System dynamics modelling to explore climate, economy, environment and society interactions

Sibel EKER

UK DEFRA Systems Thinking Seminar 14 June 2023

Radboud University

sibel.eker@ru.nl, eker@iiasa.ac.at

@sibel_eker_

SYSTEMS...

System

Systems thinking

Systems modelling • totality of interconnected elements

• the ability to see the world as a complex interconnected system

Using numerical analogues – a set of equations that describes the relationships between the elements of a system, to understand the systems and support decision-making in them

SYSTEMS MODELLING

Systems modelling methodologies

Static

- •Spreadsheets
- •Linear programming for optimal allocation
 - •Network models
 - •Forecasting
 - •Decision trees

Dynamic

- Discrete event simulation
- Agent-based modelling
- Dynamic optimization
- System dynamics

Jay W. Forrester 1918 – 2016

A Report for THE CLUB OF ROME'S Project on the Predicament of Mankind

State of the World

- Descriptive
 - not prescriptive cost-minimizing CGE or partial equilibrium models

- Based on the core concepts of systems thinking
 - stocks, flows, delays and feedback loops

- Dynamic, time-continuous
 - endogenous dynamic behaviour created by feedbacks

- Ordinary differential equations, integration
 - computationally efficient

$$Stock = Inflow - Outflow$$

$$Stock(t) = \int_{0}^{t} (Inflow - Outflow) * d\tau$$

SYSTEM DYNAMICS MODELLING CYCLE

"Integrated assessment models (IAMs) are complex models of the energyland-economy-climate system that use socioeconomic assumptions to produce energy, land use and emissions scenarios." (SENSES project)

Role of IAMs in the climate science-policy interface

PHASE	1	2	3	4	5
policy	1972 Stockholm1985 Villach1992 UNFCCC1997 Kyoto2009 Copenhagen				
IAMs in science- policy interface	Emergence of global modeling	First applications in policy	Evolvement around climate regime	Growing significance in IPCC WGIII	Prominent tools for mitigation
models	Forefathers of IAMs: system dynamic / energy-economic / climate economic modeling	First acid rain and climate IAMs	Rapid expansion IAMs	Maturation of IAM community	Official responsibility for mitigation scenarios
19	1980	1990)	2000	2010 201

van Beek et al. (2020) Global Environmental Change

FELIX MODEL

Climate impact on water supply

FELIX MODEL

- To explore SDG interactions and tradeoffs, including a focus on poverty
- To improve the representation of social systems in integrated assessment modelling

Land Use Change

Food Supply and Demand

Dietary shifts

Dietary shifts

а

Connecting behavioral factors to environmental indicators

Percentage of vegetarian diet followers

Source: Eker et al. (2019) Nature Sustainability

Dietary shifts

Source: Eker et al. (2019) Nature Sustainal

2050

EU projects with FeliX and SD

WorldTrans

Transparent Assessments for Real People

René Magritte (1929) The Treachery of Images (This is Not a Pipe)

Ceci n'est pas une pipe.

System dynamics modelling to explore climate, economy, environment and society interactions

Sibel EKER

UK DEFRA Systems Thinking Seminar 14 June 2023

Radboud University

sibel.eker@ru.nl, eker@iiasa.ac.at

@sibel_eker_