

Exploring the role of agricultural trade in the future of nature and people

D. Leclère¹, **A. Palazzo¹**, C. Janssens^{1,2}, S. Hill³, E. Boere¹ and P. Havlík¹

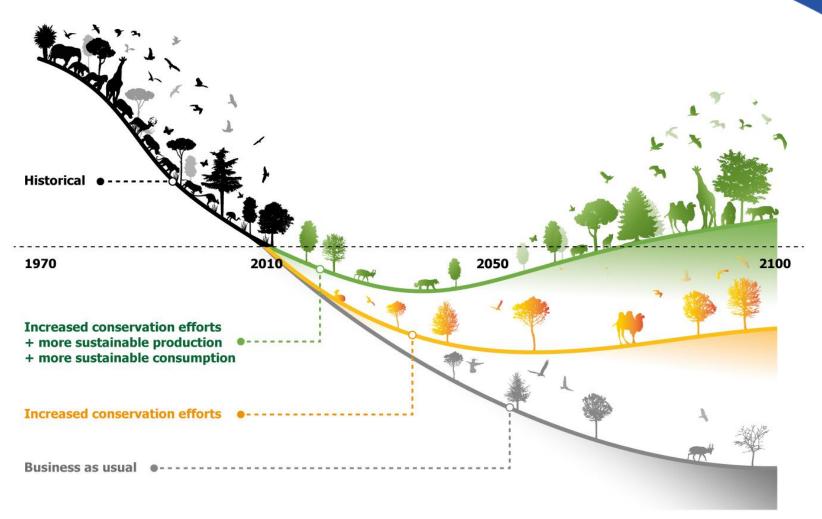
¹BNR program, IIASA, Austria

²KU Leuven, Belgium

³UNEP-WCMC, UK

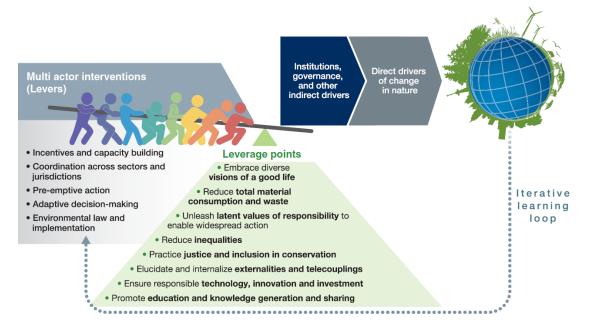
Bordeaux (FR) | 15th June 2023

Session 34: Assessment of Biodiversity Impacts using Agricultural and Economic Models (Room 1K)



Introduction

Bending the curve: what about trade?


- Models and scenarios used to explore global pathways towards ambitious goals (Leclere et al 2020)
- A transformation of the global food system is needed
- Little exploration of the role of trade

A. Islaam (IIASA) after Leclère et al. 2020, Nature

The role of trade for biodiversity

- Increasing but complex role in biodiversity loss
 - Connecting production from tropical countries to global demand vs land sparing effect (Marques et al 2021, Kastner et al 2021)
 - Commodity-, region- and scale- (regional vs global) specific net impact (Kastner et al 2021, Roux et al 2021)
- Mediating impacts of domestic policies
 - Spillovers & leakage (Meyfroidt et al 2020)
- High transformative change potential
 - Telecoupling governance (Chan et al 2020)
 - E.g., through acting on a few value chain actors
 - E.g., through multilateral negotiation

Chan et al. 2020

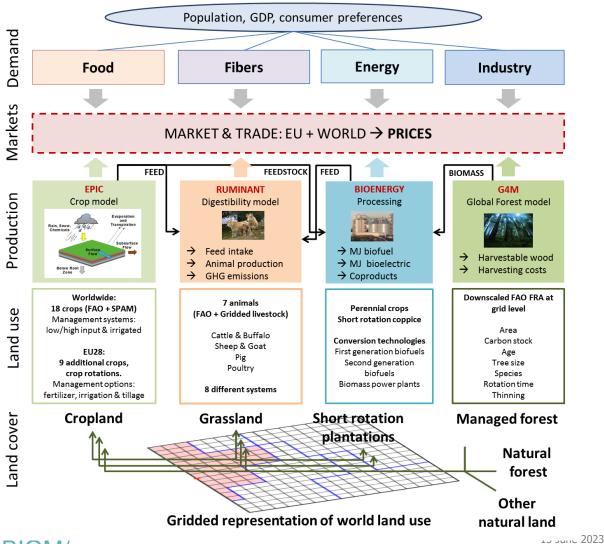
Scope of the study

Main research questions:

- How could future agricultural trade be affected by efforts towards ambitious biodiversity goals?
- To what extent can alternative governance of agricultural trade support or imped progress towards ambitious biodiversity goals?

Methodological approach:

 Develop new future scenarios using the <u>GLOBIOM global partial equilibrium model</u> articulating <u>conservation and food system efforts towards ambitious biodiversity goals</u> and <u>alternative</u> <u>agricultural trade governance</u>


Scenarios & modeling

Models & scenarios to explore the role of trade

- GLOBIOM partial equilibrium model of agriculture, forestry and bioenergy sectors (Havlík et al 2014)
- Detailed representation of
 - Endogenous dynamics of various components of the food system (from producers to consumers)
 - Land use change and agricultural producers (gridded)
 - Bilateral trade flows (50+ commodities & 37 regions), incl. trade costs (tariffs, transport; Janssens et al 2020)
- Projecting environmental (e.g., land use change, biodiversity, see Leclere et al 2020) and socioeconomic (e.g., production, trade, hunger, see Hasegawa et al 2019) indicators from 2000 to 2100 (10-year step)

https://iiasa.github.io/GLOBIOM/

Trade analysis highlights and set up

- Spatial price equilibrium approach
- Homogenous goods
- Separated but connected markets, bilateral trade flows
- Regional prices differences determined by trade costs (includes tariffs and transport costs) and trade calibration (Jansson and Heckelei, 2009)
- Trade expansion faces a non-linear cost
- Base year data sourced from BACI and MAcMap and calibrated with FAOSTAT
- Indirectly driven by comparative advantage through land allocation based on supply side productivity/resources

 $P_{s} = P_{r} + \tau_{r,s}^{M} + \tau_{r}^{X} + \tau_{r,s}^{NTM} + TC_{r,s} (x_{r,s}) + c_{r,s}$

- where P_r and P_s are domestic market prices for the regions r and s,
- $\tau^{M}_{r,s}$ is the bilateral tariff applied by region s on exporter r,
 - τ_r^X is the export tax applied by exporter r,
 - $\tau_{r,s}^{NTM}$ is the NTM equivalent trade cost,

 $TC_{r,s}(x_{r,s})$ is the variable transportation cost,

 $c_{r,s}$ is calibration constant specific to each bilateral relation

Trade analysis highlights

Food Sec. (2014) 6:29-44 DOI 10.1007/s12571-013-0319-z

ORIGINAL PAPER

Global food markets, trade and the cost of climate change adaptation

Aline Mosnier • Michael Obersteiner • Petr Havlik • Erwin Schmid • Nikolay Khabarov • Michael Westphal • Hugo Valin • Stefan Frank • Franziska Albrecht

ARTICLES https://doi.org/10.1038/s43016-022-00572-1

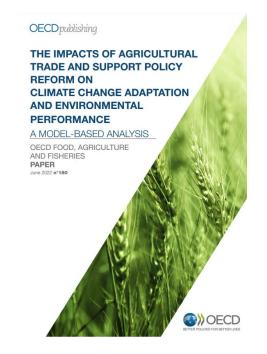
A sustainable future for Africa through continental free trade and agricultural development

Charlotte Janssens^{1,2}[∞], Petr Havlík⁰², Esther Boere⁰², Amanda Palazzo⁰², Aline Mosnier⁰³, David Leclère⁰², Juraj Balkovič² and Miet Maertens⁰¹

nature climate change

nature

tood


Check for updates

ARTICLES https://doi.org/10.1038/s41558-020-0847-4

Global hunger and climate change adaptation through international trade

Charlotte Janssens^{® 1,2} [∞], Petr Havlík², Tamás Krisztin², Justin Baker^{® 3}, Stefan Frank², Tomoko Hasegawa^{® 2,4}, David Leclère^{® 2}, Sara Ohrel^{® 5}, Shaun Ragnauth^{® 5}, Erwin Schmid^{® 6}, Hugo Valin^{® 2}, Nicole Van Lipzig¹ and Miet Maertens^{® 1}

Additional metrics: biodiversity, value added and footprinting

- Average Biodiversity Intactness Index (ABII) 0.5 degree
- Global species loss at WWF ecoregion
- Global species loss in domestic supply (ERDS), domestic consumption (ERDC), exports (EREX) and imports (ERIM) at WWF ecoregion
- Land and biodiversity "footprinting"
 - Tracing the trade of all primary product inputs in region where product sourced
- Farm income from the agricultural sector
 - Based on GTAP database

1) Scenarios exploring the action space for biodiversity

Scenario	Description	Further BTC details	What does trade look like in ambitious		
BASE	Based on SSP2 Middle of the Road	Continuation of historical trends	biodiversity pathways?		
С	Increased Conservation	Increased extent and management of protected areas	Pressures at the interface agriculture vs natural lan		
		Increased restoration and landscape-level conservation planning			
C+SS	Increased Conservation + Supply Side	Scenario assumptions from C Sustainable increase in crop yields	Agricultural systems transformations		
ΙΑΡ	Increased Conservation + Supply Side +Demand Side	Scenario assumptions from C+SS scenarios Reduced waste of agricultural goods from field to fork	Consumption patterns, better nutrition		
		Diet shift to a lower share of animal calories (in developed countries)	and human health		

2) Explorative scenarios for the future of trade

Name	Narrative	GLOBIOM implementation
Baseline	Drawn from 'Middle of the road' SSP2, prolongation of historical trends (further liberalization and global integration)	Observed changes in tariffs 2000-2020 & default SSP2 (moderate decrease in trade costs over time)
Exacerbated liberalization	Accelerated liberalization of trade and reduction of transport costs (following SSP1)	Full elimination of tariffs by 2030 & strong reduction in other trade costs (e.g., transportation)
Frictions and reconfigurations	Increased trade costs (following SSP3), trade routes shift in reaction to new priorities (e.g., reducing environmental damages associated with the consumption of imported goods)	Increase in trade costs by 2030 & capping of exports of deforestation commodities (Soya, Oil Palm, Beef) from tropical countries
Greening of trade	Comprehensive measures implemented to reduce the imported biodiversity footprint of every nation	Baseline + biodiversity border adjustment mechanism by 2030 (tax on imported extinction risks)

Combination Scenario Matrix

Bending the Curve for Biodiversity Loss Scenarios

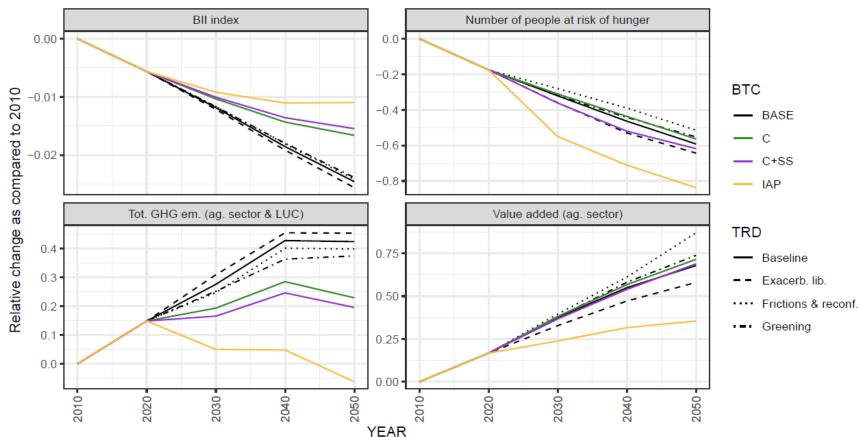
	BASE	С	C+SS	IAP
Baseline	Baseline (BASE)	Baseline (C)	Baseline (C+SS)	Baseline (IAP)
Frictions and reconf.	Frictions and reconfig. (BASE)	Frictions and reconfig. (C)	Frictions and reconfig. (C+SS)	Frictions and reconfig. (IAP)
Exacerb. Lib.	Exacerb. Lib. (BASE)	Exacerb. Lib. (C)	Exacerb. Lib. (C+SS)	Exacerb. Lib. (IAP)
Greening	Greening (BASE)	Greening (C)	Greening (C+SS)	Greening (IAP)

Trade governance scenarios

Preliminary results

Global sustainability indicators (prelim. results)

Baseline: econ. vs env. trade-off

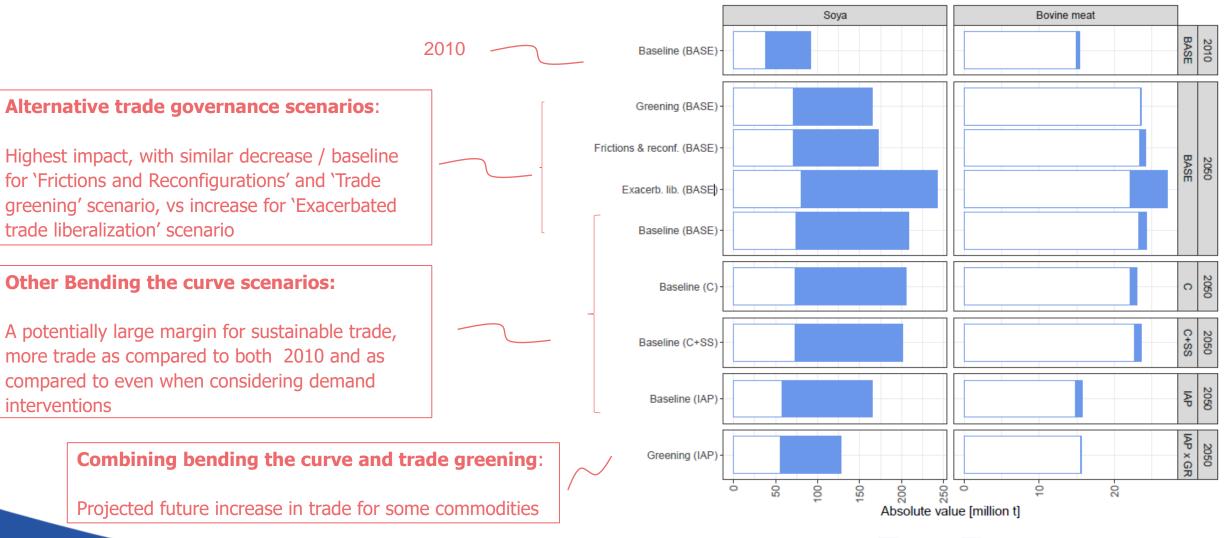

Decreases in hunger and increased ag. value added comes at the cost of increased GHG emissions & biodiversity loss

Differentiated impacts of trade gov.

Liberalization and trade restrictions play in opposite direction, often moderate impacts. Trade greening most adhesive to societal goals.

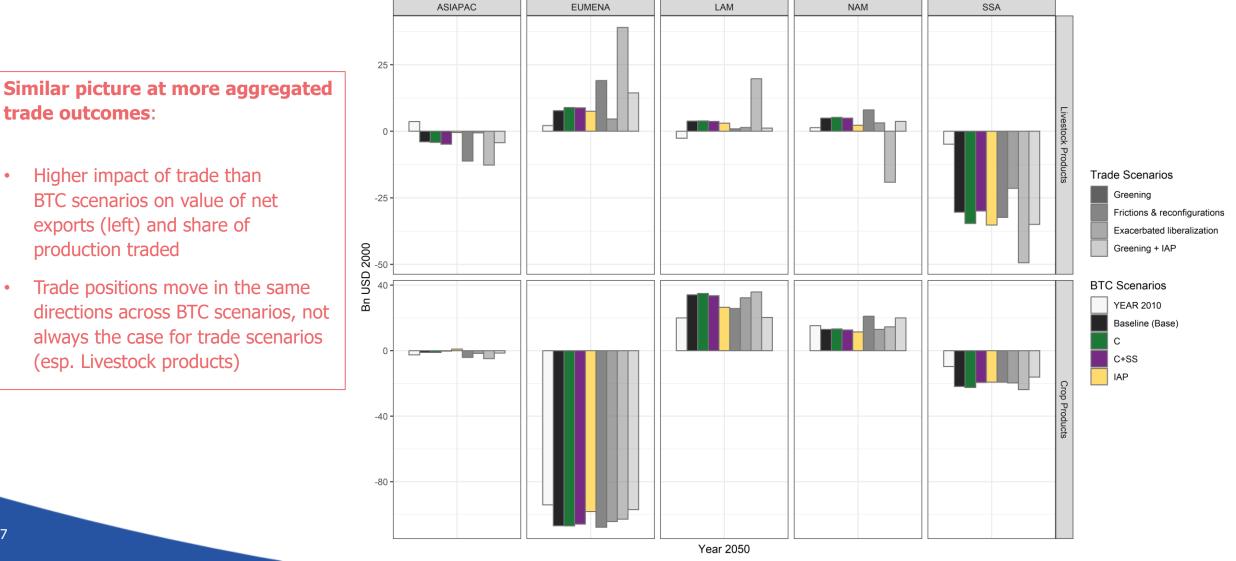
Disruptive bending the curve efforts

Increased conservation & restoration (C) reduce future env. impacts, w. limited adverse soc.-econ. impacts if combined with supply-side measures (C+SS). Adding demand-side measures (IAP) is more disruptive, with significant losses in value added.



15 June 2023 Leclere et al, GTAP Conference 2023

Global trends in selected indicators


Trade in deforestation commodities (prelim. results)

Regional trends in dom. demand and net exports in Latin America

Value of Net Exports by Region

Value of Net Exports by Region and Ag. Product

17

•

٠

Demand vs footprint reduction (prelim. results)

Consumption vs extinction footprint: World, all ag. commodities 2050 0.20-Reduce footprint for Extinction risk from cons. [rel. change / 2010] same consumption 2040 TRD 2030 Baseline 2020 Reduce consumption for same footprint 2010 0.00-0.2 0.0 0.4 0.6 Consumption of ag. products [rel. change / 2010]

On demand vs footprint reduction

Both footprint and demand are expected to grow in the future.

How much can we decrease footprint without also decreasing demand?

Demand vs footprint reduction (prelim. results)

Reduced footprint of consumption ...

Trade greening scenario achieves better decrease in the footprint of consumption than Frictions and Reconfigurations

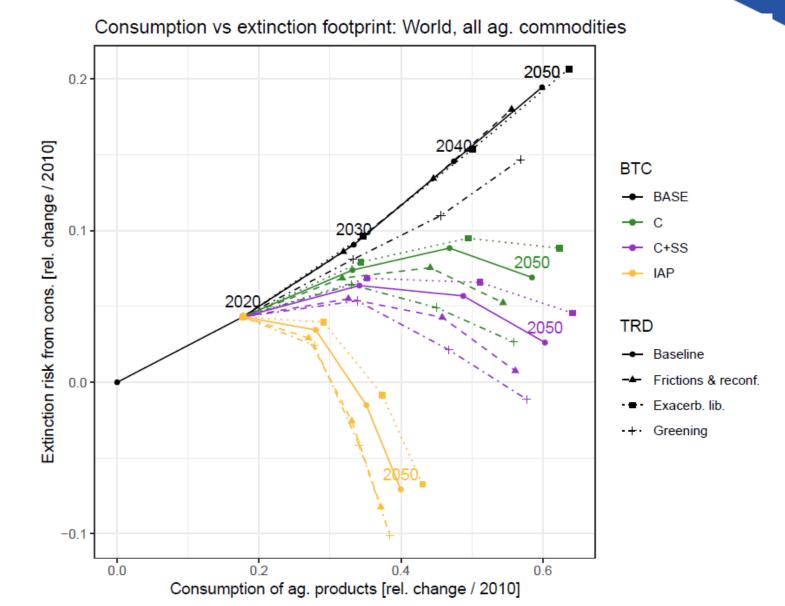
But a lot less than when considering conservation & supply-side measures

... can only take us that far without more alternative consumption choices

While IAP scenario leads to less significant decrease in extinction risks / 2010, we may at best stabilize to 2020 levels w/o demand-side measures (C+SS)

2050. 0.2 Extinction risk from cons. [rel. change / 2010] 204 BTC BASE 2030 01 C+SS -- IAP 2050 2020 TRD 2050 Baseline Frictions & reconf. Exacerb, lib. 0.0 ·+· Greening 0.2 0.0 04 0.6

Consumption vs extinction footprint: World, all ag. commodities



Demand vs footprint reduction (prelim. results)

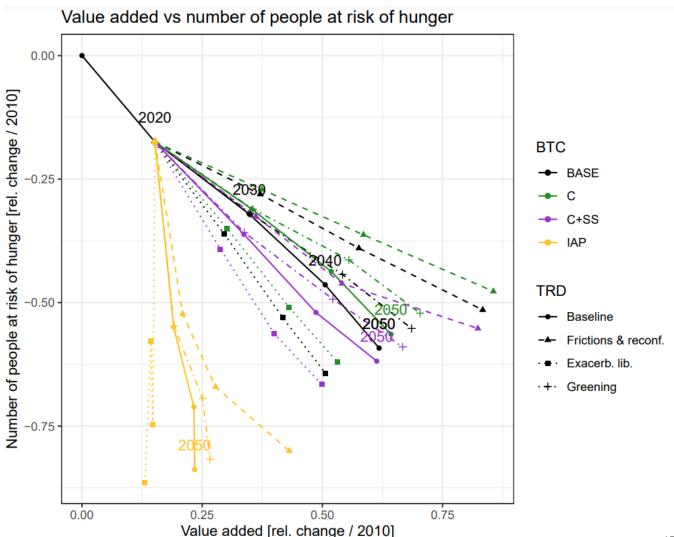
Interactions between scenario dimensions

The impact the trade governance scenarios (e.g., Trade greening – baseline) is:

- larger under C & C+SS than under BASE scenario ...
- but smaller than BASE scenario when demand-side measures are considered (IAP)

Undernourishment and farm incomes (prelim. results)

More significant effect of trade gov.


- Globally, trade restrictions favor producers at the expense of consumers, and the way around for trade liberalization
- Trade restrictions have larger impacts than when uncoordinated (Frictions and reconfigurations vs Trade Greening)

Demand-side measures are disruptive

• Significant transfer from producers to consumers

Less interactions

• Except still smaller than BASE scenario when demand-side measures are considered (IAP)

¹⁵ June 2023 Leclere et al, GTAP Conference 2023

Discussion & conclusion

Discussion

Preliminary results

- Trade differently affected by efforts towards ambitious biodiversity goals:
 - > Large trade potential under increased conservation and sustainable intensification
 - > Sustainable consumption measures (waste reduction, diet shift) more disruptive (not just to trade) and needed
 - > Still some margins to increase trade when considering demand-side measures
- Alternative trade futures have differentiated impacts on sustainability objectives
 - > Stronger impacts on socio-economic than environmental indicators
 - > Trade liberalization could work against biodiversity, uncoordinated restrictions against food security
 - > While some options like greening look promising, some trade-offs remain (e.g., producers)
 - > Interactions between trade and conservation / supply-side / demand-side can be large

Limits

- Complexity: trade challenging to project, effect on several sustainability indicators even more so
- The devil is in the details: picture contrasted across regions & supply chains

Next steps

- Potential improvements to this analysis:
 - > Explore indicators more traditionally discussed in ag. trade circles (comparative advantage, revenues from tariffs etc.; a vehicle for engaging with trade policy circles)
 - > Have a closer look at regional effects & interactions across scenario dimensions:
 - (is trade within continents responding similarly to trade across continents?)
- Designing new scenarios exploring specific trade governance intervention options
 - > Trade and supply chain governance instruments
 - (e.g., environmental provisions in PTAs & due diligence impact on specific supply chains, leakage, TRASE)
 - > Geopolitical dynamics around environmental & trade agreements
 - (e.g., EU-MERCOSUR ratification conditional to action under Paris Agreement & post-2020 GBF)

Thanks! Questions

TradeHub project https://tradehub.earth/

Psssst ... job position open!!

• [IIASA, our team] Postdoc on trade & sustainable development

More info on the job advert here!

leclere@iiasa.ac.at

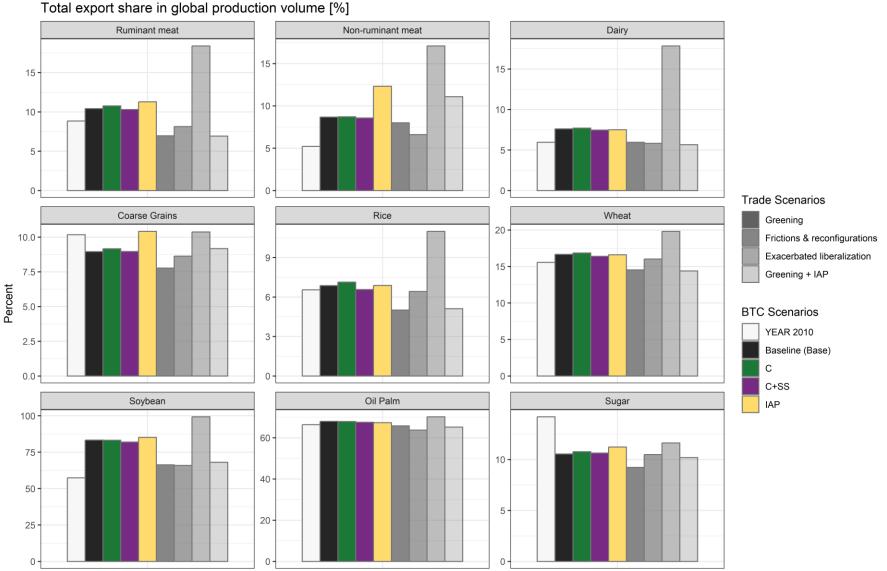
y@Leclere_David

References

- Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature (2020). <u>https://doi.org/10.1038/s41586-020-2705-y</u>
- Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat Ecol Evol (2019). https://doi.org/10.1038/s41559-019-0824-3
- Kastner, T. et al. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth (2021). https://doi.org/10.1016/j.oneear.2021.09.006
- Roux, N. et al. Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production. Ecological Economics (2021). <u>https://doi.org/10.1016/j.ecolecon.2020.106915</u>
- Meyfroidt, P. et al. Focus on leakage and spillovers: informing land-use governance in a tele-coupled world. Environmental Research Letters (2020). http://dx.doi.org/10.1088/1748-9326/ab7397
- Chan, K. M. A. et al. Levers and leverage points for pathways to sustainability. People and Nature (2020). <u>http://dx.doi.org/10.1002/pan3.10124</u>
- Havlík, P. et al. Climate change mitigation through livestock system transitions. PNAS (2014). <u>http://dx.doi.org/10.1073/pnas.1308044111</u>
- Hasegawa, T. et al. Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability (2019). <u>https://doi.org/10.1038/s41893-019-0371-6</u>
- Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nature Climate Change (2020). <u>https://doi.org/10.1038/s41558-020-0847-4</u>

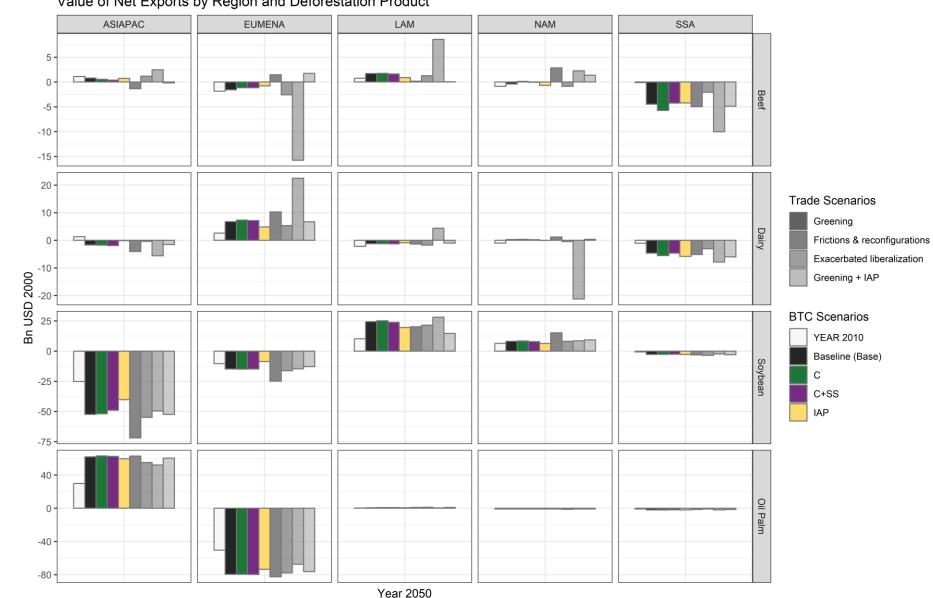
Extras

Share of exports in global production volume


Alternative trade governance scenarios:

Exacerbated liberalization ->greatest trade share (for almost all products) [specialization], Greening/Frictions and reconfig -> lowest trade share

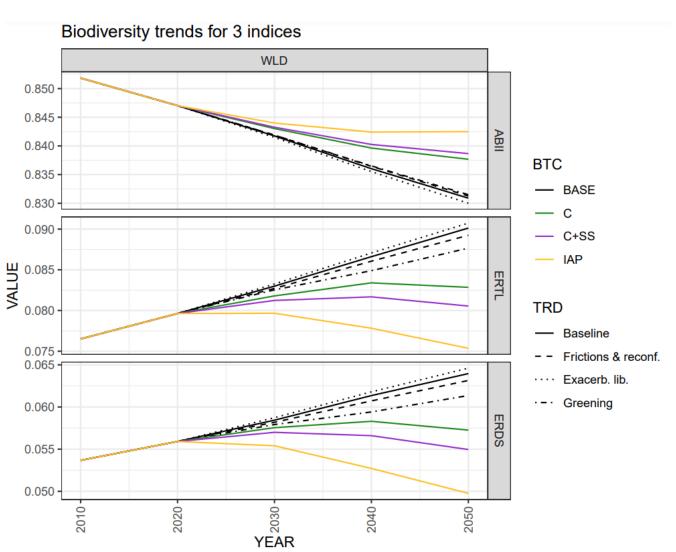
Livestock products:


Liberalization raises the trade share

Other Bending the curve scenarios: IAP also results in some specialization (increase trade share for livestock products, grains/sugar)

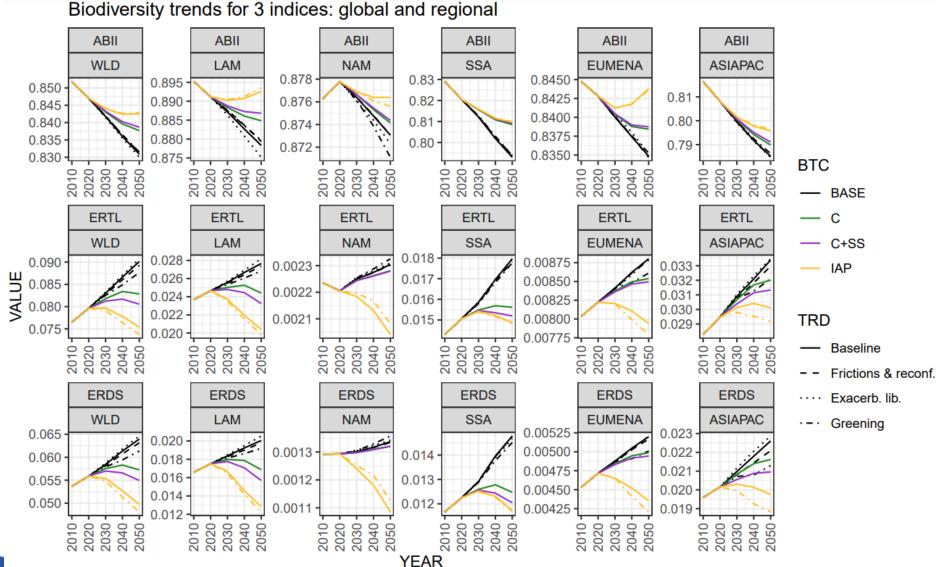
Extra: Value of Net Exports by Region Deforestation Products

Value of Net Exports by Region and Deforestation Product

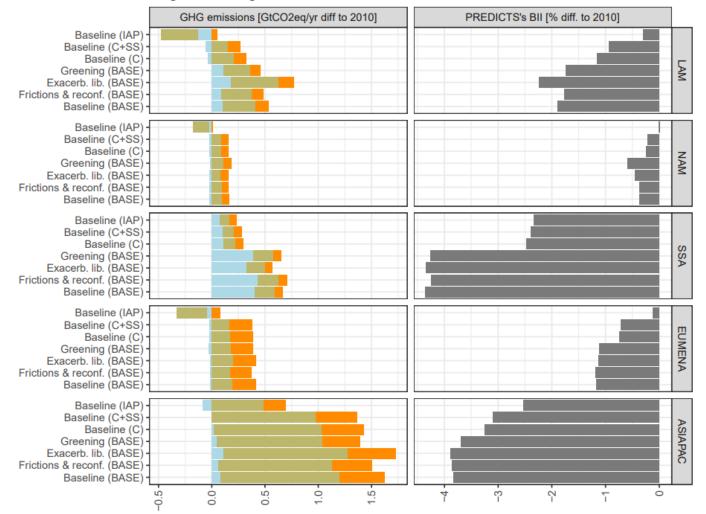

Global biodiversity trends (prelim. results)

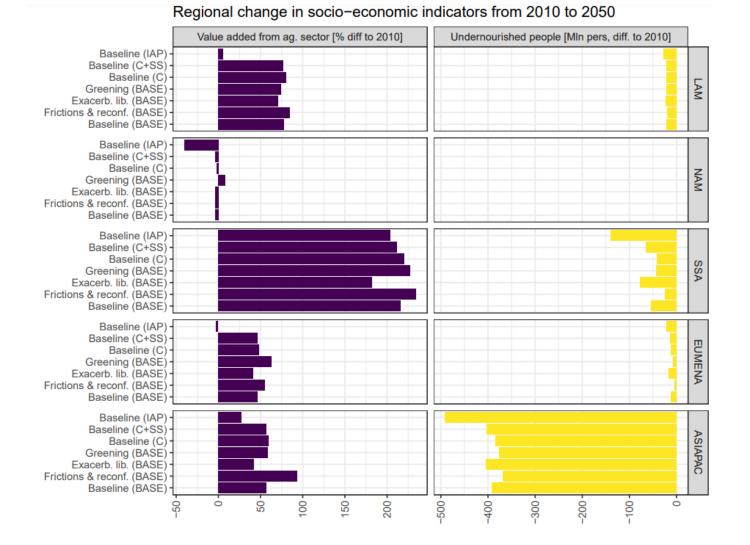
Globally consistent trends across indicators

- Modest impacts from trade scenarios, negative for Exacerbated liberalization and positive for trade restrictions
- Achieving a reversal of biodiversity loss by 2050 requires increased conservation and restoration measures & food system transformation
- Trade greening could help (except for NAM)


Differences across biodiversity indicators

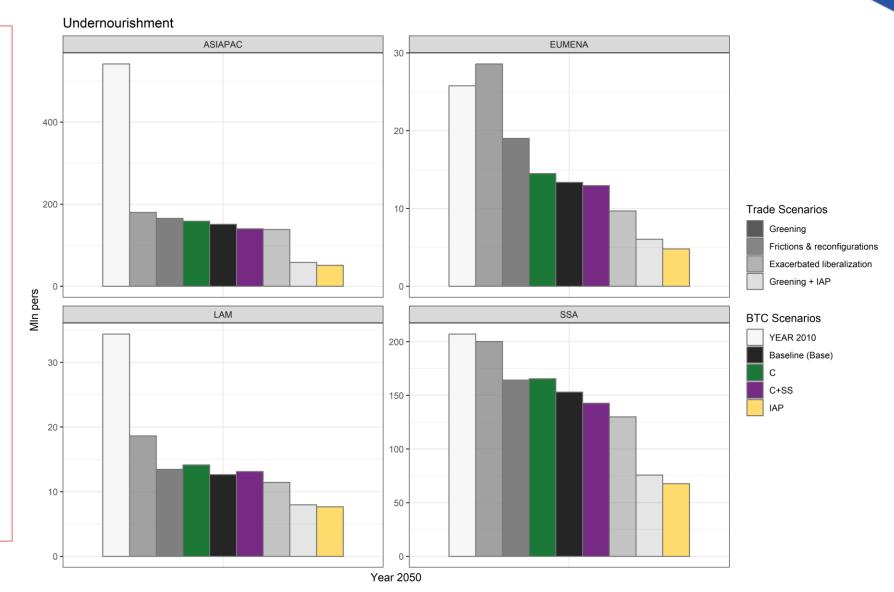
- More pronounced bending for extinction riskbased indicators (ERDS, ERTL) than local compositional intactness (BII) [temporal recovery]
- More than 2/3rd of extinction risks from ag. Sector, and all of the bending


Extra: biodiversity trends by region & indicator


Extra: biodiversity vs GHG emissions at regional level

Regional change in environmental indicators from 2010 to 2050

Extra: food security vs value added by region



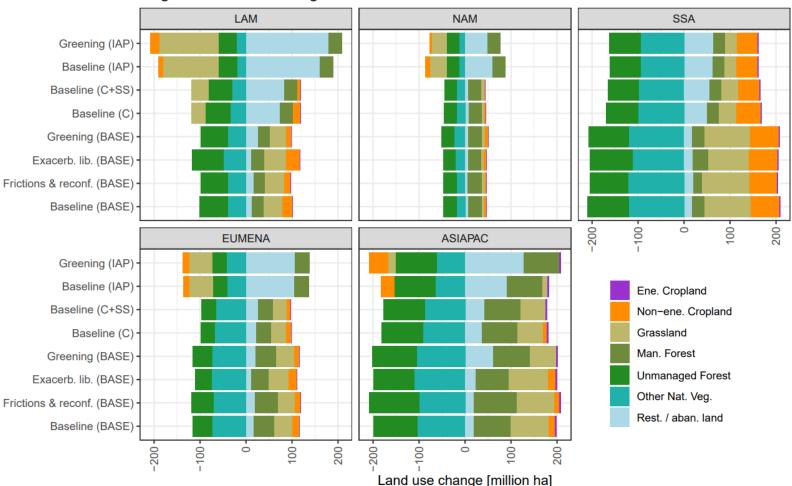
Food Security: Undernourishment in 2050 (prelim. results)

Key messages

- Under the baseline, undernourishment decreases than by 2050.
- Conservation slightly increases undernourishment compared to baseline in 2050. CC+SS (in most regions) reduces slightly.
- Exacerbated liberalization decreases
- Frictions and recofig increase # undernourished in EUMENA
- BTC-IAP results in lowest levels of undernourishment Regional trends follow global trends except for the C+SS in LAM
- As TG +IAP help to achieve other goals including undernourishment

Land use change (prelim. results)

fullname


Baseline: losses to nat. land Highest losses to forests and other natural vegetation in ASIPAC, SSA, LAM and EUMENA

Bending the curve: net gain in nat. land Highest losses to forests and other natural vegetation in ASIPAC, SSA, LAM and EUMENA

Regionalized responses to scenarios:

<u>Trade gov</u>.: decrease in nat. vegetation highest for Exacerbate liberalization in LAM, but for Frictions and reconfigurations in ASIAPAC.

Bending the curve efforts: while demand-side measures (IAP vs C+SS) has the largest impact on losses to nat. vegetation & land restoration, increased conservation & restoration have a dominant role in EUMENA & LAM, and dominant in SSA.

Regional land use change from 2010 to 2050

Additional metrics: biodiversity

Acronym	Name	Biodiversity aspect measured	Taxonomic coverage	Impact measured	Sectoral coverage	Assumed temporal recovery under restoration	Parameters (source)	Parameters (spatial resolution)
ABII	Average Biodiversity Intactness Index (BII)	Average compositional intactness of local community assemblages	All vertebrates	Total local land use composition (as compared to pristine state)	All land activities (forestry, agriculture, bioenergy)	Exponential, half time 25 years (Isbell et al 2019)	Newbold et al 2016, as compiled and used in Leclere et al 2020	30 arcminutes (incl. potential ecosystem map, type of pasture and potential NPP)
ERTL	Global species loss	Global species at risk of extinction from local land use	Vascular plants, mammals, birds, reptiles, amphibians	Total local land use composition (as compared to pristine state)	(same as above)	Immediate (potential biodiversity)	UNEP-SETAC 2016, as compiled and used in Leclere et al 2020	WWF ecoregions
ERDS, ERDC, EREX, ERIM	Global species loss in domestic supply (ERDS), domestic consumption (ERDC), exports (EREX) and imports (ERIM)	Global species at risk of extinction embedded in commodity flows	(same as above)	Local pasture and cropland use from primary product inputs (as compared to pristine state)	Land activity related to commodity flow	(same as above)	(same as above)	WWF ecoregions