NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

DISCRETE NETS AND THEIR APPLICATION
TO SYSTEMS ANALYSIS

Alexander Petrenko

October 1982
WP-82-109

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

ABSTRACT

To assist in the design and the analysis of complex discrete systems exhi-
biting concurrancy, formal techniques are needed which comprehend a
hierarchical representation of such systems and a rigourous analysis of
their properties. This paper presents the main axiom and definitions of
uninterpreted models named discrete nets, and demonstrates by exam-
ples the usefulness of proposed formalization.

- 1ii -

CONTENTS

INTRODUCTION
1 PRELIMINARY DEFINITIONS
11 DISCRETE NETS
111 PROPERTIES OF DISCRETE NETS
IV SUBCLASSES OF DISCRETE NETS
V EXAMPLES OF MODELLING USING DISCRETE NETS
CONCLUSION
REFERENCES
TABLES

FIGURES

10

12

14

15

17

18

DISCRETE NETS AND THEIR APPLICATION TO SYSTEMS ANALYSIS

Alexander Petrenko

INTRODUCTION

A complex discrete system consists of a large number of components
(subsystems) which function concurrently or parallel in time. The
processes of subsystems are not completely independent, they rather fre-
quently communicate, exchanging information and sharing resources of
the system. To analyse such a system it is necessary to have an appropri-
ate formal language which allows the system to be modelled on a different
level of abstraction in order to establish various properties of the system.
For the analysis of discrete systems with asynchronous processes so
called Petri nets, introduced by C.A. Petri in 1962 [1], have attracted
great attention due to their simplicity and ability to describe and analyse
concurrent systems. Petri nets are utilized to model the following

aspects of discrete systems: events, and conditions, and their

-2 -

relationships. It is usually assumed when using Petri nets that there are
some conditions valid at a particular moment, these conditions can cause
some new events within the system. New events can change states of
some subsystems, changing conditions, and these changes can proceed
concurrently. It has been established that Petri nets can be successfully
applied in the analysis of a rather broad class of systems [R] but at the
same time it became obvious that the original model of C.A. Petri
possesses some drawbacks: inability to represent some real situations
and processes, and complexity of the resulting distribution. Some
authors have proposed several modifications to Petri nets [3-7]. All these
improvements are in fact modifications of the original definition of the
firing rule in such a way that the condition of the event is formulated as a
logical function of primary conditions, which define the state of the sys-
tem. But there is rather a broad range of problems which do not allow
the conditions of events to be represented in the form of a simple logical
function. In this paper we try to introduce a general model for descrip-
tion and analysis of discrete systems which allows the class of
represented systems to be broadened, and to get a description at an

acceptable level of complexity.

The paper is organized as follows. First we introduce some useful
definitions (Section I) about bag theory and state machines. Then the
structure and dynamics of a general model named discrete net is defined
(Section 1I). In Section 1Il some properties of discrete nets are intro-
duced that are useful for systems analysis. Section IV contains scme par-
ticular cases of discrete nets, SectionV presents some examples of appli-

cations of discrete nets.

I PRELIMINARY DEFINITICNS.

Definition 1.1 The bag B over the set X is determined by the pair:
X, X->N ., where N is the set of non-negative integers. The mapping
X —> N is called the occurrances function #(zx.,b) . 1If #(z,B)>0 , then

zcBandzgB ,if#(z,b)=0.

A bag A over the set X is a subbag of a bag B over the set X

(denoted by ACB) ,if #(z.A) < #(z B)forallz X .

Two bags over the same set X are equal{A =B) if #(z.A) = #(z.B)

forallzeX .
Abag A is strictly contained in abag B(ACRE) . ifACB and A# B .

The bag space X™ is the set of all bags B €X™ over the set X such
that #(z,B)<n for all z€X . The set X™ is the set of all bags over the

set X .

Definition 1.2 The following operations are defined on bags A and B

over the same set X :

Bog union AURB:

#(x,AVB) = max{#(z.A).#(z,B)) .

Bag intersection ANRKE :

#(z.ANB) = min(#(z.4) #(z.B)) .
Bag sum A+B:

#lz.A+B) = #(z.A)+ #(z.B) .
Bag dif ference A—F

#(z,A-B) = #(zx.A) - #(z.ANB) .

-4 -

Bag union, intersection and sum are commutative and associative.

The following properties are held.

ANBCACAURB

A-BCACA+FE ,
|AUB|<|4+|B]| .
|A+B|=|A]+]|B]| .

where [4| =) #(x.4) .

z€E4

The relations and operation introduced above will also be utilized when

bags are represented as vectors.
Definition 1.3
A state machine Ais a six-tuple A = (KR ,L,6,7.kp) ,
where
K is a finite set of states,
F is a finite input alphabet,
L is a finite output alphabet ,
6: K xR - K is the output function ,
y: Kx R » L is the output function,
Ko € K is the initial state .
We assume that a state machine does not change its state and produces
empty output ¢ under any input which does not belong to its input alpha-

bet. A state machine can be represented in forms of state diagrams or

flow tables.

I1. DISCRETE NETS.

Definition 2.1 A discrete net C is a five-tuple C=(P,T,/,0,u), where

P=1{p,ps - .p,}is a finite set of places,

T=1{tts - .t} is a finite set of transitions, PNT = ¢ ,

I: T - P is the input function,

0: T - P% is the output function,

i: P> M* is the marking function (marking).

M - is the finite set of markers M; € ¥, including one special empty
marker ¢.

A place p; is an input place of a transition ¢; if p; EI(tJ-) . p; is an
output place of ¢; , if p; € O(t;) .

A discrete net structure has a graphical representation in a form of a
bipartite directed multigraph G , which consists of two types of nodes: p
-nodes represent places, shaped as circles and £ -nodes represent transi-
tions shaped as rectangles. Directed arcs connect the places and the
transitions; from a node p; to a node t; there is exactly #(p;./(¢;)) arcs
and from t; to p; —#(p; O(t;)) . In a graph G p -nodes are weighted by
My = ,u(pi) - a bag of markers, assigned to a place p; by a marking u,
which can be represented by an n -vector w = (u; .o, -~ - M,) . Where
n = |P| . The above defined graph will be called a discrete net graph .

By a marked discrete net we name a net ¢ = (P,7.7,0,u% where u°
is an initial marking.

The ezecution of a discrete net is considered in discrete time, when

a current marking is changing (the function u changes its values) due to

-8 -

firings of transitions which are controlled by the distribution of markers
resided in places.

Let t; be a transition of a discrete net with 7(£;) as a set of input and
O(t;) -output places. We enumerate all input arcs: 1,2,....n;:n; = [I(t;)]:
a n; -vector formed from markers of the set // is an input character p* of
a transition £; . Output characters A! are defined similar to input ones to
be m;-vectors, m; = |O(t;)| . Sets of all admitted for ¢; input and output
characters are the input R; and output L; alphabets of a transition £; ,
respectively. These characters will be represented also as n -vec‘tors.
Let '““jpf be a bag of markers from pi corresponding to ali input arcs
between t; and p; €/(f;) , here "u“jp“ = #(p;./(t;)) and pipe =0 if
p; €1(t;) . Ann -vector Pg = (/J,lpt,/,l,zp.l, ce ,;ani) is the marking of an
input character p; of a transition f; , in the same way we define
Myt = (“1)\"“2#"“'“1;)*) -the rﬁarking of an output character A® of a tran-
sition £, .

Definition2.2 A transition {; in a marked discrete net
C = (P,T.],0,u) is enabled if there is at least one input character Pt ER;
called enabling character such that its marking gt satisfies the following
it G4 thatis p,jptcu'(pj) for all p; €7(t;) .

The execution of a discrete net is the shifting of markers within a net
caused by firing an enabled transition f; which performé a mapping

R; » L; . An algorithm of this mapping we will define by means of a state

machine A; = (K; ,R;,L;.6;.7;.8).

-7 -

Definition 2.3 A transition {; with a state ICg € K; may fire whenever
it is enabled. Firing an enabled transition f; results in a new marking
y' - u' defined by

Ho= ‘/Lp;.'*'/i;\g

and in a new state of transition t; (a state machine 4;) k%> «} , where
o C1 A = yi(lpg) and kg = 6(k¢ pg

In this case the marking u" is said to be immediately reachable from
u' . If p' is immediately reachable from u and u" is immediately reach-
able from wu' , then we say that " is reachable from u . The
reachability set D(C,u) of a discrete net with marking u is defined to be

all markings reachable from w .

It might be seen from definition 2.2 that an enabled transition {; can

have more than only one enabling character 2p}l.p}z. Co .p}li CR,I>1.

Definition2.4 An enabled transition ¢; is said to have an

internal conflict , if

The set of enabling input characters defines all possible changes of a
marking when one particular transition fires. All these changes are real-
ized only if this transition does not have any internal conflicts, otherwise
the transition fires indeterminately. As the most general case we assume
that the enabling character is being selected arbitrarily, but we will keep
in mind the chance to postulate for some particular systems a partial
ordering relation on sets k; which enables us to resolve internal conflicts

within a discrete net.

-8 -

Let t; t; € T be two transitions of a discrete net C = (P.T./,0.4) .

which are enabled by one marking u and have sets of enabling characters
i

plpd pi_ and p{.p4, - - p{J , respectively.

Definition2.5 Two transitions ¢; and {; are in conflict under the

marking 4 . if there are p} , (1=7=1;), pJ(1=<g <1;) that

+ 1
KMt By

Between two transitions t;.t; being in conflict only one fires if

L L
2 /.Lp.; Cu and i: /,ij Cu . We assume as earlier that if the firing transition
r=1 T g=1 v

is being selected arbitrarily.

Definition2.6 A marking u of a discrete net C = (P,T.[,.0.u) is

deadlock if it does not enable any transition.

The execution of a discrete net holds whenever it becomes a

deadlock marking.

.III APR_O-PERTIES OF DISCRETE NETS

Definition3.1 A place p,€P of a marked discrete net
C=(P.T.I,0u) is called:

(a) ky, —bounded if for all p€D(C.pu) and & marker M; €M
(M. (p;)) <k

(b) k —bounded if for all '€ D(C.u) and all M; €M . #(M;.u'(p;)) <k

(¢) M;—~bounded if it is ky_ - bounded and k =1 .
J J

-9 -

De finition 3.2 A discrete net is called:

(a) ky, —bounded if all its places are ke, -bounded.

(b) k —bounded if all its places are k -bounded,
(c) safe if it is k -bounded and k =1 .

Definition3.3 A transition {;€7 of a marked discrete net
C = (P,T.],0,u) is active under the marking w if there is u'€ D(C,u)

which enables this transition, and otherwise passive under the marking

If a marked discrete net has some passive transitions under the ini-
tial marking u° then all those can be removed from the net without hav-

ing influenced its execution.

Definition3.4 A transition £, €7 of a marked discrete net

C=(P.T.I,0.u) is called :
(a) lLive if it is active under each marking u'€ D(C,u) ,

{(b) k -live, if there is a firing transition sequence initiated by wu in

which £; occurs at least k times (k>1) .
Definition3.5 A marked discrete net ¢ = (P,7./,0,u) is called:
(a) live , if all its transitions are live under the marking u ,
(b) & -live if all its transitions are k& -live under the mafking M

Definition3.6 A subset P, CP of places of a marked discrete net

C=(P,T.I,0u)is called an invariant if for ally' € D(C,u) ,

Y owe))= L oule))

ijPtrw Pi€Pp,

-10 -

The properties of discrete nets introduced above will be used to

establish characteristics of modelled discrete systems.

IV SUBCLASSES OF DISCRETE NETS

Various properties of discrete net structures allow us to distinguish

several subclasses of discrete nets.
Definition4.1 A discrete net C = (P,T./,0,u) is called:

(a) simple if for all p;€P and t,eT #(p;, 1(t;))<1 and

#(pi_O(tj))S 1,

(b) loop —free . if for allt, e T,/(t;)nO(t;) = ¢ :

(c) p—connected if forall t; € T,

[7(t;)| =1 and |O(t;)| =1,

(d) t —connected if for all p;EP,

|ty [p, €1(t;)1 =1 and |t [p; €(¢;)3] = 1.
In a simple discrete net bags /(¢;) and O(t;) are sets and in its graph

there are no multiple arcs.

A loop-free net does not have any circles with one transition and one
place, because no single place can be both an input and output place for

the same transition.

Each transition of p -connected nets has got exactly one input and
one output place; these nets can easily represent conflicts by a place with
several outputs but cannot model the concurrency or waiting which
characterize synchronization. 7 -connected nets are duals of p -con-

nected nets from graph-theoretical point of view, they can model syn-

-11-

chronization and concurrency but cannot represent conflicts, because

no single place is shared by several transitions.

Additional classes of discrete nets follow from the properties of state

machines which define transitions.
Definition4.2 A discrete net C = (P,7T./,0.u) is called:

(a) combinational if all its transitons are defined by state machines

with any one state (|K; | =1, i = 1.2, -+ ,m) ;

(b) binary if the set of markers M contains only one nonempty

marker along with the empty one.

If we assume M = {0,1{ be the set of markers of a binary combina-
tional net then state machines of transitions are in fact systems of
Boolean functions. One particular case when all those Beolean functions
are logical AND operations, corresponds to the definition of the original
Petri net model [1]. There are also a number of extended Petri nets [6]
such as nets with zero-testing exclusive OR transitions, and with other
input and output (with respect to transitions) logic. It is easy to see that
all those modifications differ only in a type of boolean functions system,
which define transitions; in other words they are included into the class of
binary combinational nets. An extended Petri mode! known as coloured
Petri net [4] is covered by the combinational discrete nets in which all
state machines do not have memory (having only one state) and can be
represented in a form of multi-valued logical functions. The formal proof
of the above relationships between different net models is a subject for
separate publication, here we only show by examples that discrete net

models can represent a broader class of real systems than Petri nets and

-12 -

their moedifications do.

VI EXAMPLES OF MODELLING USING DISCRETE NETS.

One of the most difficult design problems of a concurrent system
with parallel processes (subsystems) is organization of cooperation
between parallel processes because they share information and/or
resources of the system. The asynchronous nature of concurrent
processes dictates the necessity of a special synchronization mechanism
to handle waiting and deadlock problems. A variety of synchronization
problems has been proposed in the literature to illustrate the types of
relations which can arise between cooperating processes and mechanisms
for solving them. Among these is the dining philosophers problem [8]. It
concerns five philosophers who alternatively think and eat. They are
seated at a round table with a large number of Chinese foods, between
each philospher is one chopstick. To eat Chinese food everyone needs two
chopsticks (from left and right sides). The problem is that if all philoso-
phers pick up the chopstick on their left side and then wait for the
chopstick on their right they will wait forever and starve {but the system

would be deadlocked).

To model this system we build a discrete net. First we introduce
three places P = {p,,po.p3} with the interpretation: p, represents think-
ing philosophers, ps -eating ones, and pg -represents free chopsticks.
The dynamics of the system is described by two transitions t;-take
chopsticks, t; -put chopsticks back with /(t,) = (p.p3.p3) . O(t;) = ps .

I(ty) =p, ., O(ty) = (py.p3p3) . Markers ey.ezeg.e,.e5 represent philo-

13

sophers, 14,l5.l3.14.l5 -chopsticks (I; -the one, which lies between e; and
es and soon), thus ¥ = {ey.epegey.es5l,lalslyls) . The discrete net
graph is represented in Figure 1. We describe the transitions with two
state machines A4; and 4, (table 1 and 2), each of them has five input, five
output characters, and one state. As an initial marking of this discrete
net we can assume

#O(P1) = (91-92-93-94,95)- P«O(Pz) = ¢ #O(Ps) = (11-12-13-14-15) .

This net is £ -connected, therefore transitions £, and {5 cannot be in
conflict , then operations "take chopsticks” and "put chopsticks” are
deterministic and predictable regardless of the time parameters of the
system. As it follows from table 2 the transition £, does not have internal
conflict, that means philoséphers do not compete when putting chopst-

icks back on the table. It is obvious that u(p,) Cu%(p,) and u{ps) cul(ps)

5
for all wep(C,u) , also yoC Zup‘, . therefore the transition ¢, has an
i=1

internal conflict. A sum of any two input characters with the same
marker ; (j =1,2, - ,5) strictly contains the marking ,u,0 thus any neigh-
bors never eat at the same time. The set (p,pj) is an invariant that is

every philosopher either eats or thinks.

It is worth mentioning that the introduced net has only two transi-
tions and three places, meanwhile the description of this system in a form
of original Petri net requires 10 transitions and 15 places. This shows the
possibility of more concise presentation of a modelled system by means

of discrete nets.

- 14 -

Let us consider a slight modification of the just considered system.
We put the following restriction on the synchronization mechanism: the
first and third philosophers must start eating alternately, that is the
third philosopher starts after the first one, then again the first and so on.
If a philosopher (first or third) is not allowed to start eating then he must
think and wait until another has started. This system is rﬁodelled by
another discrete net (Figure 2) which differs from the previous one (Fig-
ure 1) by the transition ¢, with O(f,) = (p;.p2p3p3) - The state machine
of ti has already two but not one states £; and x5, introducing into con-
sideration the past history of the system, that is, information above
preceding philosophers having taken chopsticks (table 3). As one can see
from this table the transition £; under the same marking puts markers in
different places depending (regarding) on its state. This effect illustrates
the fact that discrete nets offer greater possibilities for modelling of
discrete systems than Petri nets. As one could learn from the above
examples, a discrete net is in fact an uninterpreted model which opens

the way to hierarchical description of systems.

CONCLUSION

In this paper we have introduced a formal model for complex
discrete systems which might be considered as a generalization of exist-
ing Petri nets exceptions. The usefulness of the model was illustrated by
examples. The proposed methodology allows the modelling of a rather
broad class of problems: from communication protocols, synchronization
problems, to organization of production schemata. Based on the intro-

duced axioms and definitions, the further investigation to develop

-15-

proposed methodology is the establishment of relationships betwen
separate properties of discrete nets and construction of formal pro-

cedures for checking of systems properties.

-]l6-

REFERENCES

Petri, C.A. : Kommunikation mit Automaten, Ph.d. dissertation,
University of Bonn, 1962.

. Peterson, J. : Petri nets, - Computing Surveys, 1977, V.89, No.3, pp 223-
252.

3. Genrich, H.J., Lautenbach, K. : System modelling with high-level Petri

nets, in Theor. Computer Science, 1981, V.13, pp 106-136

Schiffers, M., Wedde, M. : Analyzing program solutions of coordination
problems by CP - nets, in Mathematical foundations in Computer Sci-
ence, 1978, No.64, pp 468-473.

Petrenko, A.F. : On the specification and verification of protocols
using Petri nets, in Proceedings of the ICCC - BO, Atlanta, 1980, pp
385-390. :

Agerwala, T., Flynn, M. : Comments on capabilities, limitations and
"correctness” of Petri nets, in Proc. First Ann. Sympos. of Computer
Architecture, A.C.M., 1973, pp B1-86.

. Noe, J., Nutt, G. : Macro E-nets for representation of parallel systems,
IEEE Trans. on Computers, 1973, V.22, No.8, pp 718-727.

Dykstra, E. : Cooperating Sequential Processes, in Programming
Languages, N.Y. Academic Press, 1968, pp 43-112.

-17-

Ay
p! elily | eplpls eglgly eglyls eslsly
Al e es eg ey es
Table 1
Ay
pz el 22 23 94 35
AR erlyly | eplply | eglgly, | eylyls | eslsly
— i
Table 2
Ay
\Q] ejlyls ealals eglaly eqlqls eslsly
K1 Ko pexdd K. $pexd kK1.e3¢plaly | K. pesdo K. 9es0 ¢
K2 Kope1¢lily | Kpdexdd Ky ¢ezdd Ko eyt d Ko bespd

Table 3

Figure 1

Figure 2

-18-

