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A B S T R A C T

Spatially explicit information on land cover (LC) is commonly derived using remote sensing, but the lack
of training data still remains a major challenge for producing accurate LC products. Here, we develop a
computer vision methodology to extract LC information from photos from the Land Use-Land Cover Area Frame
Survey (LUCAS). Given the large number of photographs available and the comprehensive spatial coverage,
the objective is to show how the automatic classification of photos could be used to develop reference data
sets for training and validation of LC products as well as other purposes. We first selected a representative
sample of 1120 photos covering eight major LC types across the European Union. We then applied semantic
segmentation to these photos using a neural network (Deeplabv3+) trained with the ADE20k dataset. For each
photo, we extracted the original LC identified by the LUCAS surveyor, the segmented objects, and the pixel
count for each ADE20k class. Using the latter as input features, we then trained a Random Forest model to
classify the LC of the photo. Examining the relationship between the objects/features extracted by Deeplabv3+
and the LC labels provided by the LUCAS surveyors demonstrated how the LC classes can be decomposed
into multiple objects, highlighting the complexity of LC classification from photographs. The results of the
classification show a mean F1 Score of 89%, increasing to 93% when the Wetland class is not considered.
Based on these results, this approach holds promise for the automated retrieval of LC information from the
rich source of LUCAS photographs as well as the increasing number of geo-referenced photos now becoming
available through social media and sites like Mapillary or Google Street View.
1. Introduction

Over the past decade, there has been a proliferation of satellite
based land cover (LC) maps produced, from global products with multi-
ple classes (Bontemps et al., 2013; Buchhorn et al., 2020) to binary time
series focused on different thematic areas such as tree cover, cropland,
water bodies and built-up surfaces (Corbane et al., 2019; Hansen et al.,
2013; Pekel et al., 2016; Potapov et al., 2022). These advances have
been largely driven by the opening of the Landsat archive, the availabil-
ity of new high-resolution satellite imagery (e.g. from Sentinel), as well
as the new cloud-based computing environments and machine learning
routines.

A fundamental input to LC map production is the reference data
needed to both train the classification algorithms, and validate the
resulting layers using statistically robust accuracy assessment (Stehman
and Foody, 2019). In the past, LC maps were trained and validated
using in-situ or field-based data, but there are substantial costs involved
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in the data collection, particularly for mapping large areas (Szantoi
et al., 2020). Moreover, machine learning algorithms, and in particular,
newer deep learning methods, need large quantities of high-quality
training data regardless of the specific algorithm used (Maxwell et al.,
2018). The use of various semi-supervised learning algorithms has
been one approach to addressing the lack of training data (Padman-
aba et al., 2013) but this method still requires a good set of basic
reference data to train the algorithms. Transfer learning algorithms
can use data from different domains to compensate for a lack of
training data from the direct domain of interest (Weiss et al., 2016) and
have shown promise in land cover classification by using existing pre-
trained deep learning networks (Alem and Kumar, 2022). An entirely
different approach has been towards increasing the reference database
using visual interpretation of satellite imagery, e.g., from very high-
resolution imagery available from Google Earth and Microsoft Bing
Maps (Waldner et al., 2019), using crowdsourcing through applications
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such as Geo-Wiki (See et al., 2022; Radoux et al., 2014). However,
there is uncertainty related to the imagery dates, geolocation errors,
the quality of the crowdsourced data, and the accuracy of the LC maps
sampled using these approaches.

More recently, street level imagery (SLI) from Google StreetView
(GSV), Mapillary, Baidu, etc., as well as geo-tagged photographs from
photo sharing sites such as Flickr, are being used as sources of refer-
ence data in many different types of applications. Some of these have
involved the implementation of virtual street level surveys, e.g., to
complement field-based street tree surveys (Berland and Lange, 2017),
as a potential source of in-situ data for crop monitoring (d’Andrimont
et al., 2018), to audit neighborhood and built environments (Rundle
et al., 2011; Kelly et al., 2013), as inputs to models of mobility patterns
in cities (Goel et al., 2018) and to fill in missing sidewalks in aerial
images (Ning et al., 2022). However, more recent applications have
generally entailed the use of some type of automated approach to first
classify the photographs, extract information, and then apply other
machine learning algorithms to predict specific features of interest,
e.g., the prediction of house prices using features extracted from Flickr
photographs (Chen et al., 2022b), the prediction of various socio-
economic characteristics such as income and voting patterns from GSV
imagery (Gebru et al., 2017), and the development of a visual walka-
bility index using features extracted from Baidu Map Street View (Zhou
et al., 2019a). There have also been studies in which combinations of
RGB bands have been used to create GSV difference images in order
to extract the area of vegetation and calculate a Green View Index (Li
et al., 2015), which has then been combined with a survey on physical
activity to understand the influence of street greenery (Lu, 2019).

Two main developments have aided the research in this area. The
first comes from the field of computer vision where there have been
rapid advances in extracting information from photographs using ap-
proaches such as scene recognition for a single class, object detection
for extraction of individual objects in a photograph, and semantic
segmentation, which assigns a class to each pixel (Neuhold et al.,
2017). As these approaches require large training datasets, the second
main development has been in the availability of substantial labeled
image data sets, e.g., ImageNet (Russakovsky et al., 2015), COCO (Lin
et al., 2014), ADE20K (Zhou et al., 2019b) and Mapillary’s Vistas
dataset (Neuhold et al., 2017), as well as deep learning networks that
have already been trained on these datasets such as VGG (Chen et al.,
2017), ResNet (He et al., 2016) and DeepLabv3+ (Chen et al., 2017), or
more recently, visual transformers (Chen et al., 2022a) or InternImage,
a new large-scale CNN-based network (Wang et al., 2022), among
others.

In the area of land use mapping, a number of studies have used
pre-trained networks with existing image databases to classify SLI for
building types or LU (rather than LC), often demonstrated on small
urban areas. For example, Kang et al. (2018) used VGG16 trained on
the Places2 dataset to remove images from GSV that did not contain
buildings of interest. They then used four different networks (AlexNet,
ResNet18, ResNet34, VGG16) pre-trained on ImageNet to classify dif-
ferent building types, achieving high accuracy for some classes such
as office buildings (85%) and garages (99%). Zhu and Newsam (2015)
used a linear support vector machine (SVM) fed with all pixels from
Flickr photographs to predict 8 LU classes, achieving an overall ac-
curacy of 76%. In a subsequent paper, they extended this approach
to 45 classes for the city of San Francisco using a scene and object-
based recognition approach, but they achieved a lower accuracy of
46.7% for this finer-grained solution (Zhu et al., 2019). Cao et al.
(2018) combined aerial and SLI to produce a LU map with 11 classes
in an area of New York City. They used the Places-CNN trained on the
Places365 dataset (with 10 million images) to extract features from
four GSV images at each location, reduced the data using Principal
Components Analysis and then combined these features with aerial
images using SegNet. They achieved an overall accuracy of 78% and
2

showed that the use of SLI improved the classification over using
aerial imagery alone. Similarly, overhead imagery in combination with
SLI improved the identification of urban objects from SLI taken from
OpenStreetMap (Srivastava et al., 2019, 2020). Using VGG16 to extract
feature vectors from each photograph, they then applied these to CNN
models to predict the land use type, obtaining accuracies of between
41 to 62%. In a slightly different application, features were extracted
from Google Street View images using both Places-CNN and DeepLab-
v3+ trained with the Places365 and Cityscapes data sets, respectively,
which were then input to a model to map Local Climate Zones, which
have ten detailed urban land use classes (Cao et al., 2023).

Other than urban land use types, little other work has been carried
out for other LC classes or related variables. One exception is the study
by Xu et al. (2017), where the pre-trained CNN model Inception-v3
was trained and validated using photographs from the Global Geo-
Referenced Field Photo Library to identify 11 different LC types. The
overall accuracy varied from 48.4 to 73.6% depending on the probabil-
ity threshold chosen. Other notable exceptions include the prediction
of crop type and phenology with Mobilenetv2 trained with bespoke SLI
collected in the Netherlands (d’Andrimont et al., 2022), the mapping of
cherry blossoms using Mapillary images classified using YOLOv4 (Fu-
nada and Tsutsumida, 2022) and a tree cover index (for urban streets
in the city of Cardiff, UK), in which vegetation was first identified
in GSV images using thresholding followed by semantic segmentation
using the PSPNet. Here the use of semantic segmentation was critical
for providing context and reducing the mismatch that occurs with the
use of object detection (Stubbings et al., 2019). A similar approach was
used to segment SLI for assessing street greenery in the city of Nanjing,
China, using multiple indicators including a green view index, NDVI
and an indicator related to species diversity (Tong et al., 2020).

Another valuable database of georeferenced photographs is from
LUCAS (Land Use/Cover Area Frame Survey), which takes place ev-
ery three years across European Union (EU) member states since
2006 (d’Andrimont et al., 2020). Expert surveyors document each
location, which is a systematic sample, using harmonized LC and LU
protocols and take a set of in-situ photographs of each location. LUCAS
was designed for monitoring changes in LC and LU related to EU
policy but has also been applied in combination with Corine Land
Cover (CLC) to provide unbiased area estimates (Gallego and Bamps,
2008) and for monitoring landscape diversity across Europe (Palmieri
et al., 2011). In terms of remote sensing, LUCAS has been used to
develop a high resolution LC and LU map for Germany (Mack et al.,
2017), validate the Greek national LC map (Karydas et al., 2015)
and three global LC products over Europe (Gao et al., 2020), and
has been used as both training and validation for a pan-European
Landsat-based LC map (Pflugmacher et al., 2019) and for Sentinel-2
LC classification (Weigand et al., 2020). More recently, LUCAS pho-
tographs were classified using a deep learning approach in combination
with Sentinel 1 and 2 imagery to develop a grassland management
intensity map (Saadeldin et al., 2022) while LUCAS and Flickr photos
were used to verify two land cover products, where the images were
first classified using the Nature Scene Image Classification model, based
on the GoogLeNet Inception network (Cui et al., 2022).

One of the advantages of LUCAS photographs for LC classification
is that they have been taken at each point location and in the four
cardinal directions away from the point by a trained surveyor, who has
labeled the LC and LU of the point location; hence, they represent high
quality ground truth information. Moreover, they are not restricted
to streets because the sample has been systematically generated and
therefore does not have the same bias as SLI. At the same time, visual
interpretation of LC from photographs is challenging because the LC
at the location of the observer is not necessarily the LC shown in the
photograph (for example, objects may obstruct the view). Similarly, the
estimation of openness or closeness of the LC depends on the view seen
from the landscape photo, which is made from the surface plane and

viewed from an oblique angle with a focus on the often-distant horizon.
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Fig. 1. Schematic of the overall workflow of the study including data selection and model development.
Other issues to consider include the scale of the observation, the com-
plexity of landscapes and the elements that they comprise, as well as
the required granularity of the LC classification. These challenges may
be why there has been little research to date in extracting information
directly from LUCAS photographs. Using techniques from computer vi-
sion such as semantic segmentation to classify visible elements, we can
determine which of these are important for LC classification, and can
develop LC classification models. Importantly, in such a process, the
strengths and limitations of this type of in-situ based classification, and
the eventual synergies with EO-based classification, can be explored.

Hence, the overall aim of this study is to assess the extent to which
semantic segmentation of in-situ LUCAS photos to extract relevant LC-
related variables can be used to train a machine learning algorithm to
classify LC. We first select a representative sample of photographs from
the EU-wide LUCAS survey and apply semantic segmentation using
DeepLabv3+ (Chen et al., 2017) trained with the ADE20K dataset (Zhou
et al., 2019b). We then compare the dominant segmented objects pre-
dicted in each photograph with the original LUCAS LC classification to
ensure the feasibility of this approach. Finally, we use a Random Forest
(RF) classifier to predict LUCAS LC classes using the segmented objects
as input features, with a discussion of the limitations and potential of
such an approach for LC mapping in the future.

1.1. Objectives

This study assesses to what extent semantic segmentation of rel-
evant LC related variables can be combined with RF to classify LC
from in-situ LUCAS landscape photos for the purpose of generating
reference data for training and validation as well as other applications.
The detailed objectives are:

1. To select a representative set of photos from the EU-wide LUCAS
survey.

2. To semantically segment the LUCAS photos with DeepLabv3+
(Chen et al., 2017) using the ADE20K dataset (Zhou et al., 2017,
3

2019b).
3. To evaluate the association between the dominant DeepLab/
ADE20K predicted class in each photo and the original LUCAS
LC classification.

4. To predict LUCAS LC using RF and the distribution of segmented
objects on the LUCAS photos.

5. To discuss the limitations and the potential of the proposed
methodology.

2. Materials and methods

In this section, we describe (1) the LUCAS survey and the sampling
of photos for this study; (2) the DeepLab/ADE20K driven semantic
segmentation; (3) the subsequent classification via the RF model; and
(4) the accuracy metrics used to evaluate the classification.

The selection of the LUCAS point photos used in this study and the
overall workflow are provided in Fig. 1.

2.1. LUCAS survey

Our reference in-situ data set is based on the data and photos
collected during the LUCAS 2018 survey (Eurostat, 2018a). At each
surveyed LUCAS point, observations have been made on LC and other
variables, and photographs have been taken. LUCAS is a two phase
sample survey, where the first phase draws theoretical points on a grid
with a 2-km systematic grid covering the whole of the EU’s territory.
Each theoretical point is then classified into one of 10 LC types from the
C3-Classification (Eurostat, 2018a) using visual interpretation of ortho-
photos or satellite images (Eurostat, 2018b). The second phase is then
carried out by sampling from those points identified in the first phase in
order to obtain a statistically representative spatial distribution of the
main LC/LU (land use) classes, which have been surveyed in-situ during
the 2018 LUCAS campaign. When each point was then reached by the
surveyor, the LC/LU and other variables were observed and recorded
using the C3-Classification (Eurostat, 2018a). Photographs were then

taken in the four cardinal directions away from the point, while a
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fifth photo was taken of the location of the LUCAS theoretical point
for which the observations were made, which represents the LC/LU
recorded. The photos of the point must also facilitate the process of
finding the exact location of the observed point in the next LUCAS
survey. Therefore, a LUCAS marker (e.g., an identifiable object such
a frisbee, flag, etc.) is placed at the exact location of the point, and if
possible, the photo should contain stable field elements (e.g., a house,
barn, track or any other ‘‘quasi-stable’’ landmark). In case the point
is not reachable, the LUCAS marker should not be used but the photo
should be taken in the direction of the point. Moreover, the photo must
be taken in a non-tilted landscape format with the point in the center,
when possible, and the horizon should be about 5/6 of the way up
the viewfinder. The location of the position from which the photos are
taken is geolocated via a GNSS receiver. Note that these coordinates
may differ from the coordinates of the theoretical location because of
accessibility issues or location measurement inaccuracies.

Since a point has neither width nor length and considering that the
LC must be classified at the theoretical point by the surveyor, the ob-
servation is actually made for a circle with a 1.5 m radius, representing
an area of about 7 m2. For the vast majority of points, this definition is
asily applied since the area to classify is fully homogeneous in terms
f LC/LU. Nevertheless, there may be situations in which the location
f the point and/or the observation of the LC/LU are ambiguous. In
hese cases, the observation window is extended to 20 m, and the
UCAS photo taken by the surveyors at that location should represent
he LC/LU observed.

The LUCAS 2018 survey sampled a total of 337,845 LUCAS points
ictures, out of which approximately 240,000 points were visited in the
ield by surveyors.

.1.1. Selection of LUCAS point photographs for this study
The identification of the LC class is undertaken using the first level

or most generic LC description) from the LUCAS legend, A: Artificial
and, B: Cropland, C: Woodland, D: Shrubland, E: Grassland, F: Bare
oil and Lichens, G: Water Areas, H: Wetlands; see Fig. 2 for examples
f photographs from each of these classes. To maximize the represen-
ativeness of the point photos in covering the observed LC classes, a
election of the LUCAS point photos was made following the cascading
pecifications set out in the LUCAS 2018 protocol. These specifications
rescribe the type of observation that can be made (Eurostat, 2018a);
ere we consider only the first specification in which the in situ
bservation is made at a distance < 100 m from the theoretical LUCAS
oint.

Since the LC information associated with each photo is the reference
or this analysis, we implemented several steps to ensure that the
hotos accurately represent the LC classified by the surveyor. First, we
nly used LUCAS point photos from in-situ observations that were made
t a distance of less than 100 m from the theoretical point to ensure
hat the photos accurately represent the LC/LU classification. Secondly,
e extracted the CLC (European Union, Copernicus Land Monitoring
ervice 2018. European Environment Agency , EEA) classification at
ach point. The CLC is based on detailed ortho-imagery and should be
epresentative for a surface area of 100 m2. By crossing the LUCAS and
LC classes (see Suppl. Fig. 1), and by selecting those points where the
C classes matched, we want to increase the spatial representativeness
nd verify the thematic LC information embedded in the LUCAS point
hoto. In a third step, from the photos that remained, we randomly
elected and verified 140 LUCAS photos for each LC class. In total this
as 1120 photos, which was empirically estimated as a good number
s it is still possible to assess this number visually but nevertheless
arge enough to draw conclusions. Photos were not selected if they
ere (1) obstructed by an object (e.g., a lamppost); (2) covered by

arge patches that were anonymized; and (3) not corresponding to the
UCAS LC classification (e.g., a photo of a lawn for a point classified
s artificial). Examples of these different cases are shown in Fig. 3.
he 140 selected LUCAS point photos for each LC class were then
4

emantically segmented with DeepLab/ADE20k.
2.2. Semantic image segmentation inference and evaluation

To classify the LC from the LUCAS point photos, we first applied the
semantic segmentation to divide the picture into segments where each
image pixel is mapped to an object. Training a semantic segmentation
model requires a large amount of images with each pixel labeled
with a class. Since this process is very time consuming, we opted to
use an already pre-trained semantic segmentation model. We chose
DeepLabV3 (Chen et al., 2017), which is a semantic segmentation
architecture where the encoder is composed of a ResNet to extract
features and Atrous Spatial Pyramid Pooling (ASPP) to extract feature
information at multiple scales. This enhances the prediction accuracy
and boundary information of the semantic segmentation. The decoder is
implemented using a combination of low-level and high-level features.
High-level features are first up-sampled by a factor of 4 and concate-
nated with the low-level feature from the ResNet structure. Before
the concatenation, the channels of the low-level features are reduced
with a convolutional layer of 1 × 1. To obtain the final segmentation,
the features are refined with 3 × 3 convolutions and a final bilinear
p-sampling, again by a factor of 4 (see Fig. 4). In our case, we
sed a Split-Attention Network, which is a new ResNet variant that
ignificantly boosts the performance of this model (Zhang et al., 2020).

In this paper, we used an implementation of the DeepLabv3+ done
y Gluoncv (Guo et al., 2020). Gluoncv is a toolkit based on Apache
XNet for deep learning processes. Gluoncv allows the use of a specific

rchitecture and pre-trained model on a specific dataset to obtain
he weights of the already trained model to do the inference. Our
nterest here is to describe the full landscape to subsequently extract
C information. The most suitable dataset for this task is ADE20k (Zhou
t al., 2017, 2019b). ADE20k is a semantic segmentation dataset con-
aining more than 20K scene-centric images, extracted from public
atabases like SUN or Places, exhaustively annotated with pixel-level
bjects and object part labels. There are 150 semantic categories, which
nclude classes relevant for this study such as field, grass, tree, earth,
tc. Hence, we used, in inference mode, Deeplabv3+ pre-trained on
DE20k to extract classes that describe the landscape in the LUCAS
hotos. Therefore, after applying semantic segmentation to the LUCAS
hotos selected, each pixel of each photo is mapped to a legend value
elonging to one ADE20k class. Since no actual training was done using
he LUCAS photos, no metrics were extracted at this point.

A first level evaluation of the semantic segmentation was done by
xtracting the presence/absence of all ADE20k classes for each photo.
he cumulative addition of the number of pixels belonging to the same
DE20k class in a photo will be referred to henceforth as the features.

We then deleted the classes from ADE20k that were not represented and
therefore absent in the LUCAS dataset and assessed the distribution of
the dominant features against the in-situ classified LUCAS LC classes
(see Fig. 7). Based on this, we were able to visually assess if there is a
clear correspondence between the ADE20k features and the LUCAS LC
classes.

2.3. LC prediction with a random forest model

RF are a general term for ensemble methods that use tree-type
classifiers and are known to be robust against multi-collinearity and
overfitting (Breiman, 2001). The RF algorithm creates multiple decision
trees (i.e., the number of estimators) where each tree in the ensemble is
built from the original training data or from a bootstrapped sample. In
each decision tree, the best node-splitting is done with a random subset
of the features. RF achieve a reduced variance by combining diverse
trees, sometimes at the cost of a slight increase in the bias. In practice,
the variance reduction is often significant and overall it yields a better

model. To improve the accuracy of the RF model, we ran a grid search
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Fig. 2. Random examples of LUCAS point photos for all level-1 LUCAS classes, which are indicated on the left.
of seven hyperparameters with a 5-fold cross-validation on the training
set, with 20% left out for the final metrics, to find the best combinations
of hyper-parameter values, leading to a total of 28,800 fits. We ran one
grid search for each depth of ResNet. See Supplementary Table 1 for the
hyperparameters used.
5

The input features to train the RF are the total number of pixels
in each semantically segmented mask belonging to each ADE20k class.
Since the photos we used to segment do not have labeled segmented
delineation references, we selected the depth of the ResNet with the
highest accuracy on cross validation of the RF.
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Fig. 3. Examples of LUCAS point photos that were discarded during the selection process (on the right) along with their location (on the left): (a) Heterogeneous field of view on
a sloped terrain, (b) the field of view is obstructed and the land cover is not represented on the photo, and (c) anonymization removes most of the visual information on the photo.
On the left are very high resolution satellite images marked with: green point = theoretical point; red point = GPS point; yellow lines = field of view; red circles = minimum
(1.5 m) and maximum radius (20 m) that were taken into account for the LC classification.
To measure the performance of the model and extract the final
metrics, we used the test set. The RF classification algorithms and
the hyperparameter tuning were implemented using Python’s Scikit-
learn packages RandomForestClassifier and GridSearchCV (Pedregosa
6

et al., 2011). In contrast to the original publication (Breiman, 2001),
the Scikit-learn implementation combines classifiers by averaging their
probabilistic prediction instead of letting each classifier vote for a single
class.
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Fig. 4. Architecture of the Deeplabv3+ adapted from the original image in the paper by Chen et al. (2017).
2.4. Evaluation of segmentation and random forest results

The following metrics were used to assess the classification perfor-
mance:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(4)

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐹𝑁
𝐹𝑁 + 𝑇𝑃

(5)

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐹𝑃
𝐹𝑃 + 𝑇𝑃

(6)

where TP is the number of true positive LC classes predicted, TN is the
number of true negative, FP is the number of false positive while FN
is the number of false negatives LC classes. These values are derived
from a confusion matrix that tabulates the LC class predictions against
the LUCAS reference. In addition, the F1 Score, Producer’s and User’s
accuracy, precision and recall were calculated for each individual class.

We also undertook an analysis based on feature importance, which
is a measure of the predictive power or relevance of each input feature
in the model’s decision-making process. It is typically calculated based
on the decrease in impurity (such as Gini impurity or entropy) that each
feature contributes when used for splitting nodes in the decision trees
within the forest. The idea is that if a feature consistently leads to a
substantial reduction in impurity across different trees, it is likely to be
more important in making accurate predictions.

3. Results

3.1. LUCAS point photo selection

As mentioned in the methodology, we first selected the LUCAS
points that were not farther than 100 m away from the theoretical point
to ensure that the photo captured the LC reported by the surveyor.
This step resulted in a total of 160,064 points. The resulting points
were then filtered by cross-matching the LUCAS LC with the CLC
classification; see the crossmatching matrix in Supplementary Figure
1. Finally, to undertake a meaningful comparison between the two LC
7

Table 1
The relationship between the LUCAS and the Corine LC classes.

LUCAS LC Classes CORINE LC Classes

A: Artificial Land 1: Artificial surfaces

B: Cropland 21: Arable land
22: Permanent crops
24: Heterogeneous agricultural areas

C: Woodland 31: Forests

D: Shrubland 322: Moors and heathland
323: Sclerophyllous vegetation
324: Transitional woodland-shrub

E: Grassland 23: Pastures
321: Natural grasslands

F: Bare soil Lichen 211: Non-irrigated arable land
331: Beaches, dunes, sands
332: Bare rocks
333: Sparsely vegetated areas
334: Burnt areas

G: Water areas 5: Water bodies

H: Wetlands 4: Wetlands

nomenclatures, we had to determine the correspondence between the
LC classes of LUCAS and the CLC, which is summarized in Table 1.

For Cropland, we matched the B Classes from LUCAS LC to the
C2 classes from CLC. However, CLC subclass 231 (pastures) was not
considered as Cropland but rather as Grassland. For the class Bare soil
(F in LUCAS LC), we also considered photos that intersected with CLC
class 211: Non-irrigated arable land, to ensure that any photos with
bare soil were not omitted.

This crossmatching step resulted in a total of 102,371 LUCAS points
and photos across the EU. The selection of photos was undertaken
randomly, ensuring that only high-quality images were selected for
the segmentation task, excluding examples like that shown in Fig. 3.
This step resulted in 140 photos per class where possible. The 140-
photo threshold was reached for the bare soil, arable land, shrubland,
grassland, and woodland classes. However, since the distribution across
the different LC classes is unequal, only 136 and 137 LUCAS points
were selected for the water areas and wetland LC classes, respectively.
The spatial distribution of these LUCAS points across the EU is shown
in Fig. 5.
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Fig. 5. The distribution of the point photos selected from the LUCAS 2018 data set shown with the level 1 LC classification legend.
-

3.2. Semantic segmentation

After the segmentation of all images, we evaluated the relationship
between the segmented features and the LUCAS LC class. A total of
153 classes from ADE20k were found in the 1,112 images segmented.
Fig. 6 shows the semantic segmentation output from Deeplabv3+ for a
selection of photos with LUCAS LC labeled as (a) cropland, (b) water
areas, (c) bare soil, and (d) grassland. The segmentation done by the
network in Fig. 6(a) and (b) are good as they match the actual objects
on the photos. In the case of Fig. 6(c) and (d), problems related to
the identification of the objects are evident. Specifically, in Fig. 6(c),
some plants have been segmented as trees, while in Fig. 6(d), the rocky
terrain has been segmented as a wall object and the lichen on the rocks
as a tree class. This is due to a domain shift between the ADE20k
images used to train the model and the LUCAS photos used during the
inference.

The resulting data set, including the original images plus the full
segmentation, is available at http://data.europa.eu/89h/c6166c60-5221
437b-87ed-3aaec123801f (European Commission, Joint Research Cen-
tre (JRC), 2018).

Fig. 7 displays the relation between all features detected in the
LUCAS photos by Deeplabv3+ for each LUCAS LC class, i.e., the number
of ADE20k classes present and their total pixel area in a photo and
the LC class. From this, we can observe several expected and clear
8

relational patterns, e.g., the LC class Artificial Land has the majority of
features belonging to artificial human-made objects. The class Wood-
land is mainly formed by trees, earth/soil, and plants, while sky is not
present as the trees tend to obstruct it in these photos. In addition,
the class Cropland is composed of plant, field, and sky, etc. Hence, we
can see that there are clear patterns between the features detected by
Deeplabv3+ trained with ADE20k and the LC LUCAS classes observed
by the surveyor. At the same time, it is also apparent that each LC
is composed of multiple elements that may occur across all the other
LC types, which demonstrates the complexity of LC classification from
photographs.

3.3. LC classification with RF

We ran a hyperparameter tuning on the RF for each backbone
depth (50, 101, 200, 269); see Supplementary Table 1 for the hyper-
parameters used. Table 2 summarizes the performance results for each
backbone after the hyperparameter tuning of the RF. ResNet101 had
the highest cross-validation mean accuracy in the RF hypertuning stage;
thus, it was selected as representative. However, the difference in the
accuracy between the backbones is minimal. See Supplementary Table
2 for the final hyperparameters for each backbone.

ResNet101 with the best set of RF hyperparameters was then applied
to the test dataset to obtain the confusion matrix and the performance

http://data.europa.eu/89h/c6166c60-5221-437b-87ed-3aaec123801f
http://data.europa.eu/89h/c6166c60-5221-437b-87ed-3aaec123801f
http://data.europa.eu/89h/c6166c60-5221-437b-87ed-3aaec123801f
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Fig. 6. Semantic segmentation with Deeplabv3+ trained with the ADE20k dataset. Examples (a) and (b) illustrate near perfect segmentation of objects, while (c) and (d) provide
examples of incorrect segmentation.
.

Table 2
Accuracy metrics for the training dataset with a 5-fold
cross-validation of the hyperparameter tuning on each
backbone.

Model Accuracy

deeplab_resnet50 0.83
deeplab_resnet101 0.85
deeplab_resnet200 0.81
deeplab_resnet269 0.80

Table 3
Performance metrics after the hyperparameter tuning for the best backbone, resnet101,
averaging the metrics obtained by LC class.

Precision Recall F1- score

All LC classes 0.89 0.89 0.89

Without the Wetlands class 0.94 0.93 0.93

+0.05 +0.04 +0.04

Table 4
User’s and producer’s accuracy for LC classification with and without the Wetland class

With Wetlands Without Wetlands

User Producer User Producer

A-Artificial Land 1 1 1 1
B-Cropland 0.97 0.82 1 0.82
C-Woodland 0.93 0.93 0.96 0.96
D-Shrubland 0.93 0.89 0.93 0.93
E-Grassland 0.93 0.89 0.92 1
F-Bare soil, Lichens 0.73 0.82 0.81 0.86
G-Water Areas 0.92 0.96 0.92 1
H-Wetland 0.72 0.85

metrics for each class (Figs. 8 and 9 and Tables 3 and 4). As we
can see, the most difficult class for the RF to classify is Wetlands,
see Table 3. This is expected because wetlands can have a similar
appearance to grassland and shrubland and is often mixed in with these
LC types. Wetlands are ecosystems that arise when inundation by water
produces soils dominated by anaerobic and aerobic processes (Council
9

et al., 1995) but that tend to be dominated by grassy vegetation.
Shrublands and grasslands are defined as areas with a dominance of
specific plant species. Because of this, our system had problems with
wetlands. Hence, we have tested it without wetlands to demonstrate
its value on other land cover classes (Figs. 8 and 9). This increases all
the performance metrics, resulting in a final averaged F1 Score of 93%
(see Table 3).

In both performance metrics, RF is able to perfectly discriminate
Artificial land, with an F1 Score of 1. There is an improvement in the
F1 Score for the classes Woodland, Shrubland and Grassland compared
with the model trained with the Wetland class. This is due to the
exclusion of the LC class Wetland resulting in a more robust RF model,
which is better able to discriminate the interconnection between these
LC classes (Fig. 8). The confusion of the RF model trained without
Wetlands can be see in the classification of Bare Soil (class F), shown in
Fig. 10, where examples (a) is arguably identified as Cropland which
is considered as a misclassification since the LC is coded as Bare soil
while example (c) shows incorrect predictions by the RF.

3.4. Evaluating the dominant segmented variable

From the final selected RF model with no Wetland class, we ex-
tracted the feature importance and corresponding standard deviations
(see Fig. 11), where features with an importance score lower than 0.5
were filtered out for clarity. Higher values indicate greater importance,
implying that the corresponding features play a more significant role
in the classification task. Among the retained features, ‘tree’ exhibited
the highest importance with a score of 0.091, followed by ‘water’
(0.088), ‘grass’ (0.082), and ‘sky’ (0.073). Features such as ‘rock’, ‘field’,
‘building’, ’earth/ground’, and ‘plant’ had importance scores ranging
from 0.051 to 0.063.

These findings provide insights into the relative importance of
different features in the RF classifier’s decision-making process. By
understanding the significance of each feature, we gain a better under-
standing of the underlying patterns to derive landscape components for
different LC classes. These patterns include not only the relationships
between features but also the proportions of those features present
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Fig. 7. Sankey diagram showing the relation between the features detected by
Deeplabv3+ trained with ADE20k and the LUCAS LC class; the thickness of the links
shows the amount of features linked to each LC class.

within the image. As illustrated in Fig. 12, the distinction between the
Grassland and Woodland LC classes relies heavily on the proportion
of pixels associated with each feature, since both LC classes share the
same features. Additionally, the Artificial Land class is the only one that
exhibits the presence of the ‘building’ feature, highlighting an example
where the mere presence of a specific feature can lead to a distinct
class separation. Both the Water and Wetland classes have ‘water’ but
the amount is much smaller in Wetland while the presence of ‘field’ is
much larger.

By leveraging this understanding of feature importance and consid-
ering the proportional representation of features, it becomes possible
to differentiate between various LC classes more effectively. These
insights also contribute to the broader goal of accurately characterizing
and mapping landscape components based on their distinct feature
compositions.
10
Fig. 8. Random Forest F1 Score metrics for each LC LUCAS class.

4. Discussion

Image classification with deep learning has proven to be useful for
LC and LU classification of geo-tagged images (Leung and Newsam,
2015; Xing et al., 2018; ElQadi et al., 2020; Saadeldin et al., 2022).
However, compared with previous studies in the literature, we have
presented a different approach to the classification of LC from pho-
tographs by first segmenting the image into relevant landscape el-
ements and then analyzing the relationship between these ADE20k
classes and the LC class using a RF classifier. This two-stage approach is
the key to understanding the links between the landscape in an image
and the LC class that is predicted. As we have shown in Fig. 7, the
landscape elements segmented by Deeplabv3+ with ADE20k classes
and the LC classes exhibit clear links, showing that some elements are
more prevalent in certain LC classes (e.g., the ADE20k earth/ground
class is associated with the LUCAS Bare soil LC class). This semantic
segmentation is critical as it provides context that would otherwise not
be possible using a more targeted solution such as image classification.
Similar conclusions were made by Stubbings et al. (2019), who used
semantic segmentation in the development of an Urban Street Tree Veg-
etation Index using Google Street View imagery. Moreover, RF shows
potential in classifying LC types that have the same type of ADE20k
classes in the photos but with different proportions (i.e., different pixel
areas). For example, both the Grasslands and Woodlands LC classes
tend to have the ADE20k ‘grass’ and ‘tree’ classes present in the picture
but in different proportions (see Fig. 12).

Another important feature of this approach was the use of an ‘off-
the-shelf’ DL model, avoiding the need for manual segmentation, which
is a very time-consuming task. Here we used Deeplabv3+ trained on
ADE20k classes in inference mode to extract segmented information
from the LUCAS photos. This was possible due to the domain sim-
ilarities between the ADE20k images used to train the network and
the LUCAS photos. Other studies have also used pre-trained networks
to segment images, e.g., Cao et al. (2018, 2023) but largely in an
urban context. In fact, it should be noted that the ADE20k and COCO
datasets are mostly geared towards urban and sub-urban environments,
and thus they are not meant to cope with the heterogeneity of com-
plex landscapes across all LC types. For example, the COCO dataset
includes ‘plant’ for all vegetation types. The ADE20k dataset includes
‘field’, which has proven to be useful here, but a field may be bare,
contain shrubs, plants, crops, trees, or grassland, and hence there
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Fig. 9. Confusion matrix from the RF classifier with and without the class Wetlands. The classes are A: Artificial Land, B: Cropland, C: Woodland, D: Shrubland, E: Grassland, F:
Bare soil and Lichens, G: Water Areas, H: Wetlands.
are limitations in using this dataset. For this reason, the RF model
had high precision and recall on detecting Artificial Land since the
neural network used was mainly trained on urban areas. As shown in
Fig. 7, this LC class is the only class that relies heavily on artificial
human-made objects, which makes it easier for the RF to discriminate
the LUCAS Artificial Land class from others. However, we have also
shown that RF can deal with the heterogeneity of landscapes, especially
for ones that are managed, like grasslands or croplands, where the
landscape can vary depending on the intensity of the LU or the size
of the parcel. For those classes, we achieved an F1 Score of 0.96 and
0.91, respectively (see Fig. 8 and Table 3).

In terms of performance overall, this two-stage approach yielded
an average F1 Score of 89% when including the Wetland class and
93% without (Fig. 8 and Table 3). Removing the Wetland class also
improved the F1 Score, recall and precision of some other classes where
there was confusion. In our upcoming research, we intend to improve
the wetland classification procedure. This could entail the introduction
of filters reliant on geographical coordinates or the integration of more
images to account for the temporal dimensions of wetland changes.

Compared to other studies that have classified geo-tagged photos
for LC, the overall accuracies in these studies are generally lower,
ranging between 46.7 to 76% (Zhu and Newsam, 2015; Zhu et al.,
2019), 41 to 62% (Srivastava et al., 2019, 2020), 78% (Cao et al.,
2018) and 48.4 to 73.6% (Xu et al., 2017). However, the majority of
these papers dealt primarily with urban classes where the classifier in
this study performed very well on artificial surfaces. In contrast, the
Wetland class was mapped by Xu et al. (2017), who achieved user’s
and producer’s accuracies ranging between 0.58 to 0.85 and 0.65 to
0.89, respectively, depending on the probability threshold chosen. In
this study, no filtering was applied and values of 0.72 to 1 for user’s
and 0.82 to 1 for producer’s accuracies were achieved, which shows
that these metrics performed in line with this other study’s results, see
Table 4. Hence, overall, the approach presented here shows promise for
the automated classification of LC from geo-tagged photos.

In terms of the performance related to the segmentation inference
with the four backbones available (ResNet 50/101/200/269), we found
that ResNet with 101 layers performed best, although the differences
in performance with the other depths was minimal; see Table 2. One
hypothesis that may support this finding is that shallower networks
tend to overfit less on the training data compared to deeper nets (Bejani
and Ghatee, 2021). Adding more layers will extract more features
but can also result in an overfitted model with a lower capacity to
generalize than shallower models. This might be a possible argument
to explain the higher accuracy of our results for resnet50 and 101
compared with 200 and 269.
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In addition to the limitations related to the ability to recognize the
Wetland class, another issue relates to the selection of point photos
from LUCAS. The LC class at each location is initially determined
through aerial photo-interpretation ‘from the top’ on an area of 7 m2

while the landscape photos provide an oblique view. The field of view
captured by the LUCAS photos may therefore be different from the clas-
sified LC, even after cross-matching of the LUCAS point locations with
the CLC maps (Fig. 3). This difference in perspectives demonstrates the
challenges of LC classification with geo-tagged photos, but it also shows
that they have considerable potential for producing high temporal and
spatial resolution reference data sets for training, validation and other
applications.

5. Conclusions

In this paper, we proposed a two-stage approach for LC classification
using LUCAS photos. First, we segmented the photos with an already
trained neural network to extract the relevant LC related classes present
in the photos. Secondly, we used the cumulative addition of these pixel-
wise detected classes in each photo as input features to a RF classifier.
Overall the results were good in terms of the future applicability of this
approach to automatically classifying geo-referenced landscape images
more generally. However, the Wetland class created confusion with
other classes and hence further work in improving the identification
of wetlands from photographs is still required.

We have also shown that by segmenting the in-situ landscape im-
agery, the different elements that comprise a landscape in all its com-
plexity can be captured, and that by combining these elements via a
classifier, we can derive meaningful information for LC classification.
Although we used an ‘off-the-shelf’ DL model instead of training one
from scratch, specific annotated semantic segmentation training sets
should be developed, which embed more variables that represent the
natural environment and can better differentiate between LC classes.
This will help to overcome some of the errors in the segmentation that
we highlighted in Fig. 6, but will also contribute to better character-
ization of other elements in the landscape as well as the ability to
recognize more detailed LC classes. Additionally, future applications of
this work using other sources of SLI like Google Street View, Flickr, or
other datasets could help improve the temporal and spatial analysis of
this study.

The extraction of LC information from SLI offers valuable data for
the validation and improvement of LC maps. By comparing the LC
information derived from SLI with the corresponding LC classes in pre-

existing maps, discrepancies and inaccuracies can be identified and
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Fig. 10. The LUCAS point photo distribution by pixel area of the ADE20k objects segmented and the probability output by the Random Forest for each LC class.
corrected. Furthermore, this method can serve as a ground truth for
future LC classification techniques in Europe using remote sensing data,
specially for unsupervised methods (Paris et al., 2022).
12
Finally, beyond the provision of reference data for training and
validation of LC maps, extracting landscape elements from in-situ im-
agery can be valuable for other applications such as better quantifying



Environmental Modelling and Software 172 (2024) 105931L. Martinez-Sanchez et al.
Fig. 11. Features Importance for features with a mean decrease of impurity bigger than 0.05.
Fig. 12. Distribution of the amount of pixels for each feature in each LC class. The classes are A: Artificial Land, B: Cropland, C: Woodland, D: Shrubland, E: Grassland, F: Bare
soil and Lichens, G: Water Areas, H: Wetlands.
-

landscape complexity (Ode et al., 2010), deriving metrics on landscape
structure, composition, and heterogeneity as a facilitator for e.g. biodi-
versity (Fahrig et al., 2011), or as shown in Zhao et al. (2022) as spatial
characteristics of the soundscape ecology in urban areas. Moreover,
we have explored how image segmentation can provide information
on landscape openness, by quantifying the distance to landscape ele-
ments making up the horizon (Martinez-Sanchez et al., 2022). Other
applications include the monitoring of habitats using photographs and
for verification purposes, e.g., to confirm declarations related to the
Common Agricultural Policy in the EU. Hence, this shows the potential
not only for LC classification purposes but also for the extraction
of landscape elements from the increasing volume of georeferenced
photographs.
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Software and data availability

Software name: LUCAS LC classifications
Developer: Laura Martinez-Sanchez
First year available: 2023
Program language: Python 3.X
License: GPL-3.0
Availability: https://github.com/MartinezLaura/LandCoverClassific

ation.git
Used environment:
- CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz
- RAM: 25 GB
- GPU: NVIDIA GeForce GTX 1080 Ti
The dataset used in this study, including the images and masks,

is available at http://data.europa.eu/89h/c6166c60-5221-437b-87ed-
3aaec123801f (European Commission, Joint Research Centre (JRC),
2018).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.envsoft.2023.105931.
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