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A B S T R A C T   

Background: Morbidity burdens from ambient air pollution are associated with market and non-market costs and 
are therefore important for policymaking. The estimation of morbidity burdens is based on concen
tration–response functions (CRFs). Most existing CRFs for short-term exposures to PM2.5 assume a fixed risk 
estimate as a log-linear function over an extrapolated exposure range, based on evidence primarily from Europe 
and North America. 
Objectives: We revisit these CRFs by performing a systematic review for seven morbidity endpoints previously 
assessed by the World Health Organization, including data from all available regions. These endpoints include all 
cardiovascular hospital admission, all respiratory hospital admission, asthma hospital admission and emergency 
room visit, along with the outcomes that stem from morbidity, such as lost work days, respiratory restricted 
activity days, and child bronchitis symptom days. 
Methods: We estimate CRFs for each endpoint, using both a log-linear model and a nonlinear model that includes 
additional parameters to better fit evidence from high-exposure regions. We quantify uncertainties associated 
with these CRFs through randomization and Monte Carlo simulations. 
Results: The CRFs in this study show reduced model uncertainty compared with previous CRFs in all endpoints. 
The nonlinear CRFs produce more than doubled global estimates on average, depending on the endpoint. 
Overall, we assess that our CRFs can be used to provide policy analysis of air pollution impacts at the global scale. 
It is however important to note that improvement of CRFs requires observations over a wide range of conditions, 
and current available literature is still limited. 
Discussion: The higher estimates produced by the nonlinear CRFs indicates the possibility of a large underesti
mation in current assessments of the morbidity impacts attributable to air pollution. Further studies should be 
pursued to better constrain the CRFs studied here, and to better characterize the causal relationship between 
exposures to PM2.5 and morbidity outcomes.   

1. Introduction 

The World Health Organization (WHO) has estimated that 4.2 
million premature deaths were attributable to ambient fine particulate 
air pollution in year 2016,(Bai et al., 2019) with other studies reporting 

much larger impacts when considering the full set of noncommunicable 
diseases.(Beverland et al., 2012; Bowe et al., 2018) While the estimated 
mortality burden is unquestionably important, it is also important to 
estimate morbidity, such as incidence of air-pollution related diseases, 
hospital admissions (HA), emergency room visits (ERV), and lost 
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productivity.(Brook et al., 1997; Burnett et al., 2018) Such estimates 
allow for an accounting of non-fatal health impacts and their costs, for 
example through cost-of-illness, defined as estimates of the value of 
resources that are expended or foregone as a result of a health problem, 
such as health sector cost, decreased productivity, and the cost of pain 
and suffering.(Burnett et al., 2014) Morbidity estimate thus could enable 
a more comprehensive assessment of the cost of air pollution to inform 
policy analysis. 

The estimation of both mortality and morbidity burdens associated 
with air pollution is based on concentration–response functions (CRFs). 
CRFs statistically estimate the relationship between exposure to pol
lutants and health outcomes, with concentrations of pollutants acting as 
a surrogate for outdoor exposure. The CRFs between long-term exposure 
to ambient air pollution and mortality have been extensively studied, 
systematically documented and regularly updated in efforts such as the 
Global Burden of Disease studies(Cai et al., 2014) as well as in many 
peer-reviewed papers. (Beverland et al., 2012; César and Nascimento, 
2018; Chen et al., 2013) In contrast, CRFs for morbidity endpoints have 
been less studied. For that reason, we focus our study on morbidity, in 
particular on impacts associated with short-term exposures to particu
late matter with an aerodynamic diameter less than or equal to 2.5 
microns (PM2.5) as there are more data available for these than other 
impacts. 

A major limitation in commonly-used PM2.5 CRFs for most morbidity 
endpoints is that they primarily rely on studies conducted in Europe and 
North America.(Brook et al., 1997; Burnett et al., 2018; DeFlorio-Barker 
et al., 2019) This limits their use for other regions where exposure levels 
can be much higher. To enable a more accurate worldwide estimation of 
morbidity, we conduct a meta-analysis of recent epidemiological studies 
globally for PM2.5-based morbidity endpoints. We chose the morbidity 
endpoints included in this study based on the CaRBonH project, the most 
recent morbidity assessment from the WHO.(Burnett et al., 2018) The 
endpoints we focused on in our systematic review thus included all 
cardiovascular HA, all respiratory HA, asthma HA and ERV, along with 
the outcomes that stem from morbidity, such as lost work days, respi
ratory restricted activity days (RRAD), and child bronchitis symptom 
days. All the endpoints above have been evaluated as having either a 
“causal relationship” or “likely to be a causal relationship” based on the 
review of evidence conducted by a group of experts in the Integrated 
Science Assessment (ISA) for particulate matter organized by the US 
EPA.(Dong et al., 2020) They are therefore also included in the BenMAP- 
CE tool developed by the US EPA.(DeFlorio-Barker et al., 2019). 

Using the data collected in our meta-analysis, we derived new CRFs 
covering a large range of PM2.5 concentrations. Furthermore, in addition 
to using a log-linear model as in previous morbidity CRFs, we also 
defined a nonlinear functional form to enable more flexibility over the 
large range of concentrations. Previous work has shown CRFs for mor
tality related to PM2.5 exhibit a strong nonlinearity. (Burnett et al., 2018; 
Burnett et al., 2014; Strak et al., 2021) Among the morbidity studies in 
our review, Erbas et al. (Erbas et al., 2005) also reported presence of 
nonlinearity within the study.(Feng et al., 2019) Hence here we also 
examine nonlinearity in the CRFs for morbidity. Specifically, previous 
work deriving CRFs for mortality provides a framework for the 
nonlinear functional form.(Beverland et al., 2012) We adapt that func
tional form here and constrained the CRF shape parameters using their 
“study-level” modeling approach, such that the average effect from each 
study is used as input (as opposed to the “subject-level” functional form, 
which requires data for each person in the study that is not available). 
We computed CRFs using log-linear and nonlinear functional forms to 
explore the underlying strengths and limitations of both approaches. We 
then conducted sensitivity analysis of the CRFs to any individual study 
through one-at-a-time withdrawal from the entire set of studies. 

This paper is organized as follows: in the Methods section, we 
describe our methodology to identify the studies of interest, from which 
we extract data to construct new CRFs. In the Results section, we present 
results and provide an assessment of model uncertainty. In the 

Discussion section, the limitations of our analysis are considered and 
conclusions are drawn, in addition to identifying new areas of 
development. 

2. Methods 

We used a three-step methodology to construct the morbidity CRFs 
for a variety of end-points: 1) we systematically reviewed peer-reviewed 
publications documenting specific morbidity impacts related to PM2.5, 
2) we conducted a meta-analysis of the reviewed studies and estimated 
the various CRFs, using both log-linear and nonlinear functional forms, 
and 3) we performed an extensive analysis of model uncertainty. 

2.1. Systematic review and eligibility criteria 

As noted, the endpoints included all cardiovascular HA, all respira
tory HA, asthma HA and ERV, along with the outcomes that stem from 
morbidity, such as lost work days, respiratory restricted activity days 
(RRAD), and child bronchitis symptom days, as in CaRBonH. (Burnett 
et al., 2018) For each endpoint, we performed a systematic review of 
available papers. Our search strategy followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) process, as 
shown in the flow diagram in Figs. S1-S4. There were three steps in our 
search strategy. The first step was a literature search for each morbidity 
endpoint listed above in the PubMed database (https://pubmed.ncbi. 
nlm.nih.gov), using the search terms in Table S1 The final search date 
was June 30th, 2020. 

The second step was to only include the studies which reported 
estimated 95% confidence intervals (CIs) on the relationship between 
24 h PM2.5 (or PM10, see below for our conversion to risk estimates of the 
equivalent PM2.5 component of PM10) exposures and the endpoints at 
multiple lag days. That is, we only included studies that reported an 
originally-developed relative risk (RR), odds ratio (OR), hazard ratio 
(HR), percent increase in risk, or regression coefficients, as risk esti
mates. The RR, OR, and HR have been used interchangeably when 
extracting data from the literature. 

As a third step, we assessed the eligibility of each study based on our 
inclusion/exclusion criteria below and conducted conversion when 
needed. Table S2 presented a complete list of studies we included in the 
meta-analysis, including the time and location, age group, sample size, 
risk estimates and their uncertainty range, the range of PM2.5 concen
trations (including those transformed from PM10), the lags selected, and 
rationale for the selection(s) from studies where multiple risk estimates 
were extracted. Studies sometimes reported multiple independent risk 
estimates, such as for different regions, exposure ranges, or age groups. 
These risk estimates were used as independent data inputs when possible 
(see Discussion). Our specific inclusion/exclusion and conversion 
criteria are explained in Table 1. Funnel plots are used to evaluate the 
potential presence of publication bias. 

2.2. Data extraction 

We extracted from each study i the risk estimates, such as RR, OR, 
HR, percent increase, or effect estimates (βi as in Eq. (1)), and corre
sponding confidence intervals: 

RR = exp(βiΔx) (1)  

where Δx was the exposure increment reported in the study, typically 
10 μg/m3. After excluding outliers, we examined if there was evidence 
for distinct CRFs for each age group or whether a single CRF applies to 
all age groups. For asthma ERV and asthma HA, we found several studies 
focusing on children while others reported results for the all-age popu
lation. For cardiovascular HA, some studies focused on the post-65 
population while others were for all ages. In cases where different age 
groups were presented, we conducted a Student’s t-test analysis on the 
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results in the meta-analysis to compare the mean of the two distributions 
of morbidity effects (Table S3). If a significant (p-value < 0.10) differ
ence was detected between age groups, we estimated CRFs for different 
age groups separately. For respiratory HA, three age groups were pre
sented, so we used a one-way ANOVA to compare the means of the three 
groups. 

We also extracted the 5th and 95th percentiles of PM concentrations 
(either PM10 or PM2.5) in each study. Using the 5th and 95th percentiles 
avoided the influence of extreme levels of PM concentrations. When 
those percentiles were not directly reported, we followed the approach 
in Appendix 1.1 to estimate the ranges of concentrations. 

2.3. Derivation of concentration-response functions 

The log-linear concentration–response model can be expressed as: 

RR = exp(βx) (2)  

where β is the coefficient of the concentration–response effect and x is 
the exposure to PM2.5. In usual cases, x would be represented as 

PM2.5 − cf , where cf represents the counterfactual level, usually defined 
as the 5th percentiles or the minimum of each study. In our study, 
however, either the 5th percentiles or the minimum of each study turned 
out to be below 1 ug/m3 for all endpoints. We therefore did not consider 
the existence of meaningful counterfactual levels for the morbidity 
endpoints examined here. As such, Eq. (2) is essentially the same as Eq. 
(1), where Δx is x. 

We also used a nonlinear function with additional parameters (α,μ, τ)
to allow for the curvature and shape of the CRF to change across the 
range of exposures. This modeling approach was originally developed 
for subject-level modeling,(Ferreira et al., 2016) and was developed into 
a common model for cohort-level derivation of CRF for the global 
mortality(Beverland et al., 2012) and morbidity in Canada.(Heymann, 
2009) According to this approach, the exposure-outcome association 
(RR) is characterized according to: 

RR = exp(θT(x)) (3)  

where, 

T(x) = ln(1+ x/α)ω(x) (4)  

ω(x) = 1/(1 + exp{− (x − μ)/(τr)} ) (5)  

where x is as in Eq. (2); θ is the regression coefficient, estimated while 
specifying different values of (α,μ, τ); r is the exposure range, defined as 
the difference between the lowest 5th percentile and the highest 95th 
percentile in exposure ranges among all studies; and ω(x) is a weighting 
function, where μ controls the shape of ω, and τ controls its curvature. 
The log function in Eq. (5) represents the natural logarithm. The 
nonlinear regression was conducted using the nlm package in R 4.1.0, 
and the details are discussed in Appendix 1.2. 

2.4. Model fitting and estimation of uncertainties in the CRFs 

To obtain synthesized CRFs and quantify their model uncertainty, we 
implemented a two-step approach. First, for each of the log-linear and 
nonlinear CRFs, we computed an ensemble of model fits by boot
strapping the risk estimates reported from each study, in order to create 
a statistical representation of its full distribution. Specifically, we 
randomly resampled (10,000 times) the risk estimates (βi in Eq. (1)) 
from each study, using a normal distribution with the mean and stan
dard deviations obtained from each study (Fig. S5). Then by using 
Δx95th − 5th and Eq. (1), we created a set of 10,000 RR values for each 
study. As such, for an endpoint with effect estimates from n studies (i =
1,2,…, n), we obtained 10,000 set of input data, each including n pairs of 
(Δx95th − 5th ,i, RRi). These were essentially n pairs of independent and 
dependent variables used for model-fitting. 

As a second step, we implemented the model-fitting approaches 
described above using the n pairs of data in each of 10,000 sets, to obtain 
10,000 estimates of β for the log-linear CRF and 10,000 estimates of (θ,α,
μ, τ) for the nonlinear CRF. To measure “goodness of fit”, we calculated 
the log-likelihood from each estimate of both log-linear and nonlinear 
CRF. We then used the mean of the estimates of β and θ, while taking the 
“mode” (the most frequent result) for parameters α, μ, and τ, as our 
central CRFs (Tables 2-3). 

We then generated the range of model uncertainty for the CRFs. For 
each level of PM2.5, we performed a Monte-Carlo simulation based on a 
normal distribution using the mean and standard deviation of β and θ 
from above to make 10,000 predictions of RR using Eqs. (2) and (4). We 
then found the 5th and 95th percentiles of those RR estimates to plot the 
uncertainty ranges in Fig. 1. This Monte-Carlo step was implemented 
using R programming as described in Appendix 2. 

2.5. Computation of morbidity 

We used the RR (see Eq. (2)) to derive attributable fractions (AF) as: 

Table 1 
Inclusion/exclusion criteria for the meta-analysis.  

Focus Criteria 

Scope We focused on studies examining all cardiovascular (codes 390–459 
based on the International Classification of Diseases, Ninth Revision 
(ICD-9), or I00-I99 based on the Tenth Revision (ICD-10)) and all 
respiratory (codes 460–519 in ICD-9 or codes J00-99 in ICD-10) HA, 
but not those breaking down to study specific causes within the 
above groups, because our primary goal was to assess the total 
morbidity impacts. However, we decided to study both asthma HA 
and all-respiratory HA separately since we noticed that the risk 
estimates of asthma HA were generally higher than that of all 
respiratory HA. (DeFlorio-Barker et al., 2019; Wong et al., 1999) 
This way, users of these CRFs could estimate all-respiratory HA and 
asthma HA respectively, depending on the need. 

Exposure 
types 

We have identified two classes of studies: studies that directly 
focused on PM2.5 concentrations and studies that reported risk 
estimates for PM10. There is growing understanding that fine 
particles are the most harmful for human health among the entire 
size distribution. (U.S. Environmental Protection Agency, 2022) 
However, we include both to increase the size of the evidence base. 
This is justifiable because there is a relatively high correlation 
between PM2.5 and PM10 (i.e., mostly above 70% (Zhou et al., 2016; 
Brook et al., 1997)). In our study, whenever necessary, we calculate 
the equivalent PM2.5 component among PM10 to convert the risk 
estimates for PM10 to PM2.5. This was performed using the results of 
a chemistry-climate model GISS-E2.1-G developed at NASA. (Kelley 
et al., 2020) From those results, we summed the PM2.5 concentration 
and the PM10 concentration of the near-surface aerosol mass- 
concentration, and calculated the average ratios at the country- 
level. For example, since the average ratio of PM2.5 and PM10 over 
the US was estimated to be 0.60, based on our model results, the 
reported risk estimates per 10 mg/m3 PM10 were converted to the 
risk estimates per 6 mg/m3 PM2.5. 

Lags Among the multiple lag (observation of increased risk lagging the 
24-hour average PM2.5 observation) days examined in each study, 
we only used the largest risk estimate, regardless of the lag. This 
practice is both for simplicity and for taking into consideration the 
potentially different response time in medical resources, such as 
emergency room availability or available beds in hospitals. When 
the largest risk estimate reported is for a cumulative period, such as 
lag 0–2 or 0–6, we select this cumulative period as the chosen lag. 

Type of 
models 

We only used risk estimates from single-pollutant models in this 
study, not including risk estimates derived from multiple-pollutant 
models, such as ozone or NO2. 

Extreme 
values 

When all eligible studies were obtained, we then screened for 
extreme values among the risk estimates reported from each study. 
We excluded risk estimates that fall outside of Q1 - 3*IQR and Q3 +
3*IQR, where Q1 and Q3 indicates the 25th and 75th percentiles of 
the distribution of all the risk estimates from studies, and IQR 
indicated the interquartile range between 25th and 75th percentiles. 
This was done to avoid the sensitivity of CRFs to certain studies with 
extreme values.  
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AF = 1 − 1/RR (6)  

where AF was the fraction of total morbidity attributed to a specific 
PM2.5 exposure, such that: 

ΔMorbidity = y0 × AF × Population (7)  

where y0 was the baseline morbidity rate of each endpoint, and popu
lation was the total population in the age groups relevant to the 
morbidity endpoint of interest. Δ Morbidity was the excess morbidity 
that was associated with PM2.5 exposure. For simplicity, we assumed all 
persons were equally exposed to the same level of ambient air pollution 
at a given location. 

We calculated RR by applying both functional forms in Eq. (2) and 
(3) to a 0.5 by 0.5 global estimates of PM2.5 exposure, obtained from van 
Donkelaar et al. (Van Donkelaar et al., 2018).(Holland, 2014) To 
compare the impacts of the two functional forms, we calculated the ratio 
Knl/ll between morbidity estimates from the nonlinear CRFs and the log- 
linear CRFs for each grid point. Note that, by definition, Knl/ll was in
dependent of both y0 and population. When Knl/ll was greater than 1, the 
nonlinear CRFs produce higher estimates. When it was between 0 and 1, 
the log-linear CRFs produced higher estimates. 

Finally, we calculated the ratio of AF when using an “annual 
average” exposure approach versus using a “daily sum” approach, which 
we called Ra/d. In a linear case, the “annual average” approach was 
equivalent to the “daily sum” approach, and Ra/d was 1 when above the 
counterfactual levels. The log-linear CRFs can closely approximate 
linear functions, especially over narrow ranges of PM2.5. The nonlinear 
CRFs, however, can deviate more from a linear function form, and thus 
can have a Ra/d further from 1. The extent of deviation depends on the 
distribution of daily exposures over the year, and on the shape of the 
specific CRFs. 

3. Results 

3.1. Meta-analysis and CRF 

Our systematic review included 93 studies in total, which are 
documented in detail in Table S2. A summary of the main features is 
shown in Table 4. Since some studies reported multiple independent risk 
estimates, we ended up extracting 160 risk estimates from them. These 
multiple risk estimates in a single study could be for different morbidity 
endpoints, exposure ranges, age-groups, or time. Among the 160 risk 

Table 2 
Summary of regression coefficients and log-likelihood of log-linear1 concentration response functions (CRFs).  

Endpoint Age 
group 

Number of observations 
extracted 

Relative risk1 (RR, 10 
μg/m3) 

95% confidence 
interval of RR 

Log-likelihood 
(LL) 

Full exposure ranges from 
observations 
(μg/m3) 

Asthma emergency room 
visits 

All ages 26  1.043 (1.026, 1.062) − 28 0–184 

Asthma hospital admission All ages 17  1.014 (1.008, 1.020) − 8 0–399 
Asthma hospital admission Children 

(below 
20) 

16  1.048 (1.024, 1.072) − 4 0–133 

Cardiovascular hospital 
admission 

All ages 28  1.010 (1.006, 1.014) 10 0–268 

Cardiovascular hospital 
admission 

Post 65 18  1.01262 (1.0095, 1.0158) 40 0–112 

Respiratory hospital 
admission 

All ages 46  1.0135 (1.0104, 1.0166) 20 0–380 

Note 1. For log-linear functions, Ln(RR) = bx, x = 10 μg/m3 for this table. 
Note 2. For cardiovascular hospital admission for post-65 population and respiratory hospital admission for all-age population, we have four decimal places instead of 
3, to provide more details that distinguishes the two endpoints, as rounding up to 3 decimal places would lead to the same numbers.  

Table 3 
Summary of regression coefficients, parameters, and log-likelihood of nonlinear concentration response functions (CRFs).  

Endpoint Age 
group 

Number of 
observations 
extracted 

Relative 
risk1 

(RR, 10 
μg/m3) 

Confidence interval of 
RR (approximated2) 

a μ τ range,r Log- 
likelihood 
(LL) 

Full exposure ranges 
from observations 
(μg/m3) 

Asthma emergency 
room visits 

All ages 26  1.115 (1.069, 1.164) 1 19.7 0.1 184 − 7 0–184 

Asthma hospital 
admission 

All age 17  1.068 (1.037, 1.099) 1.5 32.6 0.1 399 2 0–399 

Asthma hospital 
admission 

Children 
(below 
20) 

16  1.157 (1.063, 1.259) 1.4 NA3 NA NA 1 0–133 

Cardiovascular 
hospital admission 

All ages 28  1.050 (1.033, 1.067) 1.1 1.6 0.1 268 18 0–268 

Cardiovascular 
hospital admission 

Post 65 18  1.019 (1.005, 1.032) 3 21.7 0.2 112 41 0–112 

Respiratory hospital 
admission 

All ages 46  1.037 (1.024, 1.050) 5.6 9.0 0.1 380 32 0–380 

Note: 
1 . For nonlinear functions, Ln(RR) = θln(x/α+1)w(x), x = 10 μg/m3 for this table. 
2 . Because the confidence intervals of nonlinear CRFs are depend on x, they are reported as an approximation when x = 10 μg/m3 in this table. 
3 . The μ, τ, and r, are NA for this endpoint. This means that the optimized result from our regression is a function where ω(x) = 1/(1+ exp(− x)).  
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estimates, 34% were from North America, 27% from Asia, and 20% from 
Europe. In addition, we also had 11% from Oceania, 6% from South 
America, and 1% from the Middle East. As such, our study had a rela
tively good geographic coverage of evidence. Funnel plots for each 
morbidity endpoint are presented in Fig. S6, indicating potential pres
ence of publication bias in the meta-analysis, especially for asthma EV, 
cardiovascular HA for all-age population, and respiratory HA for all-age 
population. This can be a limitation of this study (see Discussion). 

We show in Fig. 1 the log-linear and nonlinear CRFs for each 
endpoint considered. The left-panel presents the rate of change of RR (i. 
e., d(lnRR)/dx as derived from Eq. (2) and (4)) as a function of exposure. 
We show the horizontal ranges associated with each data point, repre
senting the range of concentrations over which the effect was identified 
in a particular study. In the right panel of Fig. 1, we show how the RR 
changes with exposure, which displays how CRFs link risks to exposures, 
referred to as the “RR-domain” hereafter. The nonlinear CRFs had more 

Fig. 1. Concentration-response functions (CRF) in log-linear and nonlinear forms for each morbidity endpoint. The rate-domain shows the comparison to the original 
observations from the meta-analysis, where the horizontal bars indicate the 5th to 95th contrast used to determine the risk estimates in the original studies. The 
relative risk (RR)-domain shows the changes of RR in response to PM2.5 exposure, where the shaded areas indicate 95% confidence intervals. Numeric data for the 
figures were included in Table S2. Note:a in the rate domain, the curves depict Δ RR/ Δ x. In the RR-domain, the dashed line corresponds to Eq. (2), RR = exp(bx); 
whereas the solid lines correspond to Eq. (3)RR = exp(θln(x + 1)ω(x) ).
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freedom to adapt to the shape of the input data, thus unsurprisingly have 
a better fit to the empirical data, indicated by larger loglikelihood 
values. Yet, the goodness of fit is not the only criteria when selecting 
which CRFs to use. Rather, the specific goals when applying the CRFs 
should guide model selection (see Discussion). 

3.1.1. Respiratory morbidity outcomes 

3.1.1.1. Asthma. Most ERV studies were conducted in cities in Europe 
and North America, with only three exceptions from Australia, Korea, 
and China. HA studies had a more globalized geographical coverage, 
with about half conducted in Asia. There was no strong evidence of a 
meaningful counterfactual level for the asthma-related endpoints and 
age groups. In general, asthma ERV showed a shorter lag than asthma 
HA. For ERV, all but three studies included in the meta-analysis 

indicated a relatively short lag between 0 and 3 days (Table S2), and six 
were at lag 0. For HA, meanwhile, the chosen lags were mostly in the 
range of 0–5 days, indicating the HA effect may take place with a slightly 
longer lag than the ERV effect. 

For the asthma emergency room visits, a Student’s t-test did not 
indicate a significant difference between the risk estimates for children 
from those for adults (Table S3, Fig. S7), yet it did indicate a higher 
significance level (narrower error bars) for children. We used all ob
servations to construct a CRF that applied to the all-age population 
(Fig. 1-a). In the rate-domain, for both child and all-age asthma ERV, we 
found significant variance in the risk estimate βi among studies at con
centration levels below 20 μg/m3. As a result of the root mean square 
error (RMSE) minimization of the fitting process, the nonlinear func
tional form predicts relatively higher (supra-linear) risk estimates than 
the linear case, especially for concentrations below 20 μg/m3. Since this 

Fig. 1. (continued). 
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behavior occurs in most of the morbidity endpoints we study here, we do 
not discuss this point again in the endpoints below. 

For the asthma hospital admissions, 16 of the 33 observations were 
focused on children, defined as below-20. Children’s age groupings 
varied across studies (details in Table S2), and below-20 encompassed 
the ranges of different studies. In addition, thirteen studies were for all- 
age population, and four studies were for below-65 population. We find 
that the post-65 and below-65 studies have a similar mean risk estimate, 
and all of them appear to be within the range of the estimates for the all- 
age population (Fig. S8). We therefore merged below-65 and post-65 
observations with the set of all-age observations and examined their 
difference from observations for children. A Student’s t-test suggested a 
significant difference in β between the child and adult age groups, 
however (Table S3). We therefore estimated CRFs for children and all 
ages separately (Fig. 1-b, c). Both nonlinear and log-linear models pre
dicted a larger effect, and therefore higher RR, for children. 

3.1.1.2. Hospital admissions for all-respiratory diseases. In addition to 
asthma HA, we also estimated the CRF for all-respiratory HA. Amongst 
the studies, 6 were focused on children, 18 on elderly people, and the 
rest on the all-age population. One-way ANOVA and box plots showed 
no significant differences among these three groups (Table S3, Fig. S9). 
We therefore constructed the CRFs for the all-age population using all 
the data available. 29 of the 48 observations reported the highest risk 
estimate between 0 and 3 days, yet there were also studies that found the 
highest risk estimate at an extended lag of 11 days,(Kelley et al., 2020) 
14 days,(Kim et al., 2012) and 0–14 days.(Kowalska et al., 2019). 

3.1.2. Cardiovascular morbidity outcomes 
Among the observations included in the meta-analysis for cardio

vascular endpoints, 18 were focused on elderly people (post-65), and 28 
were focused on the all-age population. We found that the mean effect 
estimate for the post-65 group was significantly lower than the all-age 
group (Table S3, Fig. S10). We thus estimated CRFs for these two 
groups separately (Fig. 1-d, e). We used a counterfactual level of 0. 
Compared to the other endpoints, cardiovascular HA had relatively 
short lags. 26 out of the 46 observations reported the highest risk esti
mate at either 0 or 0–1 lags. All reported lags were within 0–6 days. 

3.1.2.1. Work days lost. The PM2.5 effect on work days lost was only 
studied for US adults over 1976–1981.(McConnell et al., 1999) The 
mean effect was RR = 1.05 (confidence interval of 1.04–1.05) per 10 μg/ 
m3 PM2.5, calculated as the average across years weighted by the vari
ance of each year’s effect.(DeFlorio-Barker et al., 2019) This study 
focused on a 2-week lagging period. 

3.1.2.2. Respiratory restricted activity days. RRAD was a broader 

category than work days lost, reflecting general activity reduction, but 
not limited to work loss. Our systematic review resulted in only three 
studies which examined the linkage between RRAD and exposures to 
fine particles: Willers et al. (Willers et al., 2013); Ostro (Ostro, 1989), 
and Ostro and Rothschild (Ostro and Rothschild, 1989)0.22,23,Murray 
et al., 2020 We discussed and compared these results, along with some 
other related studies on absenteeism and exposure to PM pollution in 
Discussion and Appendix 3. 

3.1.2.3. Child bronchitis symptom days. Bronchitis symptoms among 
children were often related to lower respiratory infections. Our sys
tematic review resulted in two studies, conducted in Chile(Ostro, 1987) 
and the US(Ostro, 1989). Among these studies, Pino et al. (2014) 
focused on infants below 1-year,(Ostro, 1987) finding a RR = 1.05 (1.00, 
1.09) at a 1-day lag for prevalence of bronchitis per 10 μg/m3 increase of 
PM2.5. McConnell et al. (McConnell et al., 1999) studied the risk for 
children between 10 and 15 years old,(Ostro, 1989) and found that 
children with asthma or wheeze had significantly higher risk of bron
chitis at the same day of exposure. Based on the fractions of children 
with asthma and wheeze in the study, the equivalent RR for bronchitis 
was 1.13 (0.90, 1.46) per 10 μg/m3 PM2.5 at lag 0 for the population of 
children in the study. 

3.1.3. Other outcomes that stem from morbidity 
For completeness, we have included here a brief discussion of work 

days lost, respiratory restricted activity days (RRAD), and child bron
chitis symptom days, since they all have been discussed in regulatory 
impact assessments such as HRAPIE(Machin et al., 2019) and CaRBonH. 
(Burnett et al., 2018) However, because of the limited number of studies, 
we only provided a narrative discussion of these studies, without 
computing a CRF because such a CRF may not be of the same level of 
confidence as those of the other endpoints. We however included an 
exploratory CRF for RRAD based on the currently available data in 
Discussion. We note that future epidemiological evidence on these 
endpoints would be especially important to better characterize the shape 
of their CRFs. 

3.2. Sensitivity to excluding individual studies used to derive the CRFs 

In this analysis, we excluded each study separately and iterated steps 
1 and 2 in Fig. 1 to create estimates for the alternative CRF. We then 
compared the fitted coefficients and parameters from each of the one- 
removal-at-a-time simulations to those from the main results to eval
uate if the CRFs were sensitive to individual studies. The sensitivity 
associated with the exclusion of individual studies is presented in 
Fig. S11. We find that, for the CRFs presented in Fig. 1, exclusion of 
individual studies does not cause significant deviations from the main 
models. The ranges of model uncertainty (i.e., width of the curves in 
Fig. S11) still largely overlap. The exceptions are two of the log-linear 
CRFs. In one, there was a 144% change in the risk estimate (β =
0.0084) for asthma ERV when excluding Feng et al. (Feng et al., 2019). 
(Ostro and Rothschild, 1989) The other one was an 84% change in the 
risk estimate (β = 0.0024) for asthma HA when excluding Cai et al. (Cai 
et al., 2014).(Pino et al., 2004) As such, the log-linear models for these 
two endpoints are less robust than others. Table S4 and Fig. S12 
(excluding the above two extreme cases for better visualization) show 
the ranges of the difference in the mean estimates as percentage de
partures from the main model. In general, when excluding the two 
extreme cases for log-linear CRFs, the differences seen in the one- 
removal-at-a-time test were comparable between log-linear and 
nonlinear models, and were within 20% of the estimates from the 
respective main models. 

Table 4 
Summary for each endpoint of the meta-analysis results.  

Endpoint # studies # observations Outliers identified 

Asthma HA 24 33 0 
Asthma ER 33 48 0 
All-respiratory HA 35 48 31 

Cardiovascular 37 48 22 

Work days 1 1 0 
RRAD 3 3 0 
Children bronchitis 2 2 0  

1 The three observations identified were shown in Fig. S8 (Machin et al., 2019; 
César and Nascimento, 2018; Silva et al., 2013), Further sensitivity analysis on 
inclusion/exclusion of these outliers are discussed in 1. Potential source of bias 
in the derived CRFs in Discussion. 

2 The two observations identified were shown in Fig. S9 (Ferreira et al., 2016; 
Soleimani et al., 2019), Further sensitivity analysis on inclusion/exclusion of 
these outliers are discussed in 1. Potential source of bias in the derived CRFs in 
Discussion. 
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3.3. Application of the CRF functional forms 

To evaluate the impacts of using different functional forms, we apply 
both to global PM2.5 concentration estimates at a resolution 0.5◦ by 0.5◦, 
(Machin et al., 2019) and computed the respective AF (Fig. S13) and 
their ratio Knl/ll (Fig. 2). Given that most regions did not have a high 
average PM2.5 concentration, the morbidity estimates using the 
nonlinear CRFs lead to higher estimates in most regions (Fig. 2 and 
Fig. S13), owing to the supra-linear behavior at low PM2.5. Furthermore, 
due to their concavity, we find that the nonlinear functions generally led 
to higher morbidity burdens across different morbidity endpoints. 
Overall, the spatial patterns in Fig. 2 indicates that the regions with very 
low (less than 5 μg/m3) PM2.5 concentrations are most sensitive to the 
choice of functional forms. This implies that our knowledge of the 
exposure response function in low-concentration regions is still limited, 
and caution should be used when evaluating these impacts in these re
gions. We further discuss this sensitivity in Discussion. However, these 
regions are usually not highly populated. By contrast, most areas with 
large populations, such as East and South Asia, Europe, and large cities 
in the Americas, appear to have relatively lower sensitivity, with Knl/ll 
usually ranging between 1 and 3. On a global basis, this still indicates a 
considerable difference in morbidity estimates given the large pop
ulations in those regions. Specifically, everything else being equal, the 
use of the nonlinear CRFs would lead on average to more than doubled 
total estimates in all the analyzed morbidity endpoints associated with 
PM2.5 exposures. 

4. Discussion 

Using the data collected in our meta-analysis, we have derived new 
CRFs covering an extended range of PM2.5 concentrations for four 
morbidity endpoints and discussed the evidence for three additional 
endpoints stemming from morbidity. We have also presented the model 
uncertainty associated with the CRFs and evaluated the application of 
both the non-linear and loglinear CRFs. 

The possible presence of a potential selection bias can be found in the 
asymmetry of Fig. S6. Theoretically, this could potentially exaggerate 
the morbidity impacts suggested by the CRFs. However, as the asym
metry in the funnel plots is limited, the potential magnitude of bias 
should be small except perhaps in the case of Asthma HA for children. 

In this work, several choices we made are potential sources of bias. 
Here we discuss the reasons for making these choices and their potential 
impacts. 

Firstly, in our data collection, we selected the lag between exposure 
and impact with the highest risk estimate; this is both for simplicity and 
to allow for variations in the time it takes for the largest effects to occur. 
Theoretically this could cause our estimates to lie at the higher end. Yet 
this effect should be quite limited because all the CRFs are tested against 
the bias from a single study using the bootstrapping method documented 
in the Subsection 3 (Model fitting and estimation of uncertainties in the CRFs) 
of Methods. 

Secondly, the data we extracted in this study are considered under 
the single-pollutant model. This is because our primary goal was to 
expand the evidence-based analysis globally, and single-pollutant 
models are the most commonly reported. However, the single- 
pollutant approach provides limited insights regarding co-exposures 
and may lead to different risk estimates than when considering co- 
exposures, for example to NOx and O3. Usually, the single-pollutant 
approach leads to a slightly larger risk estimate than a multi-pollutant 
approach. However, it can also be the opposite. Without further 
knowledge on the impacts of co-exposures on the morbidity outcomes 
examined, it is impossible to determine the specific impacts of taking a 
single-pollutant approach. Further studies should continue to review 
and examine the evidence using multi-pollutant models. In addition, we 
have also tested the sensitivity when not removing the extreme values as 
outliers, and showed that could cause significant sensivity in the one-at- 

a-time removal practice. Detailed comparisons are shown in Appendix 4. 
Thirdly, in our data collection for the meta-analysis, we treated 

multiple risk estimates from a single study as independent input data 
points in regression. This could mean that errors among certain data 
points are correlated, instead of completely independent. However, the 
impacts of this treatment on our CRF results should be very limited. 
Because correlated error terms could cause underestimation of standard 
deviations, therefore the independence assumption will influence the 
estimation of the confidence intervals. But in our study, the confidence 
intervals, or model uncertainty, was obtained from model spreads based 
on simulations of resampled data. As such, the CRF results should not be 
biased due to this issue. Yet we realize that there can be more advanced 
statistical approach to tackle this issue, such as mixed-effect models. 

Lastly, we didn’t consider variation in toxicity of different compo
nents of PM, though each study in the meta-analysis could have had a 
different chemical profile of PM2.5. Further evaluation of the composi
tion of PM2.5 could be valuable when more evidence becomes available. 
We also did not address the impacts of indoor exposures on these CRFs. 
Specifically, several studies have shown that the deviation of total ex
posures from ambient PM2.5 can significantly impact risk estimates, 
leading to underestimation of the total effects of PM2.5 exposures. (Dong 
et al., 2020; US EPA) 

We compare them with previously published CRFs to understand the 
impacts of the updated CRFs derived in this paper. These include the 
WHO CRFs based on the HRAPIE (WHO, 2013) and CaRBonH studies, 
(Spadaro et al., 2018) mainly focused on Europe. In addition, the US EPA 
developed the BenMAP-CE tool, (U.S. Environmental Protection Agency, 
2015) based on epidemiological studies conducted in the US and Can
ada. Notably, Fig. S14 displays the CRFs from the WHO, or if unavai
lable, from BenMAP-CE. We emphasize the WHO’s CRFs as they are a 
synthesis of multiple studies and are therefore more directly comparable 
to our results. We observe that our CRFs exhibit greatly reduced ranges 
of model uncertainty. There are two main reasons for this behavior. 
First, due to the global focus of our study, we included more epidemi
ological studies in our evidence base than the previous CRFs, therefore 
constraining the CRFs more firmly. Second, the confidence intervals in 
our study are developed using a bootstrapping-based simulation 
approach, which generate confidence intervals from resamples as per 
central limit theorem, instead of a traditional statistical approach in 
previous systematic review and meta-analyses. We find that our central 
estimates using log-linear CRFs are higher than the WHO estimates for 
post-65 cardiovascular HA (as post-65 were included in the all-age 
cardiovascular HA calculation using the WHO approach), but lower 
for respiratory HA, and about the same for all-age cardiovascular HA. 
When compared to BenMAP-CE, our log-linear results lead to lower 
estimates in all-age asthma HA, but higher estimates for childhood 
asthma HA, and similar values for asthma ERV. Our nonlinear CRFs, by 
contrast, generated different magnitudes and spatial patterns, as shown 
in Fig. S13 and discussed in Section 3 in Results, due to the fundamental 
difference in functional forms. 

It is important to note that both the previously published CRFs and 
the new ones we present describe the associations between morbidity 
outcomes and PM2.5 exposures. In this sense, the fact that our work 
included expanded evidence worldwide and thus significantly reduced 
model uncertainty does not indicate an advance in our understanding of 
causality. However, the fact that our results show statistically robust 
estimates of RR larger than 1 over the exposure ranges, considering all 
the published evidence, there is a strong indication that the PM2.5 is 
responsible for the increase in the morbidity outcomes. Nonetheless, as 
we showed in Results, this can be influenced by publication bias, and 
therefore further research to better understand the causality is still 
needed. 

In addition, we discuss several other important considerations in the 
understanding and application of CRFs, including the nonlinearity in the 
CRFs, the limitations in our understanding in CRFs for RRAD, and the 
time dimension in application of CRFs for short-term exposures: 
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Fig. 2. Ratios of morbidity estimates with nonlinear concentration–response functions (CRFs) over with log-linear CRFs (Knl/ll). Ratios between 0.00 and –1.00 are 
where the log-linear CRFs produce a higher estimate, while ratios above 1.00 are where nonlinear CRFs produce higher estimates. The results are calculated based on 
0.5 by 0.5 annual exposures of PM2.5 in 2015. 

M. Ru et al.                                                                                                                                                                                                                                      



Environment International 179 (2023) 108122

10

For multiple morbidity endpoints, our nonlinear functional form 
presents high nonlinearity in low PM2.5 regions, leading to high sensi
tivity to the selection of the functional forms (Fig. 2). As noted previ
ously, this indicates limited understanding in the exposure–response 
relationships in such low-concentration regions. A key factor is that 
indoor exposure plays a more important role in the exposure–response 
relationships in the low PM2.5 regions. Given that it is difficult to obtain 
the “true” exposures (and the studies we reviewed hardly address this 
issue), we note that there is high uncertainty in the concen
tration–response relationships in low ambient PM2.5 regions. As such, 
using the log-linear CRFs at low concentrations may be preferable to 
reduce dependence on the modeled nonlinearity. 

Overall, we find that CRFs for RRAD are severely under-constrained. 
In Appendix 3, we documented the studies included in our systematic 
review for RRAD. Due to the limited evidence, we did not conduct a 
similar regression as done for the other endpoints. Here we discuss these 
CRFs in further details, as they have been included in regulatory impact 
assessments despite their substantial uncertainties. 

As discussed in Appendix 3, both Ostro (Ostro, 1989) and Ostro and 
Rothschild (Ostro and Rothschild, 1989) used two-week average of 
PM2.5 as their short-term exposure metric.23,24 To understand the 
impact of this choice, we conducted a sensitivity analysis regarding the 
influence of using 2-week averages instead of daily data, using daily 24 h 
PM2.5 exposures from the Air Quality System of the United States 
Environmental Protection Agency, obtained from the Federal Land 
Manager Environmental Database (FED). (Chen et al., 2013) The results 
showed that the difference between using daily and biweekly averaged 
exposures is small (see Appendix 3). We thus used the reported risk 
estimates from these two studies in a regression to further explore the 
CRF. In addition, Ostro (Ostro, 1989) investigated RRAD from ambient 
air pollution (AAP),(Nasari et al., 2016) second hand smoke (SHS), and 
active smoking. This study built a linkage between RRAD and SHS or 
active smoking as a proxy for PM2.5 exposure. Because the SHS PM2.5 
range was a closer approximation to AAP PM2.5, we used this informa
tion in our analysis.(Chen et al., 2013) However, this was not the case 
for AS, which was often equivalent to thousands of μg/m3 and thus far 
beyond ambient exposure levels. We thus only included the risk esti
mates for SHS in our exploration of a CRF for RRAD. The above two 
studies, together with Willers et al. (Willers et al., 2013);(Murray et al., 
2020) were used to create the loglinear and non-linear regressions for 
the CRF for RRAD (Fig. S15; Table S5-6), following the same meta- 
analysis approach introduced in Methods. This exploration indicated the 
high potential of supra-linearity in the CRF for RRAD, thus further 
signifying caution should be used when evaluating the RRAD impacts. 
Essentially, any CRF for RRAD, including those from this study and other 
regulatory impact assessment, is currently severely under-constrained. 

Finally, in practical applications of CRFs for short-term exposures, 
“annual average” approaches (using annual average PM2.5 concentra
tions) are often used, instead of a “daily sum” approach (summing health 
impacts from daily PM2.5 exposures), because annual PM data are usu
ally more readily available. Yet the use of annual averages instead of 
daily values for PM2.5 could cause a bias when users apply the CRFs 
developed here. To evaluate this potential bias, we applied both the log- 
linear and nonlinear CRFs developed in this study to the aforementioned 
daily ground monitoring PM2.5 measurements. Our simulations sug
gested that the “annual average” approach led to an overestimation 
compared to the “daily sum” approach when using the nonlinear CRFs. 
We quantified the bias as being 0.1% - 1.2% for the loglinear CRFs and 
1.7% - 4.9% for the nonlinear CRFs across morbidity endpoints. Details 
of our quantification are documented in Appendix 5. 

Evaluation of the health impacts of air pollution considers both 
short-term and long-term effects. Morbidity outcomes of air pollution 
are usually examined on a short-term basis, such that policy evaluations 
of the total health burden of air pollution often encompass effects from 
long-term exposure-mortality, short-term exposure-mortality and short- 
term exposure-morbidity associations. However, these associations may 

not be completely independent from each other. Previous studies have 
implied the possibility of cumulative effects from multiple short-term 
exposures (i.e., intermittent exposures) or from increased sensitivity of 
population with high long-term exposures.(DeFlorio-Barker et al., 2019; 
Strak et al., 2021) Knowledge of the linkage between the effects of short 
and long-term exposures and the possible cumulative effects is impor
tant to further guide policy analysis. 

Overall, by including more recent scientific evidence reported from a 
broader geographical range, and by allowing the CRF to be either log- 
linear or nonlinear, the morbidity CRFs in this paper provide signifi
cant updates to previous estimates of the morbidity burden associated 
with PM2.5 exposures. We recommend that health impact assessments 
use the CRFs carefully considering the specific endpoints, location, and 
policy objectives. For instance, both functional forms could be used to 
better understand the uncertainties associated with morbidity estimates, 
such as in regions with low PM2.5 concentration. Future work applying 
these updated CRFs to assess the morbidity burdens and their associated 
costs can complement previous evaluations of emission policies and 
provide detailed insights for air quality management. 

5. Conclusion 

In this paper, we have derived and evaluated updated CRFs for a 
variety of morbidity endpoints related to short-term PM2.5 exposure. We 
performed a systematic review for seven morbidity endpoints, and used 
data reported in the reviewed studies to develop CRFs using both log- 
linear and nonlinear functional forms. We thus relaxed the previous 
assumption of a linear risk estimate over a narrow exposure range. We 
quantified uncertainties associated with the CRFs by randomized 
resampling and Monte-Carlo simulation. We found these CRFs were 
generally robust to our sensitivity tests. In comparison with previous 
morbidity CRFs, we showed that our new estimates substantially 
reduced the range of model uncertainty as well as updating the central 
estimates. Finally, we showed the global and regional sensitivity to the 
two different functional forms and discussed the implications for esti
mation of morbidity impacts. Overall, most of the CRFs discussed here 
show robustness, especially in comparison with prior studies, though the 
range of model uncertainty can still be large. They thus can be infor
mative tools for policymaking. However, further efforts should be made 
to improve these CRFs. 

Our study showed that morbidity impact assessment could be very 
sensitive locally to which functional form was applied, and non-linear 
CRFs produced significantly higher estimates in most regions of the 
world for most endpoints. Using the Knl/ll ratios between estimates based 
on non-linear and log-linear CRFs, we found that regions with low PM2.5 
showed higher sensitivity to PM2.5 for the nonlinear CRFs. Furthermore, 
in regions with high PM2.5 concentrations, the ratio Knl/ll usually ranged 
between 1 and 3 so that the differences in total number of morbidity 
cases could be large, indicating the potential for a significant underes
timation if only log-linear CRFs are considered. Future analyses of the 
degree of non-linearity in CRFs will be very valuable. 

While future studies of individual morbidity endpoints should be 
explored to improve our understanding of these concentration–response 
effects, the CRFs in both functional forms derived in this study can be 
applied in policy analysis to provide a detailed assessment of the po
tential economic cost of air pollution. 
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