − 𝛽. On the other hand, with probability 𝛽 the patch
quality changes and H-juveniles compete for 𝑛L adult spots and each
surviving adult produces 𝛾𝐹L L-juveniles in the next generation. The
average number of L-juveniles that are produced by a single H-juvenile
after the completion of one life-cycle is

𝑛L
𝑛H𝛾𝐹H
⏟⏟⏟

chance for becoming adult

⋅ (𝛾𝐹L)
⏟⏟⏟

production of L-juveniles

= 1
𝑓

(21)

multiplied with 𝛽. Similarly, an L-juvenile on average produces 𝑓 many
H-juveniles with probability 𝛼, and one L-juvenile with probability 1−𝛼.
Therefore, the resident population dynamics is governed by the matrix

(

1 − 𝛽 𝛼𝑓
𝛽∕𝑓 1 − 𝛼

)

. (22)

Its left eigenvector (1, 𝑓 ) gives (relative) reproductive values of an H-
juvenile and an L-juvenile, showing that an L-juvenile is 𝑓 times more
valuable than an H-juvenile. An intuition behind this is simple. Since
dispersal is negligible, all descendants stay in the original patch. When
one follows a family line of a single L-juvenile, its descendants are, on
average, 𝑓 H-juveniles when the focal patch productivity is high, and
are one L-juvenile when the productivity is low. Thus an L-juvenile is 𝑓
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times more valuable than an H-juvenile. For a more formal description
of the argument here, see Appendix F.

If a mutant adult increases 𝑚H (resp., 𝑚L) from zero, he/she gains
one dispersing juvenile in exchange of losing one natal H- (resp., L-
) juvenile. Whether this is adaptive or not depends on gains/loss in
reproductive values. Dispersing juvenile will survive with probability
𝑝 and become either H- or L- juvenile depending on where it arrives,
so its reproductive value is 𝑝 times an weighted-average of 1 and 𝑓
see (F.7) in Appendix), which can be larger than 1, the reproductive
alue of an H-juvenile. So 𝑚H can evolve from (𝑚H, 𝑚L) ∼ (0, 0), but

the reproductive value of a dispersing juvenile can never be greater
than 𝑓 , the reproductive value of an L-juvenile, so 𝑚L never evolves
from (𝑚H, 𝑚L) ∼ (0, 0). Note that this result holds for any 𝛼 > 0 and
𝛽 > 0 (or equivalently, for any 𝜏 < 1). Even if patch quality rarely
changes (i.e., 𝜏 ∼ 1), dispersal from high-productivity patches can
evolve but dispersal from low-productivity patches never evolves from
(𝑚H, 𝑚L) ∼ (0, 0).

5.3. Comparison with previous literature & future directions

Our model and the result for the unconditional dispersal without
arrival bias (𝜆 = 1) are identical to the model of ‘‘juvenile dispersal with
local density regulation’’ by Massol and Débarre (2015). We extended
the model to include arrival bias (𝜆 ≠ 1) and found richer dynamics
such as evolutionary bistability, as summarized in Section 5.1.

We also studied the evolution of conditional dispersal and found a
novel and simple result that dispersal from low-productivity patches
never evolves. As Massol and Débarre (2015) have shown for the case
of unconditional dispersal, our results for the conditional dispersal may
also depend on the life cycle assumptions (see also Johst and Brandl
(1997)).

For a case of evolution of conditional dispersal with spatial het-
erogeneity but without temporal fluctuation, McPeek and Holt (1992)
studied a two-patch model and found the selectively neutral combina-
tion of (𝑚H, 𝑚L). An analogous result was found by Parvinen (1999),
Fig. 3b therein. These results correspond to our neutral isocline with
𝜏 = 1 and 𝑝 = 1 (Fig. 5b). McPeek and Holt (1992) also studied cases
with spatiotemporal fluctuation, but the strategy they investigated was
assumed to be conditional on the patch index, not on the patch quality.
Thus our results with spatiotemporal heterogeneity have no direct
correspondence to their results.

We introduced arrival bias 𝜆 in immigration as a model parameter.
The differences in arrival bias could be caused by active decisions by
dispersers when they encounter potential patches to immigrate into.
Alternatively, patches with different qualities could possess different
vegetation, so that the attachment probabilities of seeds dispersing
by wind would be different. Although one might expect arrival bias
towards high-productivity patches (𝜆 > 1) to be advantageous, there is
typically less competition in the low-productivity patches. When 𝜆 < 1,
dispersers may thus experience less competition. Alternatively, some
studies have considered biased immigration as evolutionary traits (Gyl-
lenberg et al., 2016; Parvinen and Brännström, 2016; Nurmi et al.,
2018), in which case migrants are able to actively choose certain
types of patches for settlement. In our current model, we have con-
sidered only patch-quality-dependent emigration strategy, but consid-
ering patch-quality-dependent immigration strategy and its coevolution
with emigration strategy (i.e., Weigang (2017)) will further enrich our
understanding of evolution of dispersal traits.

If we assume the local population sizes to be finite, kin selection
will be present, which is expected to promote dispersal (e.g. Hamilton
and May, 1977). Concerning conditional dispersal, one would thus
expect positive dispersal to evolve from both patch types. That is, our
prediction 𝑚L = 0 might not hold for models with finite local population
sizes. However, depending on parameter values, dispersal from one
patch type may evolve to zero, while dispersal from the other patch
11

type evolves to a positive value, analogous to our result in Section 4.
We have studied a particular life-cycle assumption in our model, but
we could consider many of its variants. As Massol and Débarre (2015)
stressed, the order of events in life-cycle assumptions can dramatically
change the evolutionary outcomes, and our prediction here may not be
robust against changing those details.

For mathematical simplicity, we have assumed in our model that
there are only two different patch qualities and that each patch follows
the same transition rule between those quality states. However, for a
full understanding of the roles of spatial and temporal heterogeneity,
more studies are needed. Deviations from our assumptions to include a
more general situation, such as studying a model with 𝑁(> 2) quality
tates, would be more difficult mathematically, but would help us find

more general conclusion about how spatiotemporal heterogeneity
ontributes to the evolution of dispersal. Furthermore, one could study
he evolution of dispersal when evolving species could adapt to lo-
al environmental conditions (Balkau and Feldman, 1973; Nurmi and
arvinen, 2011, 2013; Blanquart and Gandon, 2014).

In summary, we have studied evolution of dispersal in a heteroge-
eous environment with arrival bias. We have found that arrival bias
ntroduces richer evolutionary dynamics including bistability. We have
lso found that evolutionary outcomes are strikingly different between
nconditional and conditional dispersal. We believe that those results
hed light on ecological factors that impact dispersal evolution.
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ppendix A. Metapopulation fitness for general 𝑵

.1. Resident emigrants

In the initial phase of potential invasion by mutants, practically
ll patches are occupied by residents only. In patches of type 𝑘, the
dult population density is 𝑛𝑘, and adults reproduce with fecundity 𝛾𝐹𝑘.
uveniles disperse with probability 𝑚𝑘. Since the proportion of patches
f type 𝑘 is 𝜋𝑘, the average amount of resident emigrants is
𝑁
∑

𝑙=1
𝜋𝑙𝑚𝑙 𝑛𝑙𝛾𝐹𝑙

⏟⏟⏟
# of juveniles produced

in a patch of type 𝑙

(A.1)

.2. Resident immigrants

Emigrants will survive dispersal with probability 𝑝. The parameters
𝑘 describe the relative attractivity of patches of quality 𝑘, so that
migrants arrive into a patch of type 𝑘 with probability

𝑘 =
𝜆𝑘𝜋𝑘

∑𝑁
𝑙=1 𝜆𝑙𝜋𝑙

= �̂�𝑘𝜋𝑘 in which �̂�𝑘 =
𝜆𝑘

∑𝑁
𝑙=1 𝜆𝑙𝜋𝑙

. (A.2)

Note that this definition differs from the one used by Parvinen et al.
(2020), who used the arrival probabilities 𝜙 as parameters, which then
𝑘
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determined arrival bias parameters. In our model, the patch proportions
are not fixed as such (although they eventually do converge to fixed
values), so it is not meaningful to define fixed arrival probabilities 𝜙𝑘.

According to (A.1) and (A.2), the amount of resident immigrants
rriving into a patch of type 𝑘 is

𝜙𝑘
𝜋𝑘

𝑁
∑

𝑙=1
𝜋𝑙𝑚𝑙𝑛𝑙𝛾𝐹𝑙 = 𝛾

𝜆𝑘
∑𝑁

𝑙=1 𝜆𝑙𝜋𝑙
⋅ 𝑝

𝑁
∑

𝑙=1
𝜋𝑙𝑚𝑙𝑛𝑙𝐹𝑙

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
≡𝐼res

= 𝛾
𝜆𝑘

∑𝑁
𝑙=1 𝜆𝑙𝜋𝑙

𝐼res

= 𝛾�̂�𝑘𝐼res. (A.3)

f all patches are equally attractive (𝜆𝑘 = 1), we obtain from (A.2) that
̂𝑘 = 1 for all 𝑘, and the probability 𝜙𝑘 to arrive into a patch of quality

is equal to the proportion 𝜋𝑘 of such patches. In such case each patch
ill receive the same amount of immigrants, 𝛾𝐼res, independent of its
uality.

According to (A.3), each patch of type 𝑘 receives 𝛾�̂�𝑘𝐼res immigrant
esidents, and there are (1 − 𝑚𝑘)𝛾𝐹𝑘𝑛𝑘 natal residents, so the total
opulation density in patches of type 𝑘 after immigration is

1 − 𝑚𝑘)𝛾𝐹𝑘𝑛𝑘 + 𝛾�̂�𝑘𝐼res (A.4)

.3. Competition

After immigration, each patch experiences the possibility of transi-
ion of patch type. Consider a patch that was of type 𝑘 at time 𝑡, and is
f type 𝑗 at time 𝑡 + 1. Let 1

𝛾 𝑆𝑗←𝑘 denote the settlement probability in
uch patches. Since 𝑛𝑗 is the population density after competition, we
ave

𝑗←𝑘 =
𝑛𝑗

(1 − 𝑚𝑘)𝐹𝑘𝑛𝑘 + �̂�𝑘𝐼res
(A.5)

The settlement probability thus depends both on the current and pre-
vious quality of the patch.

A.4. Metapopulation fitness

In the moment after immigration, but before transition, consider a
mutant juvenile present in a patch of type 𝑘. This mutant and all its
descendants remaining in this patch will be called the mutant colony.
Over the years, this mutant colony will send emigrants. Let 𝑅𝑘 denote
the total amount of emigrants sent by the mutant colony founded by
the focal mutant juvenile. The patch type after transition will be 𝑗 with
robability 𝑃 (𝑗 ← 𝑘). In such case, the settlement probability for the
utant juvenile is 1

𝛾 𝑆𝑗←𝑘. It will reproduce with fecundity 𝛾𝐹𝑗 . The
proportion 𝑚mut,𝑗 of the offspring will disperse and survive dispersal
with probability 𝑝. On the other hand, the proportion 1 − 𝑚mut,𝑗 of
the offspring will remain in this patch, and will eventually produce 𝑅𝑗
emigrants. We thus obtain

𝑅𝑘 =
𝑁
∑

𝑗=1
𝑃 (𝑗 ← 𝑘) 1

𝛾
𝑆𝑗←𝑘𝛾𝐹𝑗 (𝑚mut,𝑗𝑝 + (1 − 𝑚mut,𝑗 )𝑅𝑗 )

=
𝑁
∑

𝑗=1
𝑃 (𝑗 ← 𝑘)𝑆𝑗←𝑘𝐹𝑗 (𝑚mut,𝑗𝑝 + (1 − 𝑚mut,𝑗 )𝑅𝑗 )

=
𝑁
∑

𝑗=1
𝑃 (𝑗 ← 𝑘)

𝐹𝑗𝑛𝑗
(1 − 𝑚𝑘)𝐹𝑘𝑛𝑘 + �̂�𝑘𝐼res

(𝑚mut,𝑗𝑝 + (1 − 𝑚mut,𝑗 )𝑅𝑗 ).

(A.6)

Note that the scaling factors 𝛾 in this equation cancel each other. These
relations form a system of linear equations, from which 𝑅1,… , 𝑅𝑁 can
e solved, at least numerically. A dispersing juvenile will arrive at a
atch of type 𝑗 with probability 𝜙𝑗 , and the metapopulation fitness is

𝑅 =
𝑁
∑

𝑗=1
𝜙𝑗𝑅𝑗 =

𝑁
∑

𝑗=1
�̂�𝑗𝜋𝑗𝑅𝑗 =

1
∑𝑁

𝑙=1 𝜆𝑙𝜋𝑙

𝑁
∑

𝑗=1
𝜆𝑗𝜋𝑗𝑅𝑗 . (A.7)

From the last expression of (A.6) we observe that the relative fecundity
and local population density always appear as a product, 𝐹𝑗𝑛𝑗 or 𝐹𝑘𝑛𝑘.
Therefore, these parameters affect dispersal evolution only through
their product.
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s

A.5. Metapopulation fitness from adult perspective

From a viewpoint of an adult, a focal adult mutant in a patch of type
𝑘 produces 𝐹𝑘 juveniles, among which the fraction 1 − 𝑚mut,𝑘 stays in
the natal patch whose type might change from 𝑘 to 𝑗. Thus, the number
of emigrants produced by the focal adult and its descendants is given
by

�̃�𝑘 = 𝐹𝑘(1 − 𝑚mut,𝑘)
𝑁
∑

𝑗=1
𝑃 (𝑗 ← 𝑘)𝑆𝑗←𝑘�̃�𝑗 + 𝐹𝑘𝑚mut,𝑘𝑝 (A.8)

o combine them to obtain metapopulation fitness, we again calculate
he number of emigrants produced by a mutant disperser that has just
anded in a patch of type 𝑗. The patch type might change from 𝑗 to 𝑘,
nd the juvenile settles there to become an adult in a patch of type 𝑘.
uch an adult will have a metapopulation fitness �̃�𝑘. Thus we have

𝑗 =
𝑁
∑

𝑘=1
𝑃 (𝑘 ← 𝑗)𝑆𝑘←𝑗�̃�𝑘 (A.9)

ctually the two methods yield the identical expression of 𝑅, irrespec-
ive of the explicit forms of 𝑃 (𝑗 ← 𝑘) and 𝑆𝑗←𝑘.

ppendix B. Spatial and temporal heterogeneity for two patch
ualities

Let us now especially consider the case of two qualities, 𝑞 ∈ {1, 2}.
n the main text, label 1 corresponds to High productivity, and label 2

corresponds to Low productivity, but the following calculations hold
for any two patch-type situations. The transition is governed by a
time-homogeneous Markov chain, in which the transition probabilities
𝑃 (𝑗 ← 𝑖) (𝑖, 𝑗 ∈ {1, 2}) describing the probability that the quality of a
patch changes from 𝑖 to 𝑗 are

𝑃 (1 ← 1) = 1 − 𝛽, 𝑃 (1 ← 2) = 𝛼,

𝑃 (2 ← 1) = 𝛽, 𝑃 (2 ← 2) = 1 − 𝛼,
(B.1)

where 0 < 𝛼, 𝛽 < 1. Let the random variable 𝐗(𝑡) denote the quality of
focal patch at time 𝑡, and 𝑝𝑖(𝑡) = 𝑃 (𝐗(𝑡) = 𝑖) the probability that the

uality of the focal patch is 𝑖 at time 𝑡. These probabilities satisfy

𝑝1(𝑡 + 1)
𝑝2(𝑡 + 1)

)

=
(

1 − 𝛽 𝛼
𝛽 1 − 𝛼

)(

𝑝1(𝑡)
𝑝2(𝑡)

)

. (B.2)

ince the eigenvalues of the transition matrix are 1 and 1 − 𝛼 − 𝛽, we
btain

𝑝1(𝑡)
𝑝2(𝑡)

)

=
(

1 − 𝛽 𝛼
𝛽 1 − 𝛼

)𝑡 (𝑝1(0)
𝑝2(0)

)

=

( 𝛼
𝛼+𝛽
𝛽

𝛼+𝛽

)

+𝑐(1−𝛼−𝛽)𝑡
(

1
−1

)

, (B.3)

in which 𝑐 = 𝑝1(0) − 𝛼∕(𝛼 + 𝛽). Since we assume 0 < 𝛼, 𝛽 < 1, we have
1 < 1−𝛼−𝛽 < 1, so that (1−𝛼−𝛽)𝑡 → 0 as 𝑡 → ∞. Therefore, after some

ransient, the probability distribution of quality of each patch becomes
ndependent of its initial condition and of that of other patches as well.
onsequently, the probabilities that a given patch at a given census
ime is in quality 1 and 2 respectively converges to 𝜋1 and 𝜋2, where
hey satisfy

𝜋1
𝜋2

)

=
(

𝑃 (1 ← 1) 𝑃 (1 ← 2)
𝑃 (2 ← 1) 𝑃 (2 ← 2)

)(

𝜋1
𝜋2

)

=
(

1 − 𝛽 𝛼
𝛽 1 − 𝛼

)(

𝜋1
𝜋2

)

(B.4)

ith 𝜋1 + 𝜋2 = 1. The solution is

1 =
𝛼

𝛼 + 𝛽
, (B.5)

which we call 𝜋 in the main text.
The meaning of parameter 𝜏 in Eq. (3) in the main text can be

explained by following the argument by Rodrigues and Gardner (2012),
as follows. Let us introduce a dummy variable 𝑆𝑡, which is equal to

if the patch quality at 𝑡th census time is 1 and is equal to 0 if the
uality is 2. Then, the correlation coefficient between 𝑆𝑡 and 𝑆𝑡+1 of the
ame patch is deemed as a quantity that measures how similar/different



Journal of Theoretical Biology 574 (2023) 111612K. Parvinen et al.

a

l
t
A
𝛼

Fig. S.1. Dependence of 𝜏 and 𝜋 on 𝛼 and 𝛽.
a
w

t
t

T

𝜙

𝑅

i

the patch quality is between two adjacent census times, which takes a
value between −1 (perfect negative correlation) and 1 (perfect positive
correlation). Let 𝜏 denote this correlation coefficient. By definition we
have

𝜏 =
Cov[𝑆𝑡, 𝑆𝑡+1]

√

Var[𝑆𝑡]
√

Var[𝑆𝑡+1]
(B.6)

Each term is evaluated as
Cov[𝑆𝑡, 𝑆𝑡+1] = E[𝑆𝑡𝑆𝑡+1] − E[𝑆𝑡] ⋅ E[𝑆𝑡+1]

= Pr[𝑆𝑡 = 1] ⋅ Pr[𝑆𝑡+1 = 1 ∣ 𝑆𝑡 = 1] − Pr[𝑆𝑡 = 1]

⋅ Pr[𝑆𝑡+1 = 1]

= (1 − 𝛽)𝜋1 − 𝜋2
1

(B.7)

and
(

Var[𝑆𝑡+1] =
)

Var[𝑆𝑡] = E[𝑆2
𝑡 ] − E[𝑆𝑡]2 = Pr[𝑆𝑡 = 1] − Pr[𝑆𝑡 = 1]2

= 𝜋1 − 𝜋2
1 ,

(B.8)

so we have

𝜏 =
(1 − 𝛽)𝜋1 − 𝜋2

1

𝜋1 − 𝜋2
1

=
(1 − 𝛽) − 𝛼∕(𝛼 + 𝛽)

1 − 𝛼∕(𝛼 + 𝛽)
= 1 − (𝛼 + 𝛽), (B.9)

where we used (B.5). This expression makes intuitive sense because
larger 𝛼 and 𝛽 mean that the patch quality frequently changes and
hence that the stability of patch quality 𝜏 is low. By solving Eqs. (B.5),
(B.9) with respect to 𝛼 and 𝛽, we obtain

𝛼 = 𝜋1(1 − 𝜏), 𝛽 = (1 − 𝜋1)(1 − 𝜏). (B.10)

Therefore, our model is parameterized either by (𝛼, 𝛽) or by (𝜋1, 𝜏). In
the latter case, its domain is a curved pentagon-like region represented
as
{

(𝜋1, 𝜏) ∣ 0 < 𝜋1 < 1,max
[

−
𝜋1

1 − 𝜋1
,−

1 − 𝜋1
𝜋1

]

< 𝜏 < 1
}

, (B.11a)

or, equivalently,
{

(𝜋1, 𝜏) ∣ −1 < 𝜏 < 1, 0 < 𝜋1 < 1, for 0 ⩽ 𝜏 < 1
−𝜏∕(1 − 𝜏) < 𝜋1 < 1∕(1 − 𝜏), for − 1 < 𝜏 < 0

}

,

(B.11b)

s illustrated in Fig. S.1.
The limit of no temporal heterogeneity, 𝜏 → 1, can be obtained by

etting the transition probabilities 𝛼 and 𝛽 tend to zero, while keeping
heir relative magnitudes constant: 𝛼 = 𝜖𝜋 and 𝛽 = 𝜖(1 − 𝜋) and 𝜖 → 0.
lternatively, we can assume that the patch qualities do not change,
13

= 𝛽 = 0, and assume that the patch proportions are 𝜋 and 1− 𝜋. Both o
pproaches result in the same expression of metapopulation fitness,
hich means that our results for 𝜏 → 1 are the same as for 𝜏 = 1.

The limit 𝜏 → −1, can be obtained by letting 𝛼 → 1 and 𝛽 → 1,
so that 𝜋 → 1∕2. That limit, however, is not consistent with starting
with 𝛼 = 𝛽 = 1. A Markov chain with such a transition matrix has
the equilibrium (1∕2, 1∕2), but it is not asymptotically stable. From any
other initial condition (𝑥, 1 − 𝑥), the Markov chain fluctuates between
he states (𝑥, 1 − 𝑥) and (1 − 𝑥, 𝑥). In other words, it is not meaningful
o consider the limit 𝜏 → −1.

Appendix C. Explicit expression for the metapopulation fitness for
𝑵 = 𝟐

C.1. Arrival probabilities

Concerning the relative attractivity parameters 𝜆𝑘, only their rela-
tive magnitude matters. According to (A.2), we have

�̂�1 =
𝜆1

𝜆1𝜋1 + 𝜆2𝜋2
=

𝜆1∕𝜆2
(𝜆1∕𝜆2)𝜋 + (1 − 𝜋)

= 𝜆
𝜆𝜋 + (1 − 𝜋)

. (C.1)

Analogously, we have

�̂�2 =
1

𝜆𝜋 + (1 − 𝜋)
. (C.2)

herefore, the arrival probabilities are

1 = �̂�1𝜋1 =
𝜆𝜋

𝜆𝜋 + (1 − 𝜋)
and 𝜙2 = �̂�2𝜋2 =

1 − 𝜋
𝜆𝜋 + (1 − 𝜋)

. (C.3)

In the case of two patch types, metapopulation fitness thus depends
on the parameters 𝜆1 and 𝜆2 only through 𝜆 = 𝜆1

𝜆2
, which measures the

attractivity of high-productivity patches relative to the low-productivity
patches.

C.2. Pair of linear equations for the metapopulation fitness components

The system of Eqs. (A.6) in the case of two patch types is

𝑅1 =
𝑃 (1 ← 1)𝐹1𝑛1

(1 − 𝑚1)𝐹1𝑛1 + �̂�1𝐼res
(𝑚mut,1𝑝 + (1 − 𝑚mut,1)𝑅1)

+
𝑃 (2 ← 1)𝐹2𝑛2

(1 − 𝑚1)𝐹1𝑛1 + �̂�1𝐼res
(𝑚mut,2𝑝 + (1 − 𝑚mut,2)𝑅2),

2 =
𝑃 (1 ← 2)𝐹1𝑛1

(1 − 𝑚2)𝐹2𝑛2 + �̂�2𝐼res
(𝑚mut,1𝑝 + (1 − 𝑚mut,1)𝑅1)

+
𝑃 (2 ← 2)𝐹2𝑛2

(1 − 𝑚2)𝐹2𝑛2 + �̂�2𝐼res
(𝑚mut,2𝑝 + (1 − 𝑚mut,2)𝑅2),

(C.4)

n which 𝐼res = 𝑝(𝜋𝑚1𝑛1𝐹1 + (1 − 𝜋)𝑚2𝑛2𝐹2). In Appendix A.4 we
bserved from the last expression of (A.6) that the metapopulation
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fitness, and thus the evolution of dispersal, depends on the fecundities
𝐹𝑘 and population densities 𝑛𝑘 only through their product, 𝐹𝑘𝑛𝑘. Here

e observe that such dependence in (C.4) occurs only through 𝑓 = 𝐹1𝑛1
𝐹2𝑛2

describing the productivity ratio of patches of quality 1. Without loss
of generality we can assume 𝑓 > 1, so that patch quality 1 corresponds
to higher productivity. Furthermore, with the help of (B.1) and (B.10),
(C.4) becomes

𝑅1 =
(𝜋 + 𝜏(1 − 𝜋))𝑓 (𝑚mut,1𝑝 + (1 − 𝑚mut,1)𝑅1)

(1 − 𝑚1)𝑓 + �̂�1𝑝(𝜋𝑚1𝑓 + (1 − 𝜋)𝑚2)

+
(1 − 𝜋)(1 − 𝜏)(𝑚mut,2𝑝 + (1 − 𝑚mut,2)𝑅2)

(1 − 𝑚1)𝑓 + �̂�1𝑝(𝜋𝑚1𝑓 + (1 − 𝜋)𝑚2)
,

2 =
𝜋(1 − 𝜏)𝑓 (𝑚mut,1𝑝 + (1 − 𝑚mut,1)𝑅1)

(1 − 𝑚2) + �̂�2𝑝(𝜋𝑚1𝑓 + (1 − 𝜋)𝑚2)

+
(1 − 𝜋 + 𝜋𝜏)(𝑚mut,2𝑝 + (1 − 𝑚mut,2)𝑅2)

(1 − 𝑚2) + �̂�2𝑝(𝜋𝑚1𝑓 + (1 − 𝜋)𝑚2)
.

(C.5)

.3. Metapopulation fitness

The pair of linear equations (C.5) can be solved explicitly. Substi-
uting the solution into (A.7), and applying (C.1), (C.2) and (C.3) we
btain

((𝑚mut,1, 𝑚mut,2); (𝑚1, 𝑚2)) = 𝜙1𝑅1 + 𝜙2𝑅2. (C.6)

The electronic appendix illustrates how this expression is obtained with
Mathematica.

Appendix D. Evolution of unconditional dispersal

We will first study the evolution of unconditional dispersal, i.e,
assume that the patch quality has no effect on the dispersal strategy
of an individual, so that 𝑚1 = 𝑚2 = 𝑚 and 𝑚mut,1 = 𝑚mut,2 = 𝑚mut .

D.1. Fitness gradient

The fitness gradient is the first derivative of the metapopulation
fitness (C.6) with respect to the mutant dispersal strategy, evaluated
when the mutant dispersal strategy is equal to that of the resident.

𝐷(𝑚) = 𝜕
𝜕𝑚mut

𝑅((𝑚mut , 𝑚mut ); (𝑚,𝑚))
|

|

|

|𝑚mut=𝑚
. (D.1)

This calculation leads to the following theorem:

Theorem D.1. The fitness gradient for unconditional dispersal is

𝐷(𝑚) = 1
�̃�
(𝑍 + 𝑚𝑌 ), (D.2)

n which

�̃� = 𝑝𝑚(1 − 𝜋 + 𝑓𝜋)[𝜆𝑝𝑚(1 − 𝜋 + 𝑓𝜋) + (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)(1 − 𝑚)

× (𝜆𝜋 + 𝑓 (1 − 𝜋))] ⩾ 0,

𝑍 = (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)�̂�0,

�̂�0 = −𝑓 (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆) + 𝑝𝜋(1 − 𝜋)(𝑓 − 1)(𝑓 − 𝜆),

𝑌 = 𝑓 (1 − 𝑝)(1 + (−1 + 𝜆)𝜋)2(1 − 𝜏) − 𝑝(1 − 𝑝)𝜆(1 − 𝜋 + 𝜋𝑓 )2

− (𝜆 − 𝑓 )2𝑝(1 − 𝜋)𝜋.

(D.3)

Since the coefficient �̃� is positive, the direction of selection is
completely determined by 𝑍 + 𝑚𝑌 , which is linear with respect to
𝑚. Therefore, there exists at most one singular strategy 𝑚∗ = −𝑍∕𝑌 ,
provided that 0 < 𝑚∗ < 1. Before investigating the properties of the
singular strategy, consider the attractivity of the boundaries of the
strategy space.
14
D.2. Attractivity of zero dispersal

The fitness gradient 𝐷(0) is not defined, but we can determine the
direction of selection at zero dispersal by calculating the limit of (D.2)
when 𝑚 → 0,

lim
𝑚→0

𝑚𝐷(𝑚) =
�̂�0

𝑝(𝑓𝜋 + 1 − 𝜋)(𝑓 (1 − 𝜋) + 𝜆𝜋)
. (D.4)

The denominator of (D.4) is clearly positive. The sign is thus deter-
mined by the numerator �̂�0 given by (6):

�̂�0 = −𝑓 (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩽0

+ 𝑝𝜋(1 − 𝜋)(𝑓 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

(𝑓 − 𝜆) (D.5)

The first part of �̂�0 is either zero, when 𝑝 = 1, and negative otherwise.
The second part of �̂�0 has the multiplier 𝜋(1 − 𝜋), which is zero when
there is no spatial heterogeneity, 𝜋 = 0 or 𝜋 = 1. This multiplier reaches
its maximum for 𝜋 = 1

2 . The sign of the second term is determined by
𝑓 −𝜆. If 𝑓 > 𝜆, the second term is positive for intermediate 𝜋, and zero
dispersal may be repelling. If 1 < 𝑓 < 𝜆, zero dispersal is attracting for
all 𝜋.

Fig. 2a illustrates the evolution of unconditional dispersal with
respect to the proportion of high-productivity patches 𝜋 and autocor-
relation 𝜏. As expected, dispersal does not evolve, when 𝜋 ≈ 0 or 𝜋 ≈ 1
(areas with light-gray shading). Dispersal evolves to a positive singular
strategy for intermediate values of 𝜋 (color shading ranging from blue
to red). The curves separating these two areas are straight vertical lines,
because the expression �̂�0 does not depend on autocorrelation 𝜏. By
solving �̂�0 = 0 for 𝜋 we obtain

min,max

= 1
2
+

(𝜆 − 1)𝑓 (1 − 𝑝) ±
√

[𝑝(𝑓 − 1)(𝑓 − 𝜆) + (𝜆 − 1)𝑓 (1 − 𝑝)]2 − 4𝑝(𝑓 − 1)(𝑓 − 𝜆)𝑓 (1 − 𝑝)
2𝑝(𝑓 − 1)(𝑓 − 𝜆)

= 1
2
±

√

𝑝2(𝑓 − 1)2 − 4𝑝𝑓 (1 − 𝑝)
2𝑝(𝑓 − 1)

, for 𝜆 = 1

(D.6)

By solving �̂�0 = 0 for 𝑓 we obtain

̂ = 𝜆 + 1
2

+
(1 − 𝑝)(1 − 𝜋 + 𝜋𝜆) +

(−)

√

[(𝜆 + 1)𝑝𝜋(1 − 𝜋) + (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆)]2 − 4𝜆𝑝2𝜋2(1 − 𝜋)2

2𝑝𝜋(1 − 𝜋)

= 1 +
(1 − 𝑝) +

(−)

√

[2𝑝𝜋(1 − 𝜋) + (1 − 𝑝)]2 − 4𝑝2𝜋2(1 − 𝜋)2

2𝑝𝜋(1 − 𝜋)
, for 𝜆 = 1

(D.7)

D.3. Attractivity of full dispersal

According to (D.2), fitness gradient at 𝑚 = 1 is given by

𝐷(1) = 𝑍 + 𝑌
𝜆𝑝2(1 − 𝜋 + 𝑓𝜋)2

, (D.8)

and its sign is determined by

𝑍 + 𝑌 = (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)𝑝𝜋(1 − 𝜋)(𝑓 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

(𝑓 − 𝜆)

−𝑝(1 − 𝑝)𝜆(1 − 𝜋 + 𝜋𝑓 )2 − (𝑓 − 𝜆)2𝑝𝜋(1 − 𝜋)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩽0

. (D.9)

When 𝑓 ⩽ 𝜆 we have 𝑍 + 𝑌 ⩽ 0. Strict equality holds only in special
circumstances (𝑝 = 1 and 𝜋(1 − 𝜋) = 0), otherwise the full-dispersal
strategy is evolutionarily repelling. When 𝑓 > 𝜆, 𝐷(1) ⩽ 0 when
𝜏 ⩾ 𝜏thresh, and 𝐷(1) > 0 when 𝜏 < 𝜏thresh, in which

𝜏thresh = 1 −
(1 − 𝑝)𝜆(1 − 𝜋 + 𝜋𝑓 )2 + (𝑓 − 𝜆)2𝜋(1 − 𝜋)

(1 − 𝜋 + 𝜆𝜋)𝜋(1 − 𝜋)(𝑓 − 1)(𝑓 − 𝜆)

= 1 −
(1 − 𝑝)𝜆(1 − 𝜋 + 𝜋𝑓 )2

(1 − 𝜋 + 𝜆𝜋)𝜋(1 − 𝜋)(𝑓 − 1)(𝑓 − 𝜆)
−

(𝑓 − 𝜆)
(1 − 𝜋 + 𝜆𝜋)(𝑓 − 1)

.

(D.10)
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In Fig. 2a, this is the curve separating the areas of positive singular
strategy (color shading ranging from blue to red) and full dispersal
𝑚∗ = 1 (dark gray shading).

D.4. Outcomes of dispersal evolution

Based on the results above, there are four qualitatively different
scenarios of monomorphic evolution of unconditional dispersal. When
the potential of evolutionary branching is included (see Theorem D.3),
there are five scenarios listed below and illustrated in Fig. 1.

Theorem D.2.

1. If �̂�0 < 0 and 𝑍 + 𝑌 < 0, the zero-dispersal strategy 𝑚 = 0 is
evolutionarily attracting, and the full-dispersal strategy 𝑚 = 1 is
evolutionarily repelling. Evolution converges to 𝑚 = 0 from all initial
conditions (Fig. 1a).

2. If �̂�0 > 0 and 𝑍 + 𝑌 > 0, the zero-dispersal strategy 𝑚 = 0
is evolutionarily repelling, and the full-dispersal strategy 𝑚 = 1 is
evolutionarily attracting. Evolution converges to 𝑚 = 1 from all initial
conditions (Fig. 1d).

3. If �̂�0 < 0 and 𝑍 + 𝑌 > 0, the zero-dispersal strategy 𝑚 = 0 is
locally evolutionarily attracting, and the full-dispersal strategy 𝑚 = 1
is locally evolutionarily attracting. A unique evolutionarily singular
strategy 𝑚∗ exists, and it is evolutionarily repelling. If 𝑚 < 𝑚∗,
evolution converges to 𝑚 = 0, and if 𝑚 > 𝑚∗, evolution converges
to 𝑚 = 1 (Fig. 1f).

4. If �̂�0 > 0 and 𝑍 + 𝑌 < 0, the zero-dispersal strategy 𝑚 = 0
is evolutionarily repelling, and the full-dispersal strategy 𝑚 = 1
is evolutionarily repelling. A unique evolutionarily singular strategy
𝑚∗ exists, and it is evolutionarily attracting. Evolution converges to
𝑚∗ from all initial conditions. If 𝜏 > 0, the singular strategy is
uninvadable (Fig. 1b). If 𝜏 < 0, evolutionary branching is expected
to occur (Fig. 1c).

Consequently, potential evolutionary endpoints are

0, if �̂�0 < 0

−𝑍
𝑌

= −
(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)�̂�0

𝑌
, if 𝑍 > 0 and 𝑍 + 𝑌 < 0

1, if 𝑍 + 𝑌 > 0.

(D.11)

.5. Evolutionary branching

heorem D.3. If the singular strategy 𝑚∗ exists (0 < 𝑚∗ < 1) and is
volutionarily attracting, evolutionary branching occurs if and only if 𝜏 < 0.

roof. The second derivative at singularity is

𝜕2

𝜕𝑚2
mut

𝑅
|

|

|

|

|𝑚mut=𝑚=𝑚∗
= −2𝑓 (1 − 𝑝)𝜏 𝐶2

(𝑓 − 𝜆)�̂�0𝐵1𝐵2
, (D.12)

where the components 𝐶, 𝐵1 and 𝐵2 are listed below.
The component �̂�0 is the numerator of the scaled selection gradient

for zero dispersal, given in (D.4). It is positive, when the zero-dispersal
strategy is evolutionarily repelling, which is a necessary condition
for the singular strategy to be evolutionarily attracting. Furthermore,
𝑓 > 𝜆 is a necessary condition for the zero-dispersal strategy is
evolutionarily repelling. Therefore, assuming that the singular strategy
is evolutionarily attracting, we have (𝑓 − 𝜆)�̂�0 > 0.

The component

𝐶 =𝑓 2𝑝𝜋(𝜆(𝑝 − 1)𝜋 + 𝜋 − 1)

− 𝑓
(

2𝜆𝑝2(𝜋 − 1)𝜋 − 𝑝(𝜏 − 1)((𝜆 − 1)𝜋 + 1)2 + (𝜏 − 1)((𝜆 − 1)𝜋 + 1)2
)

+ 𝜆𝑝(𝜋 − 1)((𝜆 − 1)𝜋 + 𝑝(𝜋 − 1) + 1)

(D.13)
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does not affect the sign of (D.12).
The component

𝐵1 =𝑝2(1 − 𝜋)𝜋(𝜏 − 1)2(𝑓𝜋 + 1 − 𝜋)(𝜆𝜋 + 1 − 𝜋) ⩾ 0 (D.14)

s clearly non-negative. It is zero, when 𝑝 = 0, 𝜋 = 0, 𝜋 = 1, or 𝜏 = 1,
hich all are such special cases that dispersal does not evolve.

Finally,

2 =𝜋(1 − 𝜏)(𝑓 − 𝜆)(𝑓 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

+(𝑓 (𝑓 − 1)
⏟⏞⏟⏞⏟

⩾0

𝜏 + (𝑓 − 𝜆)
⏟⏟⏟

>0

).
(D.15)

Since 𝑓 > 𝜆 when the singular strategy is evolutionarily attracting,
the expression 𝐵2 is certainly positive, when 𝜏 ⩾ 0. The expression is
ncreasing with respect to 𝜏. Therefore it is enough to prove that 𝐵2 > 0
hen 𝜏 = 𝜏thresh defined in (D.10). We obtain

2
|

|

|𝜏=𝜏thresh
=

𝜆(1 − 𝜋 + 𝑓𝜋)
(𝑓 − 𝜆)(1 − 𝜋)𝜋(1 − 𝜋 + 𝜆𝜋)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

�̂�0, (D.16)

which is positive, when the zero-dispersal strategy is repelling. □

D.6. The qualitative effect of parameters on the singular strategy 𝑚∗

Theorem D.4. Provided that the singular strategy 𝑚∗ is evolutionarily
attracting and 0 < 𝑚∗ < 1, the qualitative effect of parameters on the
singular strategy is as follows:

• The singular strategy decreases with autocorrelation 𝜏 (Fig. 2c).
• The singular strategy increases, when dispersal survival 𝑝 is increased
(Fig. 4a).

• Increasing the relative fecundity 𝑓 increases �̂�0 and thus promotes
the emergence of dispersal. The singular strategy 𝑚∗ increases with 𝑓
when 𝜆 ⩽ 1 (Fig. 3bc). For 𝜆 > 1 the singular strategy 𝑚∗ mostly
increases when 𝑓 increases, but 𝑚∗ decreases when 𝑓 increases when
𝑝 is sufficiently close to 1 (Fig. 3a).

• When 𝜆 is large, both �̂�0 < 0 and 𝐷(1) < 0, which means that
dispersal evolves to zero, 𝑚∗ = 0. Numerical explorations illustrate
that the singular strategy can be decreasing or non-monotonic with
respect to 𝜆 (Fig. 4b).

roof. In order for dispersal to evolve, we must have �̂�0 > 0, for which
necessary condition is 𝑓 > 𝜆. Assuming �̂�0 > 0 and 𝑌 < 0 we have

he following effects of parameters on the expression −𝑍
𝑌 :

• Autocorrelation 𝜏: When 𝜏 = 1, we have 𝑍 = 0 and 𝑌 < 0, so that
dispersal evolves to zero. It is easy to see that

𝜕
𝜕𝜏

𝑍 = −(1 − 𝜋 + 𝜆𝜋)�̂�0 < 0 (D.17)

and
𝜕
𝜕𝜏

𝑌 = −𝑓 (1 − 𝑝)(1 + −𝜋 + 𝜋𝜆)2 < 0 (D.18)

Therefore,

𝜕
𝜕𝜏

(

−𝑍
𝑌

)

=

>0
⏞⏞⏞
(−𝑌 )

<0
⏞⏞⏞
𝜕
𝜕𝜏

𝑍 +

>0
⏞⏞⏞

𝑍

<0
⏞⏞⏞
𝜕
𝜕𝜏

𝑌

𝑌 2
< 0, (D.19)

which means that when 0 < 𝑚∗ < 1, the singular strategy
decreases with autocorrelation 𝜏.

• Dispersal survival 𝑝:

𝜕
𝜕𝑝

𝑍 = (1− 𝜏)(1 − 𝜋 + 𝜆𝜋)[𝑓 (1 − 𝜋 + 𝜋𝜆) + 𝜋(1 − 𝜋)(𝑓 −1)(𝑓 − 𝜆)] > 0,

(D.20)
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(

which means that increasing 𝑝 promotes the emergence of disper-
sal. Furthermore,

𝜕
𝜕𝑝

𝑚∗ =
(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)

𝑌 2

[

−𝑌
(

𝜕
𝜕𝑝

�̂�0

)

+ �̂�0

(

𝜕
𝜕𝑝

𝑌
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈+𝑉 𝜏

, (D.21)

in which

𝑉 = 𝑓 (𝑓 − 𝜆)(𝑓 − 1)𝜋(1 − 𝜋)(1 − 𝜋 + 𝜆𝜋)2 > 0. (D.22)

The component determining the sign of (D.21) thus decreases
when 𝜏 is decreased. Substituting the lower bound 𝜏 = 𝜏thresh from
(D.10) results in

𝑈 + 𝑉 𝜏thresh = 𝜆𝑝(1 − 𝜋 + 𝜋𝑓 )2�̂�0, (D.23)

which is positive, when the singular strategy is evolutionarily
attracting. Therefore, the singular strategy 𝑚∗ increases with 𝑝.

• Productivity ratio 𝑓 : With the help of �̂�0 > 0 we obtain

𝜕
𝜕𝑓

𝑍 = (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)[−(1 − 𝑝)(1 − 𝜋 + 𝜋𝜆) + 𝑝𝜋(1 − 𝜋)(2𝑓 − 1 − 𝜆)]

> (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)[−(1 − 𝑝)(1 − 𝜋 + 𝜋𝜆)

+
𝑓 (1 − 𝑝)(1 − 𝜋 + 𝜋𝜆)

(𝑓 − 1)(𝑓 − 𝜆)
(2𝑓 − 1 − 𝜆)]

= (1 − 𝜏)(1 − 𝑝)(1 − 𝜋 + 𝜆𝜋)2
𝑓 2 − 𝜆

(𝑓 − 1)(𝑓 − 𝜆)
⩾ 0,

(D.24)

which means that increasing 𝑓 promotes the emergence of disper-
sal.

𝜕
𝜕𝑓

𝑚∗ =
(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)

𝑌 2

[

−𝑌
(

𝜕
𝜕𝑓

�̂�0

)

+ �̂�0

(

𝜕
𝜕𝑓

𝑌
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�+𝑉 𝜏

,

(D.25)

in which

𝑉 = 𝑝(1 − 𝑝)𝜋(1 − 𝜋)(𝑓 2 − 𝜆)(1 − 𝜋 + 𝜆𝜋)2 > 0 (D.26)

The component determining the sign of (D.25) thus decreases
when 𝜏 is decreased. Substituting the lower bound 𝜏 = 𝜏thresh from
(D.10) results in

�̃� + 𝑉 𝜏thresh =
𝑝�̂�0

(𝑓 − 1)(𝑓 − 𝜆)
(�̃�0 − 𝑝�̃�1), (D.27)

in which �̃�0 does not depend on 𝑝 and

�̃�1 =(𝜆 ∗ (1 − 𝜋 + 𝑓𝜋))((𝑓 − 1)(𝜆 − 1)𝜋 + (𝑓 − 1) + (𝑓 − 𝜆)) > 0

(D.28)

Therefore �̃�0 − 𝑝�̃�1 decreases when 𝑝 is increased. Substituting
𝑝 = 1 results in

�̃�0 − �̃�1 =(1 − 𝜆)(𝑓 − 𝜆)2𝜋(1 − 𝜋) (D.29)

We thus reach the following conclusion: If 𝜆 ⩽ 1 then �̃�0−�̃�1 ⩾ 0,
so that the singular dispersal strategy increases when 𝑓 increases.
If 𝜆 > 1 then the singular dispersal strategy usually increases when
𝑓 increases, but can decrease, when 𝑝 ≈ 1. In particular, for 𝑝 = 1
we have

𝑚∗
|𝑝=1 =

(𝑓 − 1)(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)
𝑓 − 𝜆

, (D.30)

so that
𝜕
𝜕𝑓

𝑚∗
|𝑝=1 =

(1 − 𝜆)(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)
(𝑓 − 𝜆)2

, (D.31)

which is positive for 𝜆 < 1 and negative for 𝜆 > 1.
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In the special case

�̃� |𝜆=1 = 2(𝑓 − 1)(1 − 𝑝)(1 − 𝜋 + 𝜋𝑓 ) > 0. (D.32)

Therefore, the singular strategy 𝑚∗ increases with 𝑓 at least when
𝜆 = 1. □

D.7. Exploring the consequences of evolutionary branching

To confirm our analytic result and study evolutionary dynamics
after branching, we performed simulations. An initially unimodal dis-
tribution first evolved towards the singular strategy. The predicted
branching threshold is 𝜏 = 0. At 𝜏 = 0.4, the distribution stayed
unimodal around the analytically predicted 𝑚∗ value. At 𝜏 = −0.4, a
clear evolutionary branching was observed (see Fig. S.2).

D.8. Qualitatively different parameter plots with respect to 𝜋 and 𝜏

As discussed in Section 3.2, the parameter plot of the singular
dispersal strategy 𝑚∗ with respect to the proportion of high-productivity
patches 𝜋 and autocorrelation 𝜏 in Fig. 2a illustrates that spatiotem-
poral heterogeneity promotes dispersal. However, depending on other
parameters, such parameter plots may look qualitatively different.
Fig. S.3 shows all qualitatively different types of such parameter plots
for 𝑝 < 1. Below we will explain the details of all such cases ranging
from a–g. Furthermore, Fig. S.4 illustrates when each of these cases
occurs depending on the choice of the other remaining parameters,
productivity ratio 𝑓 , dispersal survival probability 𝑝, and arrival bias
𝜆.

(a) Dispersal evolves to zero (𝑚∗ = 0) for all feasible combinations
of 𝜋 and 𝜏 (Fig. S.3a). This occurs at least when the produc-
tivity ratio is smaller than the arrival bias, 𝑓 < 𝜆 (gray area
in Fig. S.4), and the parameter range becomes wider when the
dispersal survival probability is decreased.

(b) Bistability: dispersal evolves either to zero or to full dispersal
(𝑚∗ = 0 or 𝑚∗ = 1) in Fig. S.3b. The zero-dispersal strategy
𝑚∗ = 0 is at least locally evolutionarily attracting for all feasible
combinations of 𝜋 and 𝜏, and full-dispersal strategy 𝑚∗ = 1 is
locally evolutionarily attracting when 𝜏 is small enough, 𝜏 <
𝜏thresh, in which the analytical expression for 𝜏thresh is given in
(D.10). This occurs (purple area in Fig. S.4), when 𝜆 > 1 and 𝑓 is
increased enough from the case a. More precisely, by substituting
𝜋 = 1∕2 into 𝐷(1) given by (5) and (6) and taking the limit
𝜏 → −1, we obtain that 𝐷(1) > 0 in the bottom corner of Fig. S.3,
when

𝑓 > 1
2𝜆𝑝

(

1 + 2(1 − 𝑝)𝜆 + 𝜆2 + (1 + 𝜆)
√

(1 + 𝜆)2 − 4𝜆𝑝
)

, (D.33)

providing analytically the boundary curve between the gray and
purple areas of Fig. S.4, as well as the green and blue areas, which
will be explained below.

c,d) Bistability or intermediate singularities: for intermediate propor-
tions of 𝜋, a positive singular dispersal exists for large enough
autocorrelation, 𝜏 > 𝜏thresh, while full dispersal evolves for 𝜏 <
𝜏thresh. On both sides of this region, a region of bistability exists.
For 𝜋 ≈ 0 and 𝜋 ≈ 1 only zero-dispersal evolves (Fig. S.3cd), red
area in Fig. S.4. Necessarily 𝜆 > 1. Fig. S.3c and d differ in that
respect that in Fig. S.3c 𝜏thresh < 0 for all 𝜋, whereas in Fig. S.3d
𝜏thresh > 0 for some 𝜋. The parameter regions in which cases c
and d occur are plotted in red in Fig. S.4, with a dashed curve
separating the cases c and d. By substituting 𝜏 = 0 into 𝐷(1) and
finding its maximal value with respect to 𝜋, we observe that case
d occurs when

𝑓 >
𝜆(𝑥 + (−1 + 𝜆)𝜆(−1 + 𝑝))(𝑥 + (−1 + 𝜆)(−1 + 𝑝)𝑝)
(𝑥 + (−1 + 𝜆)(−1 + 𝑝))(𝑥 + (−1 + 𝜆)𝜆(−1 + 𝑝)𝑝)

in which

𝑥 = (1 − 𝜆)(1 − 𝑝)
√

𝜆𝑝. (D.34)
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Fig. S.2. Simulation results for 1000 patches. The bottom rows show the distribution at the end of the simulation. There are 100 strategies (𝑚 = 0.01, 0.02,… , 1.00). The fraction
of each strategy at each patch takes a continuous value and changes over time. A fraction 𝜇 = 0.01 and another fraction 𝜇 mutates to have +1/100 and −1/100 in their dispersal
probability, respectively. 𝑓 = 4, 𝜋 = 0.5, and 𝑝 = 0.7. (a) 𝜏 = −0.4, (b) 𝜏 = 0.4.
Fig. S.3. Qualitatively different parameter plots with respect to autocorrelation 𝜏 and proportion of high-productivity patches 𝜋, when 𝑝 < 1. (a) Dispersal evolves to zero (𝑚∗ = 0)
for all combinations of (𝜏, 𝜋), (b) For large 𝜏, dispersal evolves to zero (𝑚∗ = 0), for 𝜏 close to −1 there is bistability: depending on the initial strategy, dispersal evolves either to
𝑚∗ = 0 or 𝑚∗ = 1, (f–g) The zero-dispersal strategy is attracting only when 𝜋 ≈ 0 or 𝜋 ≈ 1. For intermediate 𝜋, a singular strategy 0 < 𝑚∗ < 1 exists, when 𝜏 is large enough. For 𝜏
close to −1 full dispersal evolves (𝑚∗ = 1), (e) As in (f), but full dispersal does not evolve for 𝜏 close to −1 (c–d) As in (f–g), but with a region of bistability as in (b). In c and f
the boundary between 𝑚∗ = 1 is below 𝜏 = 0, while in d and g, a part of it is above 𝜏 = 0.
(e) Positive dispersal evolves for intermediate 𝜋, but full dispersal
never evolves (𝑚∗ < 1), Fig. S.3e. This case occurs, when 𝜆 < 1
17
and 𝑓 is increased from the case a, shown as a blue region in
Fig. S.4. By solving when the discriminant in (D.6) is positive, we
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Fig. S.4. Regions of cases (a–g) of Fig. S.3 with respect to 𝜆 and 𝑓 for different values of 𝑝. The dots in panel (e) correspond to parameter combinations shown in Fig. S.3. For
the meanings of colors, please refer to the text in Appendix D.8.
obtain that positive singular strategies exist for intermediate 𝜋,
when

𝑓 > 1
2𝑝

(

1 + 𝜆 + 2(1 − 𝑝)
√

𝜆 +
√

1 + 6𝜆 + 𝜆2 + 4(1 − 𝑝)(1 + 𝜆)
√

𝜆 − 8𝜆𝑝
)

,

(D.35)

providing analytically the curve between the gray (a) and blue (e)
areas (𝜆 < 1) and purple (b) and red (c) areas.

(f,g) For intermediate proportions of 𝜋, a positive singular dispersal
strategy exists for large enough autocorrelation, 𝜏 > 𝜏thresh, while
full dispersal evolves for 𝜏 < 𝜏thresh. For 𝜋 ≈ 0 and 𝜋 ≈ 1 only zero-
dispersal evolves, 0 ⩽ 𝑚∗ ⩽ 1, Fig. S.3fg. Fig. S.3f and g differ in
the same respect as Fig. S.3cd: in Fig. S.3f 𝜏thresh < 0 for all 𝜋,
whereas in Fig. S.3g 𝜏thresh > 0 for some 𝜋. The parameter regions
in which cases f and g occur are plotted in green in Fig. S.4, with
a dashed curve separating the cases f and g. The curve separating
the red and green areas is obtained by solving numerically when
𝜏thresh meets the boundary of the feasible parameter region (B.11)
at 𝜋min or at 𝜋max given by (D.6). According to our numerical
explorations, these two conditions occur at the same time.

For 𝑝 = 1 the evolutionary scenarios are to some extent different
from those presented in Fig. S.3. For 𝑝 = 1, bistability is not possible.
Furthermore, either 𝑚∗ = 0 evolves for all feasible combinations
of 𝜋 and 𝜏 (Fig. S.5a), or positive dispersal evolves for all feasible
combinations of 𝜋 and 𝜏 (Fig. S.5b–e). For 𝜆 > 1, 𝜆 = 1 and 𝜆 < 1,
the threshold 𝜏thresh satisfies 𝜏thresh > 0 (Fig. S.5b), 𝜏thresh = 0 (Fig. S.5c),
and 𝜏 < 0 (Fig. S.5d), respectively.
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Appendix E. Evolution of conditional dispersal

E.1. Fitness gradient

The fitness gradient is the vector of first derivatives of the metapop-
ulation fitness (C.6) with respect to the mutant dispersal strategy
components, evaluated when the mutant dispersal strategy is equal to
that of the resident.

𝑫(𝒎) =
(

𝜕
𝜕𝑚mut,1

𝑅(𝒎mut;𝒎), 𝜕
𝜕𝑚mut,2

𝑅(𝒎mut;𝒎)
)

|

|

|

|

|𝒎mut=𝒎
. (E.1)

This calculation leads to the following theorem:

Theorem E.1. The fitness gradient for conditional dispersal

𝑫(𝑚H, 𝑚L) =
1
𝐴
(𝜋𝑓 (𝐵0−𝐵H𝑚H+𝐵L𝑚L), (1−𝜋)(−𝐶0+𝐶H𝑚H−𝐶L𝑚L)) (E.2)

in which
𝐴 =𝑝(𝑚L(1 − 𝜋) + 𝑓𝑚H𝜋)[𝜆𝑝(𝑚L(1 − 𝜋) + 𝑓𝑚H𝜋)

+ (1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)(𝜆(1 − 𝑚L)𝜋 + 𝑓 (1 − 𝑚H)(1 − 𝜋))] ⩾ 0

𝐵0 = −(1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)(1 + 𝑓𝑝(−1 + 𝜋) + (−1 + 𝜆 − 𝜆𝑝)𝜋)

𝐵H = 𝑓𝑝(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋) > 0

𝐵L = 𝜆𝑝2(1 − 𝜋) + (1 − 𝑝)(1 − 𝜏)(1 + (𝜆 − 1)𝜋)2 > 0

𝐶0 = (1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)(𝑓 (1 − 𝜋)(1 − 𝑝) + 𝜆𝜋(𝑓 − 𝑝)) ⩾ 0

𝐶H = 𝑓 (𝜆𝑝2𝜋 + (1 − 𝑝)(1 − 𝜏)(1 + (𝜆 − 1)𝜋)2) > 0

𝐶L = 𝜆𝑝((1 − 𝑝)(1 − 𝜋) + 𝜆𝜋) > 0.

(E.3)

Earlier we obtained the fitness gradient for unconditional dispersal
(D.2) by differentiating (C.6) when 𝑚 = 𝑚 = 𝑚 and 𝑚 =
1 2 mut,1
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Fig. S.5. Qualitatively different parameter plots with respect to autocorrelation 𝜏 and proportion of high-productivity patches 𝜋 when 𝑝 = 1. (a) Dispersal evolves to zero (𝑚∗ = 0)
for all combinations of (𝜏, 𝜋), (b–d) A singular strategy 0 < 𝑚∗ < 1 exists, when 𝜏 is large enough. For 𝜏 close to −1 full dispersal evolves (𝑚∗ = 1), (e) As in (d), but full dispersal
does not evolve. Panels b–d differ in respect of whether evolutionary branching is possible or not. Panel f is the same as Fig. S.4f, but here the dots correspond to parameter
combinations in panels a–e.
w

𝑚mut,2 = 𝑚mut . It can also be obtained from the fitness gradient for
conditional dispersal (E.3), by adding its components together and
setting 𝑚1 = 𝑚2 = 𝑚. Therefore, the connection between (6) and (E.3)
is the following:

�̃� = 𝐴||
|𝑚H=𝑚L=𝑚

𝑍 = 𝜋𝑓𝐵0 + (1 − 𝜋)(−𝐶0)

𝑌 = 𝜋𝑓 (𝐵L − 𝐵H) + (1 − 𝜋)(𝐶H − 𝐶L).

(E.4)

E.2. Outcomes of conditional dispersal evolution

According to Theorem E.1, the fitness gradient isoclines are straight
lines (Eq. (11) in the main text).

𝐷H(𝑚H, 𝑚L) = 0 for 𝑚L = 1
𝐵L

(−𝐵0 + 𝐵H𝑚H)

𝐷L(𝑚H, 𝑚L) = 0 for 𝑚L = 1
𝐶L

(−𝐶0 + 𝐶H𝑚H).
(E.5)

Next we show that all qualitatively different types of phase-plane plots
of conditional dispersal evolution are as shown in Fig. 5. Consequently,
there will be no dispersal from less productive patches, i.e., 𝑚L evolves
to zero.

Theorem E.2. If 𝑝 = 1, the fitness gradient isoclines (E.5) are identical, in
which case dispersal evolution first converges to the isocline, but is neutral
along it. Otherwise dispersal evolution converges to (𝑚∗

H, 0), where

𝑚∗
H =

⎧

⎪

⎨

⎪

0, if 𝐵0 ⩽ 0
1, if 𝐵0 ⩾ 𝐵H
𝐵0 , otherwise.

(E.6)
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⎩
𝐵H
Proof. All qualitatively different types of phase-plane plots are shown
in Fig. 5, illustrating that conditional dispersal converges to (𝑚∗

H, 0),
here 𝑚∗

H is given in (E.6). Next we go through all cases.

• When 𝑝 = 1, we obtain from (E.3)

𝐵0 = (1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)(1 − 𝜋)(𝑓 − 1) ⩾ 0

𝐵H = 𝑓 (1 − 𝜋) > 0

𝐵L = 𝜆(1 − 𝜋) > 0

𝐶0 = (1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)𝜆𝜋(𝑓 − 1) ⩾ 0

𝐶H = 𝑓𝜆𝜋 > 0

𝐶L = 𝜆2𝜋 > 0.

(E.7)

In this case, the coefficients of the isoclines are

𝐵0
𝐵L

=
(1 − 𝜏)(1 − 𝜋 + 𝜋𝜆)(𝑓 − 1)

𝜆
=

𝐶0
𝐶L

⩾ 0,
𝐵H
𝐵L

=
𝑓
𝜆

=
𝐶H
𝐶L

> 0,

(E.8)

which means that the isoclines (E.5) are equal. According to (E.2)
and because the coefficients (E.7) are non-negative, it is clear
that strategies converge towards the isocline. At the isocline, both
components of the fitness gradient are zero, so dispersal evolution
is neutral along it (Fig. 5bc).

• Consider the remaining case 𝑝 < 1. To complete the proof
concerning convergence, we show that the isocline for 𝐷H = 0 lies
above the isocline for 𝐷L = 0 which means that singular strategies
in the interior of the strategy space do not exist. Together with the
fact that the isocline for 𝐷L = 0 lies below the origin, the result
then follows (Fig. 5defg).
Isoclines at 𝑚H = 0: The isocline for 𝐷H = 0 lies above the
isocline for 𝐷L = 0 at 𝑚H = 0, if − 𝐵0

𝐵L
> − 𝐶0

𝐶L
, which is equivalent

with −𝐵 𝐶 + 𝐶 𝐵 > 0. This result holds, because under the
0 L 0 L
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c

i

assumptions

− 𝐵0𝐶L + 𝐶0𝐵L

= (1 − 𝑝)(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)3 [𝜆𝑝 + (1 − 𝜏)(𝑓 (1 − 𝑝)(1 − 𝜋) + 𝜆(𝑓 − 𝑝)𝜋)]

> 0.

(E.9)

Isoclines at 𝑚H = 1: The isocline for 𝐷H = 0 lies above the
isocline for 𝐷L = 0 at 𝑚H = 1, if 𝐵H−𝐵0

𝐵L
> 𝐶H−𝐶0

𝐶L
, which is

equivalent with (𝐵H − 𝐵0)𝐶L + (𝐶0 − 𝐶H)𝐵L > 0. We have

(𝐵H − 𝐵0)𝐶L + (𝐶0 − 𝐶H)𝐵L = 𝜆(1 − 𝑝)𝑝(1 − 𝜋 + 𝜆𝜋)2[

∗
⏞⏞⏞
𝑓𝑝𝜏

+ (1 − 𝜏)(1 − 𝜋) + 𝜆(1 − 𝜏)𝜋(1 + 𝜋(1 − 𝜏)(𝑓 − 1))

+ (𝑓 − 1)(1 − 𝜋)𝜋(1 − 𝜏)2].

(E.10)

The expression (E.10) is clearly positive, if 0 ⩽ 𝜏 < 1 and 𝑝 < 1.
However, the expression 𝑓𝑝𝜏 (marked with *) is negative, when
𝜏 < 0. Consider therefore the case 𝜏 < 0 with 𝑝 < 1 in more detail.
In such case, we use −𝜏

1−𝜏 ⩽ 𝜋 ⩽ 1
1−𝜏 (recall the stationary fraction

of high-productivity patches satisfies 𝜋 = 𝛼
𝛼+𝛽 = 𝛼

1−𝜏 = 1−𝜏−𝛽
1−𝜏 ).

From 𝜋 ⩽ 1
1−𝜏 we obtain (1− 𝜏)(1−𝜋) ⩾ −𝜏. Furthermore, 𝜋(1−𝜋)

reaches its maximum at 𝜋 = 1
2 , and its minimum at 𝜋 = −𝜏

1−𝜏 or
𝜋 = 1

1−𝜏 . Therefore

𝜋(1 − 𝜋) ⩾ min
{ 1
1 − 𝜏

(

1 − 1
1 − 𝜏

)

, −𝜏
1 − 𝜏

(

1 − −𝜏
1 − 𝜏

)}

= −𝜏
(1 − 𝜏)2

,

(E.11)

so that (1 − 𝜋)𝜋(1 − 𝜏)2 ⩾ −𝜏. As a result, the expression in square
brackets satisfies

[ 𝑓𝑝𝜏
⏟⏟⏟
⩾𝑓𝜏

+ (1 − 𝜏)(1 − 𝜋)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

>−𝜏

+ 𝜆(1 − 𝜏)𝜋(1 + 𝜋(1 − 𝜏)(𝑓 − 1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

+ (𝑓 − 1) (1 − 𝜋)𝜋(1 − 𝜏)2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾−𝜏

]

> 𝑓𝜏 − 𝜏 + 0 + (𝑓 − 1)(−𝜏) = 0

(E.12)

We have shown that the isocline for 𝐷H = 0 lies above the isocline
for 𝐷L = 0 both at 𝑚H = 0 and at 𝑚H = 1. Since the isoclines are
straight lines, the isocline for 𝐷H = 0 lies above the isocline for
𝐷L = 0 for 0 ⩽ 𝑚H ⩽ 1, which completes the proof concerning
convergence. □

When 𝜏 → 1, according to (E.3) we have 𝐵0 → 0 and 𝐶0 → 0,
which means that both isoclines go through the origin. The slope of
the isocline 𝐷H is greater than the slope of isocline 𝐷L, when 𝐵H𝐶L −
𝐵L𝐶H > 0. As 𝜏 → 1, we have

𝐵H𝐶L − 𝐵L𝐶H → 𝑓𝜆(1 − 𝑝)𝑝2(1 − 𝜋 + 𝜆𝜋)2 ⩾ 0. (E.13)

Equality in (E.13) holds only in the special case 𝑝 = 1 investigated
above (Fig. 5b). When 𝑝 < 1, (E.13) holds with strict inequality. The
isoclines cross only at the origin, and conditional dispersal evolves to
zero (Fig. 5a), so that also (E.6) holds in this case.

E.3. No evolutionary branching for conditional dispersal

Finally, we investigate uninvadability (evolutionary stability) of the
strategy (𝑚∗

H, 0). When 0 < 𝑚∗
H < 1, we could in principle observe

disruptive selection in the direction of 𝑚H. However, when the resident
strategy is (𝑚∗

H, 0), the metapopulation fitness of the mutant is equal to
20

1 for all mutant strategies of form (𝑚H,mut , 0). In other words,
Fig. S.6. Pairwise invasibility plot with respect to the strategy component 𝑚H of
onditional dispersal. Parameters are as in Fig. 5g, i.e., 𝑝 = 0.75, 𝑓 = 3, 𝜆 = 1, 𝜏 = 0.4,
𝜋 = 0.5.

𝑅((𝑚mut,H, 𝑚mut,L); (𝑚∗
H, 0)) < 1 for 𝑚mut,L > 0 and for any 𝑚mut,H

𝑅((𝑚mut,H, 0); (𝑚∗
H, 0)) = 1 for any 𝑚mut,H.

(E.14)

The neutral contour line of a pairwise invasibility plot (PIP) is thus
a vertical line. This is the boundary case between strict ESS and
branching, meaning that evolutionary branching does not happen (see
Fig. S.6).

E.4. The qualitative effect of parameters on the singular strategy (𝑚∗
H, 0)

Theorem E.3. The qualitative effect of parameters on the strategy (𝑚∗
H, 0)

s as follows

• Dispersal survival probability 𝑝: 𝑚∗
H is a non-decreasing function of 𝑝

(Fig. 7a).
• Productivity ratio 𝑓 : 𝑚∗

H = 0 for 1 ⩽ 𝑓 ⩽ 𝑓 , in which 𝑓 is given in
(E.18). For 𝑓 > 𝑓 the strategy 𝑚∗

H increases with 𝑓 (Fig. 2h).
• Relative attractivity 𝜆: If 1

𝑝 < 𝑓 < 1
𝑝2
, 𝑚∗

H decreases with respect to 𝜆.
If 𝑓 > 1

𝑝2
, 𝑚∗

H is non-monotonic with respect to 𝜆 (Fig. 7b)
• Autocorrelation 𝜏: For 𝜏 = 1 we have 𝑚∗

H = 0, and 𝑚∗
H is linear with

respect to 𝜏 around 𝑚∗
H = 0. For small enough 𝜏 we may have 𝑚∗

H = 1
(Fig. 2g).

• Proportion of high-productivity patches 𝜋: If 1
𝑝 < 𝑓 < 1

𝑝2
or 𝑓 > 1

𝑝2

and 𝜆 < �̃�, where �̃� = 𝑓𝑝−1
𝑓𝑝2−1 > 1, 𝑚∗

H is a non-increasing function of
𝜋 (Fig. 6ab). For 𝜏 ⩾ 0, the singular strategy 𝑚∗

H is a non-monotonic
function of 𝜋, if

𝑓 > 1
𝑝2

and 𝜆 > �̃� =
𝑓𝑝 − 1
𝑓𝑝2 − 1

, (E.15a)

which is equivalent with the condition (Fig. 6c).

𝜆 > 1
𝑝
and 𝑓 > 𝜆 − 1

𝑝(𝜆𝑝 − 1)
=∶ 𝑓. (E.15b)

Furthermore, 𝑚∗
H = 0 for 𝜋 ⩾ �̃�, where �̃� = 𝑓𝑝−1

𝑓𝑝−1+𝜆(1−𝑝) < 1. For
𝜏 < 0, the condition (E.15) is only a necessary condition for the
singular strategy 𝑚∗

H to be a non-monotonic function of 𝜋.

Proof.

• The effect of dispersal survival probability 𝑝: By differentiation
we obtain
𝜕 𝐵0 =

(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋) [

(1 − 𝜋(1 + 𝜆(1 − 𝑝)))2

𝜕𝑝 𝐵H 𝑓𝑝2(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋)2
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(

+𝜆𝜋(1 − 𝜋)(4(1 − 𝑝) + 𝑓𝑝2)
]

⩾ 0. (E.16)

Therefore, 𝑚∗
H is a non-decreasing function of 𝑝 (Fig. 7a).

• The effect of productivity ratio 𝑓 :
The coefficient 𝐵0 ⩽ 0 for 1 ⩽ 𝑓 ⩽ 𝑓 so that 𝑚∗

H = 0. This can be
seen from

𝐵0
|

|

|𝑓=1
= −(1 − 𝑝)(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)2 ⩽ 0 (E.17)

and by solving 𝐵0 = 0 for 𝑓 we obtain

𝑓 =

{

1−𝜋+𝜆𝜋(1−𝑝)
𝑝(1−𝜋) ⩾ 1

𝑝 , 𝜏 < 1
∞, 𝜏 = 1

(E.18)

By differentiation we obtain

𝜕
𝜕𝑓

𝐵0
𝐵H

=
(1 − 𝜏)(1 − 𝜋 + 𝜆𝜋)

(𝑓 2𝑝)
⩾ 0. (E.19)

For 𝑓 > 𝑓 the strategy 𝑚∗
H thus increases with 𝑓 (Fig. 2h).

• Arrival bias 𝜆: By differentiation, we obtain

𝜕
𝜕𝜆

𝐵0
𝐵H

=
𝜋(1 − 𝜏)

𝑓𝑝(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋)2
[

𝑓𝑝2(1 − 𝜋)2 − (1 − 𝜋 + 𝜆(1 − 𝑝)𝜋)2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑍(𝜆)

(E.20)

The sign of the derivative (E.20) is determined by the term 𝑍(𝜆)
in square brackets. It is a second-order polynomial with respect
to 𝜆, and the sign of the second-order term is negative. Therefore,
𝑍(𝜆) is negative for large 𝜆. Furthermore,

𝑍′(0) = −2(1 − 𝑝)𝜋(1 − 𝜋) ⩽ 0. (E.21)

We have thus two potential cases: If 𝑍(0) < 0, 𝑍(𝜆) is negative for
all 𝜆 ⩾ 0. If 𝑍(0) > 0, 𝑍(𝜆) is positive for small 𝜆, and negative
for large 𝜆. By calculating

𝑍(0) = (𝑓𝑝2 − 1)(1 − 𝜋)2 (E.22)

we observe that for 𝑓 > 1
𝑝2

, we have 𝑍(0) > 0, in which case 𝑚∗
H

is non-monotonic with respect to 𝜆. If 𝑓 < 1
𝑝2

we have 𝑍(0) < 0.
However, 𝑓 needs to be large enough to dispersal evolve in the
first place, 𝑓 > 𝑓 . In the limit 𝜆 → 0 the condition becomes 𝑓 > 1

𝑝 .
To conclude, if 1

𝑝 < 𝑓 < 1
𝑝2

, 𝑚∗
H decreases with 𝜆.

• Autocorrelation 𝜏: The denominator 𝐵H does not depend on 𝜏, and
the numerator 𝐵0 includes 𝜏 only in the form of multiplier (1−𝜏),
from which the result follows: For 𝜏 = 1 we have 𝑚∗

H = 0, and 𝑚∗
H

is linear with respect to 𝜏 around 𝑚∗
H = 0. For small enough 𝜏 we

may have 𝑚∗
H = 1 (Fig. 2g).

• Proportion of high-productivity patches 𝜋: By differentiation, we
obtain
𝜕
𝜕𝜋

𝐵0
𝐵H

=
(1 − 𝜏)

𝑓𝑝(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋)2
𝐻(𝜋), (E.23)

in which
𝐻(𝜋) = − (−1 + 𝑓𝑝)(−1 + 𝜋)2 − 𝜆3(−1 + 𝑝)2𝜋2

+ 𝜆2(−1 + 𝑝)𝜋(2 + (−3 + 𝑝 + 𝑓𝑝)𝜋)

− 𝜆(−1 + 𝜋)(−1 + (3 − 2𝑝)𝜋 + 𝑓𝑝(𝑝 − 2𝜋 + 𝑝𝜋))

(E.24)

The sign of the derivative (E.23) is determined by the term 𝐻(𝜋)
in (E.24). Based on above, it is enough to consider 𝑓 > 1

𝑝 . We
obtain
𝐻(0) = 1 − 𝑓𝑝 + 𝜆(−1 + 𝑓𝑝2)

𝐻(1) = 𝜆2(1 − 𝑝)[(1 − 𝑝)(1 − 𝜆) − 𝑓𝑝] ⩽ 0 for 𝑓 > 1
𝑝

𝐻 ′(𝜋) = 2(1 − 𝜆) (𝜆(1 − 𝑝) + 𝑓𝑝 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

(1 − 𝜋 + 𝜆(1 − 𝑝)𝜋)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

(E.25)
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>0 for 𝑓> 𝑝
For 𝑓 > 1
𝑝 we have 𝐻(1) ⩽ 0, because (1−𝑝)(1−𝜆)−𝑓𝑝 ⩽ (1−𝑝)−1 =

−𝑝 ⩽ 0. According to (E.25), the derivative 𝐻 ′(𝜋) does not change
sign in the interval 0 ⩽ 𝜋 ⩽ 1. Therefore, we get the following
classification (Fig. 6):

– If 1
𝑝 < 𝑓 < 1

𝑝2
, we have 𝐻(0) < 0. Since the derivative

does not change sign and 𝐻(1) ⩽ 0, we have 𝐻(𝜋) ⩽ 0
for 0 ⩽ 𝜋 ⩽ 1. The singular strategy 𝑚∗

H is a non-increasing
function of 𝜋.

– If 𝑓 > 1
𝑝2

and 𝜆 < �̃�, where �̃� = 𝑓𝑝−1
𝑓𝑝2−1 > 1, we have 𝐻(0) < 0.

Again, the singular strategy 𝑚∗
H is a non-increasing function

of 𝜋.
– If 𝑓 > 1

𝑝2
and 𝜆 > �̃�, we have 𝐻(0) > 0. Furthermore, the

derivative 𝐻 ′(𝜋) ⩽ 0. Therefore, 𝐻(𝜋) changes sign only
once, and is positive for small 𝜋 and negative for large 𝜋.
When 𝜏 ⩾ 0, valid parameter range is 0 ⩽ 𝜋 ⩽ 1, and the
singular strategy 𝑚∗

H is a non-monotonic function of 𝜋. When
𝜏 < 0, the valid parameter range is −𝜏

1−𝜏 ⩽ 𝜋 ⩽ 1
1−𝜏 , and

𝐻(0) > 0 is a necessary, but not a sufficient condition for
𝑚∗

H to be non-monotonic with respect to 𝜋.

Finally, by investigating 𝐵0 we obtain 𝑚∗
H = 0 for 𝜋 ⩾ �̃�. □

.5. Qualitatively different parameter plots with respect to 𝜋 and 𝜏

Analogous to the evolution of unconditional dispersal, the parame-
ter plots of the singular dispersal strategy component 𝑚∗

H with respect
o the proportion of high-productivity patches 𝜋 and autocorrelation
(as in Fig. 2e) may have qualitatively different forms depending on

he other parameters. Fig. S.7 shows all qualitatively different types
f such parameter plots. Below we will explain the details of all such
ases ranging from a–f. Furthermore, Fig. S.8 illustrates when each
f these cases occurs depending on the choice of the other remaining
arameters, productivity ratio 𝑓 , dispersal survival probability 𝑝, and
rrival bias 𝜆.

(a) Dispersal evolves to zero (𝑚∗
H = 0) for all feasible combinations

of 𝜋 and 𝜏 (Fig. S.7a). Based on results presented in Section 4.3,
this scenario occurs when 𝑓 < 1∕𝑝 (gray area in Fig. S.8). Again,
this parameter range becomes wider when the dispersal survival
probability is decreased, but it is considerably smaller than for
unconditional dispersal (Fig. S.4).

(b) Positive dispersal can evolve, 0 ⩽ 𝑚∗
H < 1 and 𝑚∗

H is a non-
monotonic function of 𝜋 (Fig. S.7b): Dispersal evolves to zero,
𝑚∗

H = 0 for �̃� ⩽ 𝜋 ⩽ 1, in which �̃� is given by (15). Positive
dispersal evolves for 0 < 𝜋 < �̃�, but full dispersal does not evolve.
This scenario occurs, when 𝑓 > 1∕𝑝, but 𝑓 is not large enough for
scenarios d-f to occur, i.e., (E.26) and (E.27) do not hold, and (16)
holds, so that the contours of 𝑚∗

H in Fig. S.7b are non-monotonic
at least for 𝜏 > 0 (light blue area in Fig. S.8).

(c) Positive dispersal can evolve, 0 ⩽ 𝑚∗
H < 1 and 𝑚∗

H is decreasing
with respect to 𝜋 (Fig. S.7c). The case (c) is otherwise the same as
(b), but (16) does not hold, so that the contours of 𝑚∗

H in Fig. S.7b
are decreasing with respect to 𝜋 (dark blue area in Fig. S.8).

d,e) Positive dispersal and full dispersal can evolve, 0 ⩽ 𝑚∗
H ⩽ 1, and

𝑚∗
H is a non-monotonic function of 𝜋 at least for 𝜏 > 0 (Fig. S.7de):

The cases (d) and (e) are similar to case (b), but also full dispersal
can evolve for 𝜋 < �̃�. The cases (d) and (e) differ in the positioning
of the parameter combinations of (𝜋, 𝜏) for which full dispersal
(𝑚∗

H = 1) evolves (dark gray region in Fig. S.7). In case (d),
this region is connected only to the bottom left boundary of the
feasible parameter combinations (𝜏 = −𝜋∕(1 − 𝜋) for 𝜋 < 1∕2),
whereas in case (d) it is connected to both bottom boundaries.
By substituting 𝜋 = 1∕2 into 𝐷H(1, 0) given by (9) and taking the

limit 𝜏 → −1, we obtain that 𝐷H(1, 0) > 0 in the bottom corner of
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Fig. S.7. Qualitatively different parameter plots with respect to autocorrelation 𝜏 and proportion of high-productivity patches 𝜋, when 𝑝 < 1. (a) Dispersal evolves to zero (𝑚∗
H = 0)

or all combinations of (𝜏, 𝜋) (b–f) Positive dispersal evolves for 0 < 𝜋 < �̃�. In b, d and e, 𝑚∗
H is non-monotonic with respect to 𝜋 (at least for 𝜏 > 0), whereas in c and f, 𝑚∗

H
s decreasing with respect to 𝜋. In b and c full dispersal does not evolve, whereas it evolves in d–f. Panel d differs from e and f in the positioning of the dark gray region
orresponding to the parameter combinations of (𝜋, 𝜏) for which full dispersal evolves. Parameters: 𝑝 = 0.8.
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Fig. S.7, when

𝑓 >
(1 + 𝜆)(1 + 𝜆(1 − 𝑝))

𝜆𝑝2
. (E.26)

Case (e) thus occurs when (16) and (E.26) hold (light green area
above the dashed curve in Fig. S.8).
Case (d) occurs when (E.26) does not hold, but (E.27) given below
holds (light green area below the dashed curve in Fig. S.8). These
conditions together guarantee that (16) holds.

𝜆 > 1
√

1 − 𝑝
and 𝑓 >

(1 +
√

1 − 𝑝)2

𝑝2
. (E.27)

(f) Positive dispersal and full dispersal can evolve, 0 ⩽ 𝑚∗
H ⩽ 1, and

𝑚∗
H is a decreasing function of 𝜋 (Fig. S.7f). As in case (e) (E.26)

holds, but in contrast (16) does not hold. (dark green area in
Fig. S.8).

ppendix F. Analysis of conditional dispersal based on reproduc-
ive values

.1. Overview

Here we provide an argument based on reproductive values and
how how the direction of selection can be predicted. We will describe
he case for conditional dispersal below.

In contrast to metapopulation fitness approach, where we consider
he total ‘‘reproduction’’ by a single patch and where we count the
umulative ‘‘reproductive success’’ of the patch from present to future,
rguments based on reproductive values consider only immediate re-
roduction by a single individual, but each offspring produced shall be
22

l

ounted with ‘‘appropriate’’ weights and those weights reflect different
bility of those different offsprings to contribute to a future gene pool.

There is a freedom of choice in how to normalize reproductive
alues, but we herein assume that at any moment of the time the total
eproductive value of all individuals present in the population is equal
o the same constant.

Mathematically rigid proofs of how to proceed computation based
eproductive values are not discussed here because the current paper
s not the place where we develop those arguments from scratch, so
nterested readers should refer to existing literature (e.g. Taylor, 1990;
aylor and Frank, 1996; Lehmann et al., 2016; Ohtsuki et al., 2020;
vila and Mullon, 2023). Instead, here we demonstrate how to apply

he methodology developed by those frameworks. A basic principle
f reproductive values normalized as above in a stationary (that is,
either growing or shrinking) population is that one’s reproductive
alue carries over to the aggregate of its offspring. For example, if
he reproductive value of a single parent is 𝑣 = 0.06, and if he dies

but leaves two offspring who have the same quality as each other, the
reproductive value of each of those two offspring is 𝑣′ = 0.03, because

should be equal to 2𝑣′. For another example, imagine a parent with
eproductive value of 𝑣 = 0.06, and suppose that he dies and leaves
xactly one offspring and that this offspring will either survive or die
ith equal probabilities. Then, the offspring immediately after birth

nherits its parent’s reproductive value, which is 𝑣′ = 0.06. In contrast,
f this offspring avoids mortality, the reproductive value of the offspring
s raised to 𝑣′′ = 0.12, because one can alternatively interpret this
ortality risk as that the offspring immediately after birth will even-

ually leave on average 1∕2 many dying individual whose reproductive
alue is zero, and leaves on average 1∕2 surviving individual whose
eproductive value is 𝑣′′, and therefore from the preservation law of
eproductive values the relation 𝑣′ = (1∕2) ⋅ 0 + (1∕2) ⋅ 𝑣′′ should hold,
eading to 𝑣′′ = 0.12.
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F.2. Recursions on reproductive values

Now, suppose that everyone in the population adopts resident dis-
persal strategy 𝒎 = (𝑚H, 𝑚L).

Recall the life-cycle assumption described in Section 2.1 in the main
text and imagine the population immediately after step ‘‘2. Reproduc-
tion’’ but before step ‘‘3. Emigration’’. There are only two types of ju-
veniles in the population, and they are those juveniles who are born in
a currently high-productivity patch (which we call ‘‘H-born-juveniles’’)
and those juveniles who are born in a currently low-productivity patch
(which we call ‘‘L-born-juveniles’’). We write the reproductive value of
a single H-born-juvenile as 𝑣HB and that of a single L-born-juvenile as

LB.
Next, imagine the moment in the middle of step ‘‘3. Emigration’’

n Section 2.1 when the decision of whether each juvenile remains in
he natal patch or disperses to a random patch is already made but
he mortality in dispersal has not produced any victims yet. There
re four different juveniles at that moment: those juveniles who are
n a currently high-productivity patch and will not disperse (which
e call ‘‘H-juveniles’’), those juveniles who are in a currently low-
roductivity patch and will not disperse (which we call ‘‘L-juveniles’’),
hose juveniles who are in a currently high-productivity patch and will
isperse (which we call ‘‘H-dispersing-juveniles’’), and those juveniles
ho are in a currently low-productivity patch and will disperse (which
e call ‘‘L-dispersing-juveniles’’). However, an H- and L-dispersing-

uvenile leave the same number of progeny in the future because
urvival probability 𝑝 is independent of juvenile’s place of origin, and
ence we call both of them simply ‘‘dispersing juveniles’’. Let 𝑣H, 𝑣L, 𝑣D
e reproductive values of a single H-juvenile, of a single L-juvenile,
nd of a single dispersing juvenile, respectively. Since the fraction
− 𝑚H of H-born-juveniles become H-juveniles and the fraction 𝑚H of

hem become dispersing juveniles, and since the fraction 1 − 𝑚L of L-
orn-juveniles become L-juveniles and the fraction 𝑚L of them become
ispersing juveniles, from the preservation law of reproductive values
t follows that

HB = (1 − 𝑚H)𝑣H + 𝑚H𝑣D

𝑣LB = (1 − 𝑚L)𝑣L + 𝑚L𝑣D.
(F.1)

Next, consider the moment immediately after step ‘‘3. Emigration’’
ut before step ‘‘4. Immigration’’ in Section 2.1. There are those juve-
ile who survived mortality in dispersal, and we call them ‘‘surviving
ispersing juveniles’’, the reproductive value of each of which is de-
oted by 𝑣S. From the preservation law of reproductive values, it
ollows that

(F.2)
23

D = 𝑝𝑣S. A
Next, consider the moment immediately after step ‘‘4. Immigration’’
ut before step ‘‘5. Transition’’ in Section 2.1. There are only two
ypes of those juvenile. They are those juveniles who are in a currently
igh-productivity patch (which we again call ‘‘H-juveniles’’) and those
uveniles who are in a currently low-productivity patch (which we
gain call ‘‘L-juveniles’’). When we consider a ‘‘surviving dispersing
uvenile’’, the chance that he arrives at a currently high-productivity
atch to become an H-juvenile is 𝜆H𝜋∕(𝜆H𝜋 +𝜆L(1−𝜋)) = 𝜆𝜋∕(𝜆𝜋 + (1−

𝜋)), and the chance that he arrives at a currently low-productivity patch
to become an L-juvenile is (1−𝜋)∕(𝜆𝜋+(1−𝜋)), so from the preservation
law of reproductive values we have

𝑣S = 𝜆𝜋
𝜆𝜋 + (1 − 𝜋)

𝑣H + 1 − 𝜋
𝜆𝜋 + (1 − 𝜋)

𝑣L. (F.3)

We next consider the moment immediately after step ‘‘5. Transition’’
but before step ‘‘6. Competition’’ in Section 2.1. After a transition of
patch productivity, there are four types of juveniles in the population.
They are, those juveniles who are in a patch whose productivity was
high before transition and is high after transition (which we call ‘‘HH-
juveniles’’), those juveniles who are in a patch whose productivity was
high before transition and is low after transition (which we call ‘‘HL-
juveniles’’), those juveniles who are in a patch whose productivity was
low before transition and is high after transition (which we call ‘‘LH-
juveniles’’), and those juveniles who are in a patch whose productivity
was low before transition and is low after transition (which we call ‘‘LL-
juveniles’’). Reproductive values of each of those juveniles, denoted by
𝑣HH, 𝑣HL, 𝑣LH and 𝑣LL, satisfy

H = (1 − 𝛽)𝑣HH + 𝛽𝑣HL

= (1 − (1 − 𝜋)(1 − 𝜏))𝑣HH + (1 − 𝜋)(1 − 𝜏)𝑣HL

𝑣L = 𝛼𝑣LH + (1 − 𝛼)𝑣LL

= 𝜋(1 − 𝜏)𝑣LH + (1 − 𝜋(1 − 𝜏))𝑣LL.

(F.4)

Finally, we consider the moment immediately after step ‘‘2. Repro-
uction’’ but before step ‘‘3. Emigration’’ once again and consider the
elationship between 𝑣HH, 𝑣HL, 𝑣LH, 𝑣LL and 𝑣HB, 𝑣LB to complete a series
f recursions on reproductive values. For that purpose we need to count
ow many H-born-juveniles a single HH/LH-juvenile bears on average,
nd count how many L-born-juveniles a single HL/LL-juvenile bears on
verage. Those quantities have already essentially been calculated in
ppendix C, and by using the preservation law of reproductive values
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we have

𝑣HH =
𝑓

(1 − 𝑚H)𝑓 + 𝜆
𝜆𝜋+(1−𝜋) 𝑝(𝜋𝑚H𝑓 + (1 − 𝜋)𝑚L)

𝑣HB

𝑣HL = 1
(1 − 𝑚H)𝑓 + 𝜆

𝜆𝜋+(1−𝜋) 𝑝(𝜋𝑚H𝑓 + (1 − 𝜋)𝑚L)
𝑣LB

𝑣LH =
𝑓

(1 − 𝑚L) +
1

𝜆𝜋+(1−𝜋) 𝑝(𝜋𝑚H𝑓 + (1 − 𝜋)𝑚L)
𝑣HB

𝑣LL = 1
(1 − 𝑚L) +

1
𝜆𝜋+(1−𝜋) 𝑝(𝜋𝑚H𝑓 + (1 − 𝜋)𝑚L)

𝑣LB.

(F.5)

F.3. Direction of selection

A set of recursions, Eqs. ((F.1), (F.2), (F.3), (F.4), (F.5)), specify
the relations that the ten different reproductive values, 𝑣HB, 𝑣LB, 𝑣H, 𝑣L,
𝑣D, 𝑣S, 𝑣HH, 𝑣HL, 𝑣LH, and 𝑣LL, must satisfy. It is easy to see that if we
find a solution, then 𝐶 times the solution, where 𝐶 is some constant,
is also a solution. To determine values of 𝑣’s, therefore, we must resort
to the normalization condition that we have already mentioned above.
However, even without such a normalization, we can obtain the ratio
of any two of the reproductive values, such as 𝑣HB∕𝑣LB or 𝑣H∕𝑣L, and
they are functions of 𝑚H and 𝑚L.

Given these solutions, we consider whether a mutant in dispersal
strategy can invade the resident or not. Below we suppose that mutant
and resident strategies are close. Regarding dispersal from a high-
productivity patch, if an H-born-juvenile does not disperse then this
juvenile obtains the reproductive value of 𝑣H, and if an H-born-juvenile
disperses then this juvenile obtains the reproductive value of 𝑣D, so if
those two reproductive values are not equal, a mutant strategy that
increases the proportion of whichever juvenile that has the larger
reproductive value than the other is more adaptive than the resident
strategy. In other words, if 𝑣H∕𝑣D > 1, then a mutant with 𝑚mut,H being
greater than 𝑚H is advantageous, and vice versa. By a similar reasoning,
if 𝑣L∕𝑣D > 1, then a mutant with 𝑚mut,L being greater than 𝑚L is
advantageous, and vice versa. In fact, we can confirm that the direction
of selection derived in this manner matches that in the previous section.
In particular, the argument here can precisely predict the position of
two isoclines derived by the metapopulation-based argument, which is
given in Eq. (E.5).

F.4. When (𝑚H, 𝑚L) → (0, 0)

For a special case of (𝑚H, 𝑚L) → (0, 0), it is shown that
𝑣L
𝑣H

= 𝑓 (F.6)

𝑣D
𝑣H

= 𝑝
(

𝜆𝜋
𝜆𝜋 + (1 − 𝜋)

1 + 1 − 𝜋
𝜆𝜋 + (1 − 𝜋)

𝑓
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(weighted average of 1 and 𝑓 )

(F.7)

olds, suggesting that the relative reproductive value of an L-juvenile to
hat of an H-juvenile is given by (F.6) and that the relative reproductive
alue of a dispersing juvenile to that of an H-juvenile is given by (F.7),
hich leads to the argument in Section 5.2 in the main text.

ppendix G. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jtbi.2023.111612.

eferences

vila, P., Mullon, C., 2023. Evolutionary game theory and the adaptive dynamics
approach: adaptation where individuals interact. Philos. Trans. R. Soc. B 378
(1876), 20210502.

alkau, B.J., Feldman, M.W., 1973. Selection for migration modification. Genetics 74,
171–174.
24
Bengtsson, B., 1978. Avoiding inbreeding: at what cost? J. Theoret. Biol. 73, 439–444.
Blanquart, F., Gandon, S., 2014. On the evolution of migration in heterogeneous

environments. Evolution 68 (6), 1617–1628.
Bowler, D.E., Benton, T.G., 2005. Causes and consequences of animal dispersal

strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80 (2),
205–225.

Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D. (Eds.), 2001. Dispersal. Oxford
University Press.

Cohen, D., Levin, S.A., 1991. Dispersal in patchy environments - the effects of temporal
and spatial structure. Theor. Popul. Biol. 39, 63–99.

Comins, H.N., Hamilton, W.D., May, R.M., 1980. Evolutionarily stable dispersal
strategies. J. Theoret. Biol. 82, 205–230.

Crow, J.F., Kimura, M., 1970. An Introduction to Population Genetics Theory. Burgess
Pub. Co..

Dieckmann, U., O’Hara, B., Weisser, W., 1999. The evolutionary ecology of dispersal.
Trends Ecol. Evol. 14, 88–90.

Doebeli, M., Ruxton, G.D., 1997. Evolution of dispersal rates in metapopulation models:
branching and cyclic dynamics in phenotype space. Evolution 51, 1730–1741.

Frank, S.A., 1986. Dispersal polymorphisms in subdivided populations. J. Theoret. Biol.
122, 303–309.

Gadgil, M., 1971. Dispersal: population consequences and evolution. Ecology 52 (2),
253–261.

Gandon, S., 1999. Kin competition, the cost of inbreeding and the evolution of dispersal.
J. Theoret. Biol. 200, 245–364.

Gandon, S., Michalakis, Y., 1999. Evolutionarily stable dispersal rate in a
metapopulation with extinctions and kin competition. J. Theoret. Biol. 199,
275–290.

Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J., 1998. Evolutionarily singular
strategies and the adaptive growth and branching of the evolutionary tree. Evol.
Ecol. 12, 35–57.

Geritz, S.A.H., Metz, J.A.J., Kisdi, É., Meszéna, G., 1997. Dynamics of adaptation and
evolutionary branching. Phys. Rev. Lett. 78, 2024–2027.

Gyllenberg, M., Kisdi, E., Weigang, H.C., 2016. On the evolution of patch-type
dependent immigration. J. Theoret. Biol. 395, 115–125.

Gyllenberg, M., Metz, J.A.J., 2001. On fitness in structured metapopulations. J. Math.
Biol. 43, 545–560.

Gyllenberg, M., Parvinen, K., Dieckmann, U., 2002. Evolutionary suicide and evolution
of dispersal in structured metapopulations. J. Math. Biol. 45, 79–105.

Hamilton, W.D., May, R.M., 1977. Dispersal in stable habitats. Nature 269, 578–581.
Hastings, A., 1983. Can spatial variation alone lead to selection for dispersal. Theor.

Popul. Biol. 24, 244–251.
Heino, M., Hanski, I., 2001. Evolution of migration rate in a spatially realistic

metapopulation model. Am. Nat. 157, 495–511.
Higgins, K., Lynch, M., 2001. Metapopulation extinction caused by mutation

accumulation. Proc. Natl. Acad. Sci. USA 98 (5), 2928–2933.
Holt, R.D., 1985. Population dynamics in two-patch environment: some anomalous

consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208.
Holt, R.D., McPeek, M., 1996. Chaotic population dynamics favors the evolution of

dispersal. Am. Nat. 148, 709–718.
Johst, K., Brandl, R., 1997. Evolution of dispersal: the importance of the temporal order

of reproduction and dispersal. Proc. R. Soc. Lond. Ser. B 264 (1378), 23–30.
Johst, K., Doebeli, M., Brandl, R., 1999. Evolution of complex dynamics in spatially

structured populations. Proc. R. Soc. Lond. Ser. B 266, 1147–1154.
Kokko, H., López-Sepulcre, A., 2006. From individual dispersal to species ranges:

perspectives for a changing world. Science 313 (5788), 789–791.
Kun, Á., Scheuring, I., 2006. The evolution of density-dependent dispersal in a noisy

spatial population model. Oikos 115 (2), 308–320.
Lehmann, L., Mullon, C., Akçay, E., Van Cleve, J., 2016. Invasion fitness, inclusive

fitness, and reproductive numbers in heterogeneous populations. Evolution 70,
1689–1702.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F.,
Holt, R.D., Shurin, J.B., Law, R., Tilman, D., et al., 2004. The metacommunity
concept: a framework for multi-scale community ecology. Ecol. Lett. 7 (7),
601–613.

Levins, R., 1969. Some demographic and genetic consequenses of environmental
heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240.

Massol, F., Débarre, F., 2015. Evolution of dispersal in spatially and temporally variable
environments: The importance of life cycles. Evolution 69, 1925–1937.

McPeek, M.A., Holt, R.D., 1992. The evolution of dispersal in spatially and temporally
varying environments. Am. Nat. 140, 1010–1027.

Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S., 1996.
Adaptive dynamics, a geometrical study of the consequences of nearly faithful
reproduction. In: van Strien, S.J., Verduyn Lunel, S.M. (Eds.), Stochastic and Spatial
Structures of Dynamical Systems. North-Holland, Amsterdam, pp. 183–231.

Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in structured
metapopulation models? including an application to the calculation of ES dispersal
strategies. Proc. R. Soc. Lond. Ser. B 268, 499–508.

Motro, U., 1991. Avoiding inbreeding and sibling competition: the evolution of sexual
dimorphism for dispersal. Am. Nat. 137, 108–115.

https://doi.org/10.1016/j.jtbi.2023.111612
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb1
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb1
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb1
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb1
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb1
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb2
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb2
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb2
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb3
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb4
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb4
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb4
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb5
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb5
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb5
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb5
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb5
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb6
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb6
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb6
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb7
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb7
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb7
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb8
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb8
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb8
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb9
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb9
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb9
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb10
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb10
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb10
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb11
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb11
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb11
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb12
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb12
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb12
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb13
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb13
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb13
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb14
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb14
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb14
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb15
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb15
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb15
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb15
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb15
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb16
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb16
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb16
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb16
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb16
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb17
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb17
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb17
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb18
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb18
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb18
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb19
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb19
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb19
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb20
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb20
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb20
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb21
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb22
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb22
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb22
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb23
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb23
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb23
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb24
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb24
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb24
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb25
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb25
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb25
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb26
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb26
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb26
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb27
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb27
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb27
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb28
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb28
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb28
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb29
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb29
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb29
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb30
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb30
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb30
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb31
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb31
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb31
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb31
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb31
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb32
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb33
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb33
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb33
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb34
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb34
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb34
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb35
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb35
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb35
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb36
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb37
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb37
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb37
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb37
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb37
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb38
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb38
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb38


Journal of Theoretical Biology 574 (2023) 111612K. Parvinen et al.
Nurmi, T., Parvinen, K., 2011. Joint evolution of specialization and dispersal in
structured metapopulations. J. Theoret. Biol. 275, 78–92.

Nurmi, T., Parvinen, K., 2013. Evolution of specialization under non-equilibrium
population dynamics. J. Theoret. Biol. 321, 63–77.

Nurmi, T., Parvinen, K., Selonen, V., 2018. Joint evolution of dispersal propensity and
site selection in structured metapopulation models. J. Theoret. Biol. 444, 50–72.

Ohtsuki, H., Rueffler, C., Wakano, J.Y., Parvinen, K., Lehmann, L., 2020. The com-
ponents of directional and disruptive selection in heterogeneous group-structured
populations. J. Theoret. Biol. 507, 110449.

Parvinen, K., 1999. Evolution of migration in a metapopulation. Bull. Math. Biol. 61,
531–550.

Parvinen, K., 2002. Evolutionary branching of dispersal strategies in structured
metapopulations. J. Math. Biol. 45, 106–124.

Parvinen, K., 2006. Evolution of dispersal in a structured metapopulation model in
discrete time. Bull. Math. Biol. 68, 655–678.

Parvinen, K., Brännström, Å., 2016. Evolution of site-selection stabilizes population
dynamics, promotes even distribution of individuals, and occasionally causes
evolutionary suicide. Bull. Math. Biol. 78, 1749–1772.

Parvinen, K., Ohtsuki, H., Wakano, J.Y., 2020. Evolution of dispersal in a spatially
heterogeneous population with finite patch sizes. Proc. Natl. Acad. Sci. USA 117,
7290–7295.

Parvinen, K., Seppänen, A., Nagy, J.D., 2012. Evolution of complex density-dependent
dispersal strategies. Bull. Math. Biol. 74, 2622–2649.

Perrin, N., Mazalov, V., 1999. Dispersal and inbreeding avoidance. Am. Nat. 154,
282–292.
25
Poethke, H.J., Gros, A., Hovestadt, T., 2011. The ability of individuals to assess
population density influences the evolution of emigration propensity and dispersal
distance. J. Theoret. Biol. 282 (1), 93–99.

Poethke, H.J., Hovestadt, T., 2002. Evolution of density–and patch–size–dependent
dispersal rates. Proc. R. Soc. Lond. Ser. B 269 (1491), 637–645.

Rodrigues, A.M.M., Gardner, A., 2012. Evolution of helping and harming in
heterogeneous populations. Evolution 66–7, 2065–2079.

Ronce, O., 2007. How does it feel to be like a rolling stone? Ten questions about
dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–257.

Ronce, O., Perret, F., Olivieri, I., 2000. Evolutionarily stable dispersal rates do not
always increase with local extinction rates. Am. Nat. 155, 485–496.

Taylor, P.D., 1988. An inclusive fitness model for dispersal of offspring. J. Theoret.
Biol. 130, 363–378.

Taylor, P.D., 1990. Allele-frequency change in a class-structured population. Am. Nat.
135, 95–106.

Taylor, P.D., Frank, S.A., 1996. How to make a kin selection model. J. Theoret. Biol.
180, 27–37.

Travis, J.M.J., Murrell, D.J., Dytham, C., 1999. The evolution of density-dependent
dispersal. Proc. R. Soc. Lond. Ser. B 266, 1837–1842.

Van Valen, L., 1971. Group selection and the evolution of dispersal. Evolution 25,
591–598.

Weigang, H.C., 2017. Coevolution of patch-type dependent emigration and patch-type
dependent immigration. J. Theoret. Biol. 426, 140–151.

Wright, S., 1943. Isolation by distance. Genetics 28 (2), 114.

http://refhub.elsevier.com/S0022-5193(23)00209-6/sb39
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb39
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb39
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb40
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb40
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb40
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb41
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb41
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb41
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb42
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb42
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb42
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb42
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb42
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb43
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb43
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb43
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb44
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb44
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb44
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb45
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb45
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb45
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb46
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb46
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb46
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb46
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb46
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb47
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb47
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb47
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb47
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb47
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb48
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb48
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb48
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb49
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb49
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb49
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb50
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb50
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb50
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb50
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb50
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb51
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb51
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb51
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb52
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb52
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb52
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb53
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb53
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb53
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb54
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb54
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb54
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb55
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb55
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb55
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb56
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb56
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb56
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb57
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb57
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb57
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb58
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb58
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb58
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb59
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb59
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb59
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb60
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb60
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb60
http://refhub.elsevier.com/S0022-5193(23)00209-6/sb61

	Evolution of dispersal under spatio-temporal heterogeneity
	Introduction
	Model
	Island model
	Spatial and temporal heterogeneity
	Model parameters

	Evolution of unconditional dispersal
	Fitness gradient, singular strategy, and its properties
	Spatiotemporal heterogeneity promotes the evolution of dispersal
	Larger dispersal survival promotes dispersal
	The effect of arrival bias λ may be non-monotonic

	Evolution of conditional dispersal
	Fitness gradient
	Dispersal from low-productivity patches evolves to zero
	Spatiotemporal heterogeneity and evolution of conditional dispersal
	Larger dispersal survival promotes dispersal
	The effect of arrival bias λ may be non-monotonic

	Discussion
	Summary
	Why conditional dispersal from low-productivity patches does not evolve
	Comparison with previous literature & future directions

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Metapopulation fitness for general N
	Resident emigrants
	Resident immigrants
	Competition
	Metapopulation fitness
	Metapopulation fitness from adult perspective

	Appendix B. Spatial and temporal heterogeneity for two patch qualities
	Appendix C. Explicit expression for the metapopulation fitness for N=2
	Arrival probabilities
	Pair of linear equations for the metapopulation fitness components
	Metapopulation fitness

	Appendix D. Evolution of unconditional dispersal
	Fitness gradient
	Attractivity of zero dispersal
	Attractivity of full dispersal
	Outcomes of dispersal evolution
	Evolutionary branching
	The qualitative effect of parameters on the singular strategy m*
	Exploring the consequences of evolutionary branching
	Qualitatively different parameter plots with respect to π and τ

	Appendix E. Evolution of conditional dispersal
	Fitness gradient
	Outcomes of conditional dispersal evolution
	No evolutionary branching for conditional dispersal
	The qualitative effect of parameters on the singular strategy (m*H, 0 )
	Qualitatively different parameter plots with respect to π and τ

	Appendix F. Analysis of conditional dispersal based on reproductive values
	Overview
	Recursions on reproductive values
	Direction of selection
	When (mH, mL) (0,0)

	Appendix G. Supplementary data
	References


