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Introduction: There is a pressing need for a holistic approach to optimize water-
energy-food (WEF) resources management and to address their interlinkages
with other resources due to population growth, socio-economic development,
and climate change. However, the structural and spatial extent of theWEF system
boundaries cause exponential growth in computational complexity, making
exploratory data analysis crucial to obtain insight into the system’s
characteristics and focus on critical components.

Methods: This study conducts a multiscale investigation of the WEF nexus within
the Canadian prairie provinces (Alberta, Saskatchewan, and Manitoba), utilizing
causal-correlational analysis and the multispatial Convergence Cross Mapping
(mCCM) method. Initially, we employed regression analysis to establish
equations, along with their coefficients of determination (R2), to identify
patterns among pairs of WEF sectors, gross domestic product (GDP), and
greenhouse gas (GHG) emissions. Subsequently, we conducted a causal
analysis between correlated pairs using the mCCM method to explore the
cause-and-effect relationships between sector pairs within the Canadian
prairie provinces; both individually and as a single unit over the period
1990-2020.

Results and discussion: Results show that energy and water are the most
influential sectors on GHG emissions and GDP in the prairies as a whole.
Energy has a stronger influence on GHG compared to water and food
sectors, while water has the strongest causal influence on the GDP of Alberta,
and food and energy do so for Saskatchewan and Manitoba, respectively. The
trade-offs for improving WEF nexus security strongly depend on the scale of the
system under investigation, highlighting the need for careful deliberations around
boundary judgment for decision-making. This study provides a better
understanding of the WEF-GDP-GHG nexus in the Canadian prairies and
existing interrelationships among the aforementioned sectors, helping to build
more efficient WEF nexus models for further simulation and scenario analysis.
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1 Introduction

As global water, energy, and food (WEF) demands are
continuously increasing because of population growth, climate
change, and the modernization of the human lifestyle, sustainable
resource management has long been of prime importance. This has
pushed societies to struggle with the planning and management of
different resources under the stresses of changes in population,
climate, and ecosystem (Brown et al., 2009; Saed et al., 2018; Wu
et al., 2023). Resources management and planning should meet the
current requirements and periodically be updated to adapt to future
demands (Loucks and Beek, 1981). The Integrated Water Resources
Management (IWRM) approach was developed to provide a
platform capable of coordinating the sustainable development
and management of water, land, environmental and other related
resources in an integrated manner. For more than two decades,
IWRM (Biswas, 2004; Loucks, 2009) has been used to address issues
related to sustainable water management. However, IWRM did not
improve much on water resource management as it is a water-
centric approach (Benson et al., 2015). Water resources
management is intrinsically related to the management of food
and energy resources, and they need to be equally considered for
holistic resources management. To that end, unlike the water-centric
IWRM that considers the water sector as the main policy variable,
multi-centric approaches were introduced to treat all sectors equally
(Hoff, 2011; Si et al., 2019; Molajou et al., 2021a; Wu et al., 2021;
Soleimanian et al., 2022).

Governments, policymakers, and non-governmental
organizations (NGOs) have been trying to set different policies
and make plans to improve WEF security. Sometimes, such policies
and plans involve conflicts and do not align since these WEF
resources influence each other. To overcome the problem, the
World Economic Forum introduced ‘nexus thinking’ in 2011 for
the first time to highlight the interdependency between different
resources to offer conventional rights to water, energy, and food
security (Waughray, 2011). WEF nexus is a systems-based
framework considering WEF as interconnected and
interdependent systems (Albrecht et al., 2018). Such a framework
enables the analysis of either one-way or two-way interactions and
interrelationships of subsystems within a nexus system (Akbari
Variani et al., 2023; Vahabzadeh et al., 2023). The WEF nexus
concept has a relatively more explicit scope of integration over the
interacting water, energy, and food sectors compared to IWRM
since it can allow interdisciplinary research to be implemented
where IWRM has had limited success (Cai et al., 2018).

Many studies have been conducted to develop fundamental
frameworks for WEF and other resources to investigate nexus
problems and to design possible solutions to increase WEF
security. By developing a WEF framework (Hoff, 2011), showed
how a nexus approach can increase WEF security “by increasing
efficiency, reducing trade-offs, building synergies, and improving
governance across sectors”. The developed framework provides an
important insight into a better understanding of WEF sectors’
linkages as well as the impacts of investment and climate change
policies (Hoff, 2011). Many WEF frameworks, models, and diverse
analytical tools have been developed since the Bonn conference
(Pomeroy et al., 2013; De Strasser et al., 2016; Ghoreishi et al., 2023).
Such models and tools have been utilized in many studies to

understand and quantify interlinkages and address challenges in
WEF and other related resources.

Abdelkader et al. (2018) have developed a water-food nexus
model including the real and virtual water (VW) resources based on
system dynamics modelling to inform decision making around food
security in Egypt. In the water management model (real part), a
food-water model was constructed based on agricultural, industrial,
and municipal water consumption and land use. In the international
VW trade model (virtual part), VW trade between Egypt and other
countries was evaluated. Then, the water and food self-sufficiency of
Egypt according to the past situation were assessed. Their study
highlights the pivotal role of virtual water trade in effective water
resources management. However, their VW trade model was limited
to food production and ignored the part associated with the energy
sector. To gain insight into the impacts of different policies on
interactions betweenWEF subsystems in the shape of trade-offs and
synergies, Wu et al. (2021) developed an integrated WEF nexus
model using also system dynamics. The model, known as the WEF-
Sask, has been applied to Saskatchewan in Canada. Different socio-
economic and climatic scenarios, including irrigation expansion,
changes in streamflow of transboundary (TB) rivers, bioenergy use
for transportation, wind power expansion, and a joint impact of all
scenarios have been considered in the WEF-Sask model to evaluate
their impacts on WEF sectors. The interactions between WEF,
climate change, and human interventions have been investigated
based on the WEF-Sask model (Wu et al., 2021). Their investigation
concluded that renewable energy expansion in Saskatchewan would
significantly improve the nexus performance during 2021–2050.
Furthermore, it would reduce total water demand and greenhouse
gas (GHG) emissions. The spatial averages of the values of several
parameters have been used in the WEF-Sask model for the sake of
simplicity. This macro analysis perspective may produce results with
less accurate estimates of nexus interactions at various scales.

Mahlknecht et al. (2020) conducted a qualitative description of
the WEF nexus in Latin America to assess the trends in resource
security. They tried to address sustainable development challenges
to evaluate the current and future resource security by tracking the
resource security trends within the WEF nexus context. Multiple
indices were defined to explain the progress in WEF security and
assess the interrelationships amongWEF resources. They concluded
that different economic strategies and technological solutions need
to be put in place to enhance water and infrastructure governance
and encourage inter-regional cooperation, which consequently can
increase WEF security. Even though they examined the trends of
WEF security over time, their WEF analysis was based on the
average annual values of WEF sectors and did not include an
assessment of the temporal influence of each resource on other
resources. Nhamo et al. (2020) developed an analytical framework
for WEF nexus using Analytic Hierarchy Process (AHP) to evaluate
the progress toward associated sustainable development goals
(SDGs) in South Africa. Multiple WEF nexus indicators were
defined to evaluate the level of interactions and inter-
relationships among WEF sectors to help policymakers with
balancing and prioritizing components of complex systems.

Daher et al. (2019) emphasized the importance of understanding
trade-offs associated with potential solutions and promoting
informed dialogue between stakeholders, as a foundation for
formulating localized policy recommendations for each hotspot.
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Another essential aspect is to bridge the research on the nexus
concept and its actual application in policy- and decision-making
communities, which was highlighted by (Dargin et al., 2019). They
introduced a “complexity index” to measure the level of simplicity or
complexity of nexus assessment tools. Their study revealed that tools
with higher complexity level are better at capturing relationships
details between specific resources, but struggling with handling
higher number of components, in comparison with lower
complexity tools. They noted that there is a shortage of tools for
preliminary assessment capabilities, which could facilitate the
communication of model outputs into actual decision-making.

Sušnik, (2015) used global data to regress countries’ Global
Domestic Product (GDP) against different metrics of WEF
resources. The study revealed that there is a strong relationship
between GDP and WEF resources metrics. Then, based on the
relationships between GDP and WEF subsystems, the future of
water withdrawals, food production, and energy generation and
consumption were estimated through multiple GDP growth
scenarios. In another study, Sušnik, (2018) extended the previous
work by adding new relationships between WEF-GDP sectors and
developed a quantitative analysis framework to investigate the
interactions among WEF and GDP sectors on a global scale
using system dynamics modelling approach. Causality analysis
was conducted by (Sušnik, 2018) to investigate the pattern of
changes in WEF and GDP sectors and to measure the influence
of the aforementioned sectors on each other at a global scale.
However, detailed quantification of interactions between WEF,
GDP, and environmental factors within a specific region (policy-
relevant scales) containing multiple jurisdictional boundaries
is lacking.

The WEF security nexus has been investigated across different
scales in the literature. Many studies have been conducted at the
global (D’Odorico et al., 2018; Sušnik, 2018; Næss et al., 2021) and
national (Laspidou et al., 2020; Abdelkader and Elshorbagy, 2021;
Campana et al., 2022) levels, and have not sufficiently addressed the
local government perspective. Some other studies have been focused
on the WEF nexus at the subnational level (Johnson et al., 2000;
Valin et al., 2013; Ding et al., 2021; Kropf et al., 2021; Purwanto et al.,
2021; Saed et al., 2022; Wen et al., 2022; Elkamel et al., 2023), each of
which used a different modelling strategy to comprehend the
intricate relationships between the water, energy, and food
systems. Wang et al. (2023), for example, used a system
dynamics approach in the Chinese province of Hunan to
emphasize the integration of society, economy, and environment
(SEE) systems into WEF nexus modelling. Their model aimed to
bridge the science-policy divide by assessing policy concerns and
targets and providing practical policy recommendations. Similarly,
(Wen et al. (2022) utilized system dynamics modelling to analyze the
effects of anthropogenic activities on theWEF nexus in Daqing City,
China. They discovered that regulating anthropogenic activities and
putting water conservation measures in place were essential for
socio-economic development and the long-term preservation of
natural resources.

Although these studies, conducted at the subnational level, have
made valuable contributions to our understanding of theWEF nexus
and provided specific policy recommendations, there is still a need
for a more comprehensive assessment of the WEF nexus across
multiple scales. The challenge lies in understanding how interactions

and policies within the nexus are affected when the scale of analysis
changes. This gap becomes more pronounced in cases where the
study area includes multiple local governmental entities. For
example, some studies at the provincial level have only focused
on one province (Yi et al., 2020; Wu et al., 2021), and not on the
interactions between riparian provinces with different government
policies, which are sharing water through transboundary (TB) rivers.
Therefore, it is essential to carry out a multi-scale analysis of the
WEF nexus system to address this gap and arrive at a comprehensive
understanding of the system.

The WEF nexus approach calls for including more sectors and
more interactions (Molajou et al., 2021b), which requires expanding
the boundaries of the systems, being analyzed or modelled,
structurally and spatially. There are many studies in the literature
in which WEF systems/models have been built to be more inclusive
(Kraucunas et al., 2015; Nhamo et al., 2020; Afshar et al., 2022).
However, this could compromise computational tractability, and
discourage managers and policymakers (Lant et al., 2019).
Therefore, there is a need for exploratory analysis to understand
correlations and causations in nexus to be able to delineate the
system boundaries and focus the analysis/modelling on the critical
issues and components. Such exploratory analysis should precede
any model development exercise. In this study, we aim to i) identify
and quantify the interactions among WEF, economic, and
environmental sectors at provincial and regional (i.e., prairie)
scales; ii) assess which sectors have direct and indirect causal
influences on others; and iii) measure the strength of the
causality and prioritize complex interrelationships within the
nexus system.

Our study provides unprecedented details of WEF-GDP-GHG
interrelationships within a specific region by employing correlation-
causality analysis within the nexus context. This provides an
approach to elucidate challenges that might arise across different
scales in the nexus approach and enables the evaluation to be made
on the impact of the study’s scale on the WEF-GDP-GHG
interrelationships. Historical data on WEF, GDP and GHG
emissions associated with the prairie provinces were collected
and analyzed to initially identify the pattern of changes in the
above-mentioned sectors as well as their sub-sectors in any
individual province and within the prairies as a single unit. WEF,
GDP, and GHG nexus analysis was then conducted to identify and
quantify the interactions and interlinkages among WEF, between
WEF and GDP, and between WEF and GHG sectors in the prairies.
In addition, based on identified and quantified trade-offs and
synergies within the Canadian prairies, the contribution of each
province to the prairies’ WEF security is highlighted.

2 Methodology

To measure the degree of relationships and explore the causal
effects between each pair of WEF-GDP-GHG sectors, correlation
and causality analysis are performed by utilizing the multispatial
Convergence Cross Mapping (mCCM) method, a causal inference
method (Sugihara et al., 2012; Clark et al., 2015; Runge et al., 2019).
Such a causal inference method, in addition to the standard
correlation analysis used in this study, have the potential to use
available data in an exploratory way to identify critical components
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in complex systems prior to building extensive models or modelling
frameworks. This will help with finding the dominant variables and
sectors on both the provincial scale and a larger scale (Canadian
prairies level) to help with a better understanding ofWEF systems in
the relevant decision-making process. The causality exploration
approach demonstrated through this study for estimating causal
relationships among WEF, GDP, and GHG has the potential to be
applied to areas other than the WEF nexus.

2.1 Correlation and causality

The slopes of the best-fitted regression line through the data
points (correlation analysis) can determine whether they are
following a pattern and possibly can capture the polarity of
causal influence (positive or negative polarity), in case there is a
causal relationship between the variables, but not the strengths of
causality. However, the correlation analysis is not sufficient to test
that the change in one variable is the cause of the change in other
variables. In other words, causation may occur in the absence of
correlation, and correlation can occur in spite of the lack of
causation (Chang et al., 2017). Therefore, it is necessary to use a
proper approach to assess causal relationships to examine whether
there is a cause-and-effect relationship among sectors and variables.
In addition, determining the causal relationship between two
variables helps policymakers with recognizing the dominant and
leading variable to invest in. Identifying causal networks is crucial to
making an effective recommendation in WEF resources
management (Runge et al., 2019).

Causality is defined as the relation between two variables where
the changes in one variable lead to the change in the other variables.
Although the concept may look simple, the mathematical expression
of the concept is complicated. Experimental assessment of causality
can be costly, difficult to perform, or even impossible (Clark et al.,
2015). Therefore, to assess the causality between two variables,
causal inference tools have been developed in different studies.
The causal inference tools have predominantly been developed in
two fields: computer science and statistical economics. In the field of
computer science, Pearl, (2009) developed conceptual causal models
to describe the dynamics of the systems. Granger, (1969) in the field
of economics, developed a model termed Granger causality (GC)
based on the predictability of the effect variable (Y) when the cause
variable (X) is known (Geweke, 1982; Schelter et al., 2006). In GC,
the cause (X) always precedes the effect (Y), and cause (X) can
therefore be used to predict effect (Y). In other words, one of the
requirements of the GC is separability (independence of influences
of causal variables), a property that is best suited for purely
stochastic and linear systems (Sugihara et al., 2012). However,
nonlinearity is ubiquitous in nature, therefore, to infer and
quantify the causal relationships between intertwined variables
within nonlinear systems, different methods have been developed
and used both theoretically and numerically in the literature. These
methods include the transfer entropy (Ma et al., 2014), conditional
mutual information (Komárek et al., 2001), recurrence plots (Hirata
and Aihara, 2010; Feldhoff et al., 2012), the nonlinear extension of
GC, and different kinds of mutual nonlinear cross-map methods
based on state-space reconstruction technique (Ma et al., 2014). For
example, the mutual nonlinear cross-map methods (adopted in this

study) have been used to detect causality in complex relationships of
different systems (Sušnik van der Zaag, 2017) in various fields, such
as ecological systems.

In this study, the general linear equation has been fitted to the
data points to demonstrate the pattern of the change in an individual
variable against any other variables of WEF resources, GDP, and
GHG. This helped with the understanding of interactions between
pairs of sectors in a region under study. Table 1 shows the five
different variables considered in this study and their corresponding
data source. Data used in this study have been gathered and analyzed
on an annual time scale. Further details about collected data and
their processing have been provided in Supplementary Section S1 of
the supplementary document.

2.2 Causal inference method

A causal inference method can help with recovering potential
causal relations between a pair of variables. Convergent Cross
Mapping (CCM) is a type of mutual nonlinear cross-map
methods (Ma et al., 2014) developed by (Sugihara et al., 2012),
which can be used to test the causal relationship between variables in
dynamical systems. Sugihara et al. (2012) found that if two variables
belong to the same dynamical system (i.e., variables are causally
linked), the cross-mapping between them will be convergent (Chang
et al., 2017). Convergence is a critical feature in the CCM technique
that differentiates causation from correlation (Sugihara et al., 2012).
According to CCM, if the causal variable (X) influences the affected
variable (Y) then, the affected variable (Y) contains information
about the causal variable (X) that can be used to predict (recover)
causal variable (X). In other words, when X is cross-mapping to Y,
CCM tests if Y is encoded in the shadow manifold for X. CCM is a
viable numerical method for identifying the causal relations in even
nonlinear, weakly coupled systems. CCM tests the causal
relationship between two variables (X and Y) by measuring the
extent to which the historical values of effect (Y) can reliably
estimate the cause’s state (X). CCM is based on the idea that the
correlation coefficient (rho or ρ) goes up with increasing the length
(L) of the period of association. The higher convergence speed (time
to stability) during the CCM process and a closer value of rho to
1 and −1 reflect a stronger causal relationship (Sugihara et al., 2012;
Clark et al., 2015). It should be pointed out that the direction of
cross-mapping is in the opposite direction of the cause-effect
relationship (Chang et al., 2017). For instance, CCM from runoff
(Q) to precipitation (P) indicates that P causes Q. The reason is that
P as a cause variable driving Q, has left its footprints on Q, as an
effect variable, and the footprints of P are transcribed on the history
of Q. Therefore, Q can predict the recent history of P.

2.2.1 Convergent Cross Mapping (CCM)
The key idea of the CCM method is that the time series can be

viewed as projections of the dynamic system behavior (Sugihara and
May 1990; Stark et al., 2003). Projecting system state onto a coordinate
axis helps to obtain the value of the corresponding state variable, and
sequential projections over time can help with generating a time series
for the variable (Tsonis et al., 2018). Conversely, having time series of
variables can help with reconstructing a shadowmanifold of the original
system dynamics (true manifold). According to (Takens, 1981)
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Theorem, the attractormanifold of amultivariate dynamical system can
be regenerated based on the different time-lagged coordinates of a single
time series of one variable (i.e., time delayed embedding of X (X(t),
X(t-τ), X(t-2τ), where τ denotes the time lag), instead of three time series
of variables X(t), Y(t), and Z(t). In the same manner, lags of different
variables (X, Y, and Z) can form their corresponding shadow manifold
(MX,MY, andMZ). Takens, (1981) Theorem stated that the regenerated
shadow manifold (MX, MY, and MZ) preserves the essential
mathematical properties of the original dynamical system (true
manifold M). Particularly, there is one to one mapping between true
manifold (M) andMX,MY, andMZ. As shadowmanifoldsMX,MY, and
MZmapped one to one to the originalmanifoldM, they alsomap one to
one to each other, which means X, Y, and Z are causally related. In the
other words, CCMmethod tests howwell the local neighborhood of the
first shadow manifold maps to the second shadow manifold’s local
neighborhood.

The convergence of the correlation coefficient values between
the original time series and estimated time series (X and X|MY or Y
and Y|MX) is used as an indicator to evaluate the causality between
time series. The convergence can be improved by increasing the
length of the time series (L). CCM algorithm performs the following
steps for causality detection from x→y as follows (Sugihara
et al., 2012):

- Considering two time series (e.g., x and y) of length L:

X � xt{ }Lt�1andY � yt{ }Lt�1
- Generating shadow manifold Mx by forming the lagged-
coordinate vectors X*(t) = <
X(t), X(t − τ), X(t − 2τ), . . . , X(t − (E − 1)τ) > for t � 1 +
(E − 1)τ to t � L, e.g., Mx � X*

t{ }Lt�1+(E−1)τ , where E is a
positive integer greater than one named the embedding
dimension (size of the time window) and τ is the time lag
(positive value)

- Finding the E+1 nearest neighbors of X*(t) in Mx to create a
cross-mapped estimate of Y(t), denoted by Ŷi|Mx. Then, their
time indices (from nearest to the farthest) are denoted by
t1, . . ., tE+1

- Using the mentioned time indices corresponding to nearest
neighbors to X*(t) onMx to identify points in Y to estimate Y(t)
from the weighted mean of the E+1 values in Y(ti) using Eq. (1)
(Sugihara et al., 2012):

Ŷ t( )|Mx � ∑E+1
i�1 ωiY ti( ) (1)

where Y(ti) are corresponding to Y values and ωj is the weighting
equal to the distance between X*(t) and its ith closest neighbor on
Mx, and can be calculated using Eq. (2):

ωj � uj/∑ uk k � 1 . . . E + 1 (2)

where uj is as follows:

uj � exp
− X* t( ) − X* ti( )| || |
X* t( ) − X* t1( )| || |( ) (3)

where ||*|| denotes the Euclidean distance in Mx between two
vectors. If the distance to the nearest neighbor
(||X*(t) −X*(t1)||) is zero, then ω1 � 1 and ∀j � 2: E + 1,ωj � 0

- Calculating the correlation coefficient ρŷ|Mx using Eq. (4):

ρŷ
∣∣∣∣∣Mx � ∑Ŷ iYi − L* �YiŶ i











∑Y2

i − L* �Y2( )√ 












∑Ŷ
2

i − L*Ŷ
2

i )(√ (4)

Where L* is the number of embedded vectors. Embedded
vectors are mathematical representations that capture the causal
relationships between different variables. Causal embeddings are
typically used to model causal relationships in time series data,
and they help to capture the direction and strength of the
relationships between variables (Sauer et al., 1991; Sugihara
et al., 2012).

- Checking the convergence of ρx̂|My as a function of time
series length (L) by repeating previous steps for different time
series lengths

A full explanation of the CCM method with its mathematical
background is provided in (Sugihara et al., 2012).

Although CCM may perform relatively well in assessing the
relative strength of causality using short time series with at least
30 sequential observations, larger time series are generally preferred
to have good results, especially when the causal linkages are weak, or
process noise and observation error are large (Ma et al., 2014; Clark
et al., 2015). To overcome this limitation (Clark et al., 2015), built a
novel test of significant causal relationships by combining the CCM
method and dewdrop regression (Hsieh et al., 2008). This
combination was then developed and named multispatial CCM

TABLE 1 A summary of resource variables (metrics), units, coverage period, and the source of the data used in this study, for further details see
Supplementary Section S1 of the supplementary document.

Sector Variable Unit Coverage
period

Data source

Water water use Million cubic
meters (MCM)

1990–2020 Statistics Canada (2018a), Statistics Canada
(2018b)

Food crop production Million tons (Mt) 1990–2020 Statistics Canada (2020a)

Energy electricity generation Gigawatt hour (GWh) 1990–2020 Canada Energy Regulator (2020)

Economic gross domestic products (GDP) for WEF-related
industries

Million chained (2012)
dollars

1997–2020 Statistics Canada (2018c), Statistics Canada
(2020b)

Environment greenhouse gas (GHG) emissions mega-tons of
CO2 equivalent

1990–2019 Government of Canada (2018)
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(mCCM). They showed that the method can reliably discover the
causal links with fewer sequential observations, even in the presence
of process noise and observation error (Clark et al., 2015). mCCM
helps with detecting causal associations by expanding the
applicability of CCM to short time series that are spatially
replicable, which are stitched together using bootstrapping (Hall
and Martin, 1988), instead of a single long time series. In other
words, spatial replication of data can help with detecting causal
relationships from short time series. Furthermore, it picks up both
direct and indirect causation and distinguishes between
bidirectional and unidirectional relationships. The causal
influence of the first variable on the second variable can be
inferred if the skill of cross-mapping increases by the length of
the time series (Tsonis et al., 2018).

The causal analysis between correlated pairs of WEF sectors,
GDP, and GHG emissions are conducted using mCCM. In mCCM,
additional data with similar statistical characteristics to observed/
historical data are replicated to achieve more accurate results. For
this replication, the best-fitted distribution analysis is used to
quantify the variable degrees of scattering in the correlation of
each pair of correlated sectors.

Figure 1 illustrates the detailed workflow of our methodology,
showcasing how the theoretical framework has been effectively
applied in the context of the specific application being studied in

this paper. This study utilizes annual historical data from different
sectors, some of which has been directly collected, while others (e.g.,
total water use) have been calculated based on available information.
Using these data, the causal-correlational analysis has been
conducted to recognize the leading components of the nexus
system. In this study, the general linear equations, along with
corresponding coefficients of determination (R2), have been fitted
to the data points to demonstrate the pattern of the change in an
individual variable against any other variables. Bilateral causal
relationships between each pair of sectors have been calculated
using multispatial CCM package for the R programming
language (Clark et al., 2015) to measure the strength of causal
effects of one variable on the other. Table 1 shows the five different
variables considered in this study and their corresponding data
source. Data used in each sector of this study has been calculated
based on gathered data in different subsectors and analyzed on an
annual time scale. For example, the amount of total water use in each
year is equal to the municipal water use, water footprint for different
food sub-sectors such as agri-food, livestock, and food industry, and
energy sub-sectors such as fossil fuels and renewable sources.
Further details about collected data and their processing have
been provided in Supplementary Section S1.

The fundamental WEF sector relationships and interlinkages
considered in this study, as depicted in Figure 2, are as follows:

FIGURE 1
Comprehensive methodological workflow for Water-Energy-Food (WEF) nexus analysis, detailing sequential data collection, nexus framework
construction, and data-driven analytical approaches to elucidate correlation and causation within the integrated water, energy, and food sectors.

Frontiers in Environmental Science frontiersin.org06

Saed et al. 10.3389/fenvs.2023.1328009

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1328009


- Water for energy: the amount of water required for hydropower
energy generation and extraction, cooling systems, and
processing of fossil fuels including NG, crude oil, and coal.

- Water for food: the amount of water required for crop
production, livestock watering, and food industry (Statistics
Canada, 2009; Mekonnen and Hoekstra, 2010; 2011; Hoekstra
et al., 2012; Statistics Canada, 2020c)

- Energy for water: the amount of energy required for water
treatment plants and water distribution.

- Energy for food: energy required in the agricultural sector
including electricity, NG, motor gasoline, diesel fuel oil,
light fuel oil, and heavy fuel oil (Natural Resources
Canada, 2018)

- Food for energy: the amount of feedstock (wheat, corn, canola,
and soy) required for biofuel (ethanol and biodiesel).

- Food for water: No information has been reported regarding
food used in the water sector, so the authors have assumed a
negligible amount (epsilon)

2.3 Case study

The Canadian prairies is a region in Western Canada including
the provinces of Alberta, Saskatchewan, and Manitoba, covering
20% of Canada’s land area and Canada’s total surface area of water

bodies (Natural Resources Canada, 2016). The prairies play a major
role in Canada’s agri-food production, accounting for more than
80% of Canada’s arable land divided among Alberta, Saskatchewan,
and Manitoba with 31%, 39%, and 11%, respectively. The prairie
provinces’ cropland contributions in Canada are 27%, 42%, and 13%
associated with Alberta, Saskatchewan, and Manitoba, respectively.
This indicates that Saskatchewan contributes the most to
agricultural crop production within the entire country
(Supplementary Section S1.1).

The amount of electricity generation is noticeably high in
Alberta compared to that in Saskatchewan and Manitoba. This
amount is almost three and 15 times that of Saskatchewan and
Manitoba, respectively (Supplementary Section S1.3). Saskatchewan
and Alberta have had the highest and the second-highest water use
in the prairies during the 31 years from 1990 to 2020
(Supplementary Section S1.2). The prairie provinces’ contribution
to Canada’s GDP is around 23% on average. Alberta has the most
contribution (16%) compared to Saskatchewan (4%) and Manitoba
(3%). In this study, WEF-related industries in the prairies and any
individual province within the prairies from 1997 up to 2020
(Statistics Canada, 2018c; Statistics Canada, 2020b) are
considered for the economic sector with GDP metric
(Supplementary Section S1.4). On average, the Canadian prairie
provinces released 45% of Canada’s total GHG emissions from
1990 to 2019. Alberta is the largest emitter of GHGs in the

FIGURE 2
Schematic representation of the WEF nexus showcasing interconnected resource use across key sectors including food production, energy
generation, and water use to highlight the importance of nexus thinking approach for resource management.
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prairie region (Supplementary Section S1.5) with 33% contribution
compared to Saskatchewan (9%), and Manitoba (3%) (Government
of Canada, 2018).

Nexus thinking with a more explicit scope of integration helps
with greater policy coherence among agencies, stakeholders, and
policymakers in a self-contained jurisdiction. Achieving policy
coherence becomes more challenging when it comes to multiple
jurisdictions connected through any resource. In this regard, the
Canadian prairie provinces are selected as the case study since this
region, with three jurisdictions (provinces), is connected by TB water
resources. A schematic diagram of the TB rivers and lakes within the
prairie provinces is presented in Figure 3. This figure shows that
several international and interprovincial TB rivers flow in and out of
the Canadian prairie provinces. Different agreements have been set
for water management through these TB rivers between riparian
countries (Canada and the US) as well as among provinces within the
prairies. As an example, Prairie Provinces Water Board (1969)
agreement, signed in 1969 between the government of Canada
and the provinces of the Canadian prairies, is a master agreement
that governs the water apportionment among the three provinces.
However, such agreements on water apportionment through TB
rivers (i.e., focusing only on surface water resources) do not consider
the virtual water (VW) movement (e.g., energy and food products)
among riparian provinces/countries. VW flows need to be taken into
account in such agreements since there is a substantial volume of

intra- and inter-regional VW flows within the region in North
America (Dalin et al., 2012). The nexus thinking approach
provides us with a more comprehensive insight into the
interlinkages of the WEF resources. Although Canadian provinces
have significant control over their resources and policies, natural
resources and the economy do not respect jurisdictional boundaries.
Therefore, evaluating the fairness of shared water resources among
riparian provinces within the context of the WEF nexus rather than
from the sectoral point of view can help with a better allocation of
resources among the provinces.

2.3.1 The Canadian prairie nexus assessment
The whole Canadian prairie nexus including intra- and inter-

provinces interactions have been summarized in Figure 4. The WEF
nexus in the Canadian prairies as one administrative unit and its
interaction with regions outside of the prairies have also been
illustrated in Figure 5. In both Figures 4, 5, the blue, gray, and
green doughnut charts represent the water, energy, and food sectors,
respectively. The available water specified inside each of the blue
doughnut charts is equal to the average annual water yield and has
been calculated based on the contribution of each province (Healey
and Wallace, 1987) in Canada’s water yield (Kienzle, 2012; Statistics
Canada, 2018a) plus green water use (GWU). GWU refers to the
human use of the evaporative flow from the land surface (Hoekstra
et al., 2012) for the agriculture (food) sector, and blue water use

FIGURE 3
Schematic diagram of the main rivers and lakes within the Canadian prairie provinces (Abbreviations: NL Newfoundland; NB New Brunswick; PEI
Prince Edward Island).
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(BWU) refers to the use of blue water resources (surface and
groundwater) for food, energy, and municipal sectors. The
remaining water refers to the remaining portion of the annual
available blue water in each province, which either remains
inside or flows to a neighboring province through TB rivers.

The total amount of generated energy and produced food
(including agri-food and animal products) specified inside the
gray and green doughnut charts in Figure 4 are the average
annual values of historical records. The term ‘total generated
energy’ in this study refers to the amount of energy derived from
different sources including crude oil, natural gas, coal, flowing/
falling water (as a primary source of energy for hydropower), and
biofuel in the province. In Figure 5, the data of the doughnut charts
represent the Canadian prairie values, calculated as the sum of the
average annual related values of the three provinces. Figure 4 shows
that the average annual energy generation in Alberta (5606 PJ/y) is
about 2.7 and 8.5 times that of Saskatchewan (2054 PJ/y) and
Manitoba (660 PJ/y), respectively. Figure 5 indicates that the
average annual energy generation for the whole prairie is
8320 PJ/y. The energy doughnut charts show each energy
source’s share of the total energy in each province. Crude oil is
the main source of energy in Alberta and the prairie accounting for
74% and 59% of their total generated energy, respectively. However,
the main energy source in Saskatchewan andManitoba is natural gas
(NG) which includes 54% and 75% of their total generated energy,
respectively. Similarly, the major crops produced in each province
are provided in the food green-color doughnut charts. It can be seen
that wheat is the most produced crop in all three provinces
(Figure 4) and the prairie (Figure 5).

Outgoing arrows in Figures 4, 5 denote the contribution of each
sector to other sectors or provinces, and the values on the arrows
indicate the amount of the contribution of the interaction. There are
two types of arrows (links) fluxing from the water sector: i) dark blue
arrows, which show water use in food, municipal, and energy
sectors, and ii) light blue dotted-line arrows, which show the
(real) water transfers through TB rivers to either an adjacent
downstream province or a region other than prairie provinces.

Municipal water use is calculated by subtracting the water used in
food and energy from the total water use (TWU) and shown in
Figures 4, 5. It is worth noting that the main sub-sectors of water use
in the industrial sector are covered in the i) energy sector, including oil
and gas extraction, coal and metal mining, electric power generation,
transmission and distribution, and transportation, and ii) food sector,
including crop production, animal production, support activities for
agriculture and forestry, and food manufacturing (Statistics Canada,
2017; Dieter et al., 2018). The remaining water use of other sub-sectors
of the industrial sector (e.g., clothing and leather and allied product
manufacturing, textile product manufacturing, computer and
electronic product manufacturing, furniture and related products,
etc.) is not considered in this study as it has no significant contribution
in total water use.

There are three different types of arrows (links) fluxing from
the food sector into the other sectors or provinces: i) solid arrows
show the contribution of the food sector to the energy and water
sectors, ii) dotted-line arrows stand for the agri-food exports, and
iii) long-dash arrows refer to livestock exports. It should be
mentioned that livestock and agri-food are treated
independently in this study.

FIGURE 4
WEF nexus within and between the Canadian prairie provinces. The blue, gray, and green doughnut charts represent the water, energy, and food
sectors, respectively, in each province. In the food sectors, livestock and agri-food are treated independently.

Frontiers in Environmental Science frontiersin.org09

Saed et al. 10.3389/fenvs.2023.1328009

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1328009


Two different arrow types are fluxing from the energy sector: i)
solid arrows indicate the energy used in water, food, and other
sectors within the province, and ii) dotted-line arrows stand for

energy trades (exports). Inter-provincial energy trades in the prairies
are limited to crude oil, while energy trades to other regions include
crude oil, coal, electricity, and NG.

FIGURE 5
WEF nexus of the Canadian prairies as a single region with other regions represented as “Outside Prairies”. The blue, gray, and green doughnut charts
represent the water, energy, and food sectors, respectively. In the food sectors, livestock and agri-food are treated independently.
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Figure 5 indicates that 59% of energy generation in the prairies is
obtained by crude oil, which needs a considerable amount of water
for oil extraction and refining. Hydropower is still the backbone of
Canada’s electricity supply. However, electricity generation only
accounts for 6% of the total energy generation in the prairies
(Figure 5). Therefore, there is still a potential to develop the
hydropower capacity as more water can be dedicated to running
more hydropower plants, depending on decisions made by water
managers (Wu et al., 2021) as well as the conditions by which the
resource management remains sustainable. According to Figure 5,
around 21% of the total annual water yield in the Canadian Prairies,
equivalent to about 63 bcm/yr (billion cubic meter per year) is being
transferred outside of the region. This significant outflow of water
from the Canadian prairie region highlights the importance of
conducting further investigations at a broader scale, beyond the
provincial level, to explore potential opportunities for renewable
energy generation as well as expansion of irrigated-crop lands. Such
investigations could contribute to enhancing WEF security in the
prairie region to ensure sustainable and resilient future. Moreover,
Figure 5 shows a substantial portion of the Canadian prairie’s annual
energy generation, agri-food production, and livestock production,
accounting for 68%, 49%, and 17%, respectively, are exported to
external markets. This reveals the potential of the region for
achieving self-sufficiency and fulfilling a part of the demand from
the rest of Canada during crises like the Covid-19 pandemic. This
emphasizes the need for further in-depth investigation of the
region’s capacity to enhance its resilience and contribution to
national resilience during crisis times. Additional information on

Figures 4, 5 can be found in Section S2 of the
supplementary document.

Even though Figures 4, 5 present important information on
the relationships among different WEF sectors within each
individual prairie province as well as between provinces, both
qualitatively and quantitatively, they are not able to reflect the
dynamic pattern of these relationships. In other words, they only
show the average amount of WEF resources used by each sector
within a specific period and do not provide us with any
information on the fluctuations of such relationships over
time among WEF sectors. Therefore, evaluation of the
interactions among WEF resources over time in terms of their
usage, production, and generation is of great importance to
policymakers to track the change in any individual resource
and consequently evaluate its impact on other resources.

3 Results

3.1 Correlation between system sectors

The fitted equations with their coefficients of determination (R2)
have been determined for pairs of WEF sectors, GDP, and GHG
emissions based on the best-fitted regression models. The obtained
fitted equations between each pair have been shown in Figure 6 for
the Canadian prairie as one region. The arrows thicknesses
schematically indicate the correlation strengths between the pairs.
The equations along with their coefficient of determination (R2) for

FIGURE 6
Schematic diagram of regression relationships among WEF sectors, GDP, and GHG emissions (annual scale) in the Canadian prairie region as one
region. Related graphs are provided in Supplementary Figure S7–S10.
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individual provinces have been listed in Table 2. Historical data
associated withWEF sectors, GDP, and GHG emissions for the three
provinces in the Canadian prairies including the prairies as a single
region from 1990 to 2020 along with their corresponding regression
models have been plotted and shown in Supplementary
Figure S7–S10.

The statistical significance level was set at 0.01 for all regressions.
The p-value was <0.01 in all regressions except for the regressions
between W-E (p = 0.51) and E-F (p = 0.34) in Manitoba and W-E
(p = 0.17) in Alberta. Spearman’s ranked correlation coefficient was
also calculated to check if there is any non-linear correlation
between the above-mentioned pairs (S4). Statistical analysis
indicates that there is no sufficient evidence to prove that there is
a linear/non-linear correlation between these variables. Therefore,
correlation analysis cannot provide any information on the
relationship between the aforementioned sectors. Further analysis
(e.g., causality analysis) can help with describing relationships
between such variables.

The food sector (agri-food production) has the strongest
correlation with total water use among other sectors in the
prairies (Figure 6). This was expected as this region plays a
major role (67%) in Canada’s agri-food production. Furthermore,
W-F, E-F, and W-E pairs have the largest, second largest and lowest
correlation values, respectively in the prairies. A stronger correlation
between E-F than between W-E could be due to the use of energy-
intensive equipment and processes in agriculture and food
production. The difference in correlation values highlights the
importance of both energy and water in the food production
sector in the Canadian prairies. However, the stronger
relationship between energy and food production may indicate a
need to focus on energy efficiency and conservation efforts in the
agriculture and food production sector in the region.

Based on the correlation analysis (Table 2), it can be concluded
that Saskatchewan, Alberta, and Manitoba have the strongest,
second strongest, and lowest correlation for any pair of WEF
sectors, respectively. Saskatchewan has the highest correlation of
both water use and food production with GDP among the prairie
provinces with R2 of 0.51 and 0.6, respectively (Supplementary
Figure S8). However, Alberta and Manitoba have an uptrend

pattern of total (both blue and green) water use and food
production against GDP with a rate almost two and three times
that of Saskatchewan, respectively (Supplementary Figure S8A, B). A
higher rate of water use and food production against GDP in Alberta
compared to Saskatchewan is due to several factors, including
differences in government policies, investment in infrastructure,
and economic diversification. Alberta has invested in irrigation and
water management infrastructure, which has helped to improve the
productivity of irrigated lands. As a result, irrigated land
development has been stronger in Alberta compared to
Saskatchewan. The correlation between energy generation and
GDP is the strongest in Alberta (Supplementary Figure S8C); this
was expected as energy generation plays an important role in
Alberta’s GDP. In conclusion, we can say that GDP is more
correlated to energy generation in Alberta and to food
production in Saskatchewan and Manitoba. Moreover, GDP has
almost equal correlation with food and energy in the Canadian
prairies as one region (Figure 6).

The correlation analysis was also conducted between WEF sectors
and GHG emissions for the 30 years of historical data in the Canadian
prairie provinces, individually and as a whole from 1990 to 2019
(Supplementary Figure S9). Based on this analysis, the energy sector
has the highest correlation against GHGamongWEF sectors in all three
provinces and the prairie. This correlation is more highlighted in
Alberta among prairie provinces, which was expected due mainly to
oil and gas production, and (coal-fired) electricity generation (Canada
Energy Regulator, 2022). This correlation (GHG-E) is weak in
Manitoba, as Manitoba relies mainly on hydropower for energy
generation. Manitoba has the highest correlation between food and
GHG (mostly methane (CH4) from livestock and nitrous oxide (N2O)
from soils). This is probably due to the use of a larger amount of fossil-
fuel-based fertilizer (Manitoba Agriculture and Resource, 2021) in
Manitoba compared to that used in Alberta and Saskatchewan.

The correlation analysis between economic and environmental
indicators (i.e., GDP and GHG emissions) based on the 23 years of
historical data from 1997 to 2019 (Supplementary Figure S10) shows
that GDP is strongly correlated with GHG emissions in Alberta
(R2 = 0.97). This correlation is weaker in Saskatchewan (R2 = 0.65)
and Manitoba (R2 = 0.30). Furthermore, Alberta has an uptrend

TABLE 2 Best-fitted regression relationships among WEF sectors, GDP, and GHG emissions (annual scale) and their coefficient of determination (R2) in
Alberta, Saskatchewan and Manitoba. Related graphs are provided in Supplementary Figure S7–S10.

Sectors Alberta Saskatchewan Manitoba

W-F F = 1.16 W–3.85 (R2 = 0.91) F = 1.03 W–3.27 (R2 = 0.97) F = 1.17 W–3.83 (R2 = 0.73)

W-E E = 0.30 W + 0.44 (R2 = 0.06) E = 0.58 W–1.41 (R2 = 0.43) E = −0.15 W + 2.14 (R2 = 0.02)

E-F F = 0.51 E + 0.50 (R2 = 0.25) F = 0.79 E + 0.46 (R2 = 0.46) F = 0.20 E + 0.80 (R2 = 0.03)

W-GDP GDP = 0.41 W + 3.37 (R2 = 0.32) GDP = 0.24 W + 3.54 (R2 = 0.51) GDP = 0.83 W + 0.51 (R2 = 0.35)

F-GDP GDP = 0.40 F + 4.64 (R2 = 0.46) GDP = 0.25 F + 4.29 (R2 = 0.60) GDP = 0.70 F + 3.24 (R2 = 0.57)

E-GDP GDP = 0.80 E + 3.72 (R2 = 0.75) GDP = 0.38 E + 4.16 (R2 = 0.45) GDP = 0.73 E + 2.90 (R2 = 0.27)

W-GHG GHG = 0.15 W + 1.67 (R2 = 0.03) GHG = 0.34 W + 0.23 (R2 = 0.22) GHG = 0.07 W + 1.01 (R2 = 0.03)

F-GHG GHG = 0.30 F + 1.94 (R2 = 0.19) GHG = 0.34 F + 1.30 (R2 = 0.24) GHG = 0.18 F + 1.12 (R2 = 0.28)

E-GHG GHG = 0.68 E + 1.14 (R2 = 0.96) GHG = 0.75 E + 0.86 (R2 = 0.85) GHG = 0.20 E + 1.02 (R2 = 0.30)

GDP-GHG GHG = 0.44 GDP +0.02 (R2 = 0.97) GHG = 0.17 GDP +1.24 (R2 = 0.65) GHG = 0.15 GDP +0.63 (R2 = 0.30)
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pattern of GHG against GDP with a rate of more than two times that
of Saskatchewan and Manitoba. GDP-GHG cross-correlation in the
prairie as one region follows an approximate similar pattern
observed in Alberta. This was expected as Alberta has the highest
GDP and GHG contribution in the prairies compared to the other
two provinces.

3.2 Causation between system sectors

The best-fitted statistical distribution functions of each of the
WEF sectors and GDP and GHG variables in each of the three
provinces, and the prairies as a single unit, have been plotted and
shown in the supplementary document (S5.1) and summarized in
Table 3. The probability distributions that were used in the analysis
were Normal, Lognormal, Weibull, Exponential, Gamma, Burr XII,
and Pareto II distributions within the CoSMoS (Complete Stochastic
Modelling Solution) package (Papalexiou, 2018). The Anderson-
Darling test and the Kolmogorov-Smirnov (K-S) test have been used
for checking the goodness of fit regarding the assessment of
normality of the data and the selection of best-fitted distribution.
Then, bootstrapped iterations (Hall and Martin, 1988), as a Monte
Carlo simulation approach (Raychaudhuri, 2008), were used for data
replication based on the historical data and best-fitted distribution
functions of each variable. The replicated data are then ordered to
follow the prior patterns obtained from the correlation analysis. The
iterations in the data replication process are based on 31-year
(1990–2020), 24-year (1997–2020), and 30-year (1991–2019)
available observations associated with WEF, GDP and, GHG,
respectively. The number of generated data points were 2015,
2,184, and 2,130 for WEF, GDP, and GHG, respectively.

Causal influences between pairs of sectors/variables can be
considered as a criterion to determine whether a nexus exists
among WEF sectors as well as between WEF sectors and both
economic (GDP) and environmental (GHG emissions) variables.
The rho values obtained from mCCM within the prairies as a region
and prairie provinces are provided in Figure 7.

The causal influence among WEF sectors, shown in Figure 7A,
indicates that water causal influence on Food (W→F) is relatively
high in all Canadian prairie provinces and is the highest in
Saskatchewan. Highly correlated W-F variables shown in Table 2,
obtained from correlation analysis could justify such a strong causal

influence between water and food sectors. This was expected as
Saskatchewan has 40% and 70% more croplands than Alberta and
Manitoba, respectively (Statistics Canada, 2020a). An argument
might arise from water causal influence on food in Saskatchewan
as to whether increasing food security can be improved significantly
by improving water security. One can say that re-evaluating the
water resources management between Alberta and Saskatchewan
might increase the agricultural productivity of croplands in
Saskatchewan. However, croplands in Saskatchewan are mostly
rainfed agriculture and allocating an additional amount of water
to croplands in Saskatchewan would probably not have a significant
impact on food security. The rapid rise of rho (ρ) to stability
observed in Supplementary Figure S15A occurs in a situation
when one variable demonstrates high dominance behaviour
(water variable) so that the other variable’s behaviour (food
variable) is forced to follow it. This phenomenon is called
“synchrony” and does not necessarily reflect the true
bidirectional coupling in a causal relationship (Sugihara et al., 2012).

As shown in Figure 7A, food has a stronger causal influence on
energy (F→E) than the other way around in both the prairies and
individual provinces. One main reason for this could be the biomass
industries in the prairie provinces where they use biomass plant
feedstocks for thermal and electrical energy purposes. The effects of
food on energy are almost the same in Saskatchewan, Alberta, and
the prairie. However, the influence of energy on food is stronger in
Saskatchewan and the prairie compared to that in Alberta. In both
Saskatchewan and Alberta, food has a higher causal influence on
energy than that of Manitoba (Figure 7A). This might be due to the
smaller area of croplands and less biomass production (e.g., wheat,
corn, canola, and soy) in Manitoba compared to Saskatchewan and
Alberta causing less influence on energy.

In terms of the water-energy causal relationship, water has a
stronger influence on energy than the other way around in Alberta,
Saskatchewan, and the prairies (Figure 7A), but this is vice versa in
Manitoba. Historical data shows that Manitoba has had annual
electricity generation within an almost constant threshold between
35 and 40 GWh/year (Supplementary Figure S3) over 31 years. This
probably indicates that hydropower plants in Manitoba have been
operated mostly at their maximum nominal compacity and that the
minimum amount of water required for hydropower plants to
generate electricity at their nominal capacity has always been
available in the above-mentioned period. In conclusion,

TABLE 3 Best-fitted statistical distribution of WEF sectors, GDP, and GHG emissions in Alberta, Saskatchewan, Manitoba, and the Canadian prairies.

Sector Alberta Saskatchewan Manitoba The Canadian prairies

Water Weibull (shape: 99.2601, scale:
4.5550)

Weibull (shape: 61.9761, scale:
4.6763)

Normal (mean: 4.1907, SD:0.0558) Weibull (shape: 91.4964, scale:
4.9970)

Food Weibull (shape: 21.8254, scale:
1.4515)

Normal (mean: 1.4845, SD:0.0924) Normal (mean: 1.0932, SD:0.0767) Gamma (shape: 518.5243, scale:
0.0036)

Energy Normal (mean: 1.7652, SD:0.0714) Normal (mean: 1.2423, SD:0.0785) Weibull (shape: 28.5074, scale:
1.5049)

Normal (mean: 2.02396, SD:0.0652)

Economic Normal (mean: 5.2067, SD:0.0603) Normal (mean: 4.6606, SD:0.0321) Weibull (shape: 66.0045, scale:
4.0387)

Normal (mean: 5.3364, SD:0.0536)

Environment Normal (mean: 2.3647, SD:0.0627) Weibull (shape: 43.5144, scale:
1.8381)

Weibull (shape: 58.5927, scale:
1.3237)

Weibull (shape: 55.3961, scale:
2.5277)
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FIGURE 7
Rho values between (A) WEF, (B) WEF and GDP, and (C) WEF and GHG sectors in Alberta, Saskatchewan, Manitoba, and the Canadian prairies as a
region (mCCM results provided in Supplementary Figure S15–S18). Abbreviations: W water; E energy; F food; GDP gross domestic product; GHG
greenhouse gases emissions.
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additional available water has not had a considerable influence on
the amount of energy generation for that period.

Almost 98% of electricity generation in Manitoba comes from
hydropower plants (Canada Energy Regulator, 2018) whose
operation heavily relies on the use and regulation of water
resources. It is worth noting that the electricity generation in
Manitoba represents only 19% of the total energy generation
(Figure 4). We conducted correlation analysis to investigate the
potential relationship between total energy generation and total
water use in Manitoba. However, the results indicate that there is
insufficient evidence to establish a correlation (p-value = 0.51). This
finding highlights the need for causality analysis, which can help
unveil the logical necessity and significance of exploring the
unidirectional or bidirectional relationships between variables.

Water has the strongest influence (slightly higher than energy
influence) on GDP in Alberta, while GDP is mostly affected by the
energy sector in Manitoba. The food and water sectors influence
GDP with the same weights and are higher than the energy sector’s
influence on GDP in Saskatchewan. In the prairie as a region, water
is the most influential sector on GDP. GDP influences on the food
sector in Alberta and Manitoba, and on the water sector in
Saskatchewan and the prairies are more pronounced compared to
other sectors. The reason for such influence of GDP on food sector
(food production) might be due to different direct or indirect
reasons including i) GDP growth can increase the ability for
investing in farm equipment and precision agriculture to increase
crop production, and/or ii) GDP growth may increase food
consumption, as the consequence of increased purchasing power.
Then, in turn, the increase in food demand boosts food production
to address the demand.

Causal relationships between environmental variables (GHG
emissions) and WEF sectors have been quantified in terms of rho
and shown in Figure 7C. It can be seen that energy generation has a
stronger influence on GHG emissions in the prairie and its three
provinces compared to the water and food sectors. As to causation
between W↔GHG, the results suggest that water use has a stronger
causal influence on GHG emissions than the other way around in all
provinces and the prairie. The level of the causal influence ofW→GHG
in Alberta, Manitoba, and the prairies is almost equal, while it is
stronger in Saskatchewan. Reasons for the stronger W→GHG
causation in Saskatchewan could be related to the influence of water
use on i) fossil fuel power plants as more than %81 of Saskatchewan’s
electricity generation is based on fossil fuels (Canada Energy Regulator,
2021), and ii) agri-food production due to the larger cropland areas in
Saskatchewan meaning that more farmed organic soil, as an emitter of
two of the most powerful GHGs such as methane (CH4) and nitrous
oxide (N2O), would be used and, in turn, more agricultural activity
(farm machinery and application of fossil-fuel-based fertilizers) would
be required. The influence of the food sector on GHG has almost the
same strength in Alberta and Manitoba, which is slightly higher than
that in Saskatchewan. As expected, GHG emissions have the strongest
impact on energy among WEF sectors. Similar to the coupling
behaviour between W-F, the synchrony phenomenon is also
observed in E-GHG causal relationship.

Causality analysis showed that there is no causal influence
between GDP and GHG in either direction in the prairie
provinces or the prairies as one region (Supplementary Figure
S18). In Alberta, although there was a high correlation between

GDP and GHG, no causal influence was observed between these two
sectors. Perhaps, this is another indicator of the value of causality
analysis compared to the statistical correlation analysis. Results of
the mCCM among WEF sectors, between WEF and GDP, between
WEF and GHG emissions, and between GDP and GHG emissions
are presented in Supplementary Figure S15–S18, respectively.

The WEF nexus approach promotes the inclusion of additional
sectors and interrelationships, which causes the expansion of system
boundaries. However, the escalating computational complexity may
hinder practicality and discourage policymakers and managers.
Therefore, conducting exploratory analysis becomes essential to
gain a better understanding of nexus relationships and causal
effects. The utilization of such an exploratory analysis is not
intended to replace other modelling approaches nor compete
with them, but instead helps with prioritizing components of
complex WEF nexus systems. Our exploratory analysis allows for
the identification of key causal relationships, enabling the
delineation of system boundaries, and in turn, providing a more
parsimonious and efficient representation of the WEF nexus. This
enhanced understanding of the system allows for the development of
more targeted and effective WEF nexus models for simulation and
scenario analysis. This advancement provides a platform for
policymakers and decision-makers to make well-informed
decisions that promote comprehensive resource management.

In this study, the identification of the sectors most or least
affected by other sectors and variables among WEF resources and
the quantification of their interrelationships were conducted using
causality analysis taking economic and environmental factors into
account. This can provide useful information concerning nexus
management as well as sectoral efficient investment. It is quite
difficult and still challenging to unravel causal relationships
among the elements of a system using causality analysis (Sušnik,
2018), let alone precisely quantify them. Further detailed
investigations will be required to delineate interrelationships
among different sectors more accurately to explore the reasons
behind different rho values among pairs of sectors. Causality
analysis can reveal important information and provide initial
insights into the relationships between the components of the
WEF nexus and other sectors. However, incorporating more
variables and considering the dynamic nature of the WEF nexus
would require a more sophisticated model. This can lead to a more
accurate assessment of WEF nexus and improve the efficacy of
the analysis.

In this study, a multi-scale causal-correlational analysis was
conducted to bridge the gap in understanding the impact of
changing scales on interrelationships and system analysis within
WEF nexus context. This study allows us to investigate how the
interactions and policies within theWEF nexus are influenced by the
scale. Based on the findings of this study, it can be implied that the
assessment of trade-offs and synergies for improving nexus security
relies on the scale of the case study. In other words, to improve the
WEF resources management and suggest practical management
strategies at decision-making scale, a comprehensive assessment
is required from two perspectives: i) a regional study that considers
different variables and details of WEF systems, and ii) an assessment
of the WEF nexus both within and beyond a region, simultaneously
(Kraucunas et al., 2015). Therefore, studying the WEF nexus on
different scales at the same time would allow for a more nuanced

Frontiers in Environmental Science frontiersin.org15

Saed et al. 10.3389/fenvs.2023.1328009

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1328009


understanding of the interconnections between water, energy, and
food within a specific region, and can provide valuable information
on how these interconnections vary across different sub-regions.
Comparing Figures 4, 5 can give a better demonstration of the
advantage of investigating nexus at different scales. A difference of
13% can be seen in blue water use contribution to the food (39%)
and energy (52%) sectors in the prairies as one region (Figure 5). In
contrast, as seen in Figure 4, there is a more significant difference in
Alberta’s and Manitoba’s distribution of BWU in the energy and
food sectors (15% vs 76% in Alberta and 88% vs 7% in Manitoba).
This difference in the contribution of BWU to food and energy
between the prairie and individual prairie provinces can be
considered significant and highlights the need for more
integrated and holistic approaches to managing WEF resources.

In our study, a thorough analysis of the WEF nexus system was
conducted by considering the most significant sub-sectors within
each WEF-GDP-GHG sector in the three provinces under
consideration. This approach acknowledges the varying
contributions and importance of different sub-sectors across
provinces. For example, we included both crop production and
the food industry in the analysis of the food sector, as they play
crucial roles in different provinces. Similarly, we considered both
irrigated and rainfed sub-sectors, which have varying significance
across provinces. In the energy sector, we accounted for the total
energy generation from relevant sub-sectors, taking into account the
predominant use of fossil fuels in one province and the significance
of hydropower in another. While obtaining precise data for all sub-
sectors in all provinces has inherent limitations, we carefully selected
significant sub-sectors based on their contributions and relevance
within each province. This approach allows for a comprehensive
simulation and assessment of the WEF nexus system, considering
variations in contributions across provinces and striking a balance
between data availability, analytical rigor, and capturing essential
interlinkages between sectors.

There are some limitations in this study that are worth considering
in future research. This study has been conducted based on the annual
temporal scale, which, while providing valuable and important insights
into the nexus system in the region, may ignore patterns that emerge
within finer temporal resolution (e.g., seasonal effects). Data analysis
within a finer resolution can providemore accurate results by capturing
short-time variations driven by different factors, including seasonal
fluctuations, whichmight be valuable for policy and planning purposes.
However, it can add more complexity to the problem and, in addition,
access to the required data associated with different sectors might not
always be possible. Pollution has a significant impact on the availability
and quality of water, energy, and food resources. It can also impact
the health and wellbeing of people and ecosystems. By considering
the effects of pollution in the context of the WEF nexus, the analysis
can take into account the potential impacts of pollution on the
availability and quality of WEF resources, as well as the potential
impacts on human health and the environment. This leads to a more
comprehensive evaluation of potential impacts and the potential for
mitigation measures to be developed and implemented, which can
ultimately lead to more sustainable and equitable outcomes. Expanding
bio-physical system boundaries in the nexus framework that includes
other components, such as land, soil, health and nutrients should be
considered in the future in, considering the tolerable level of model
complexity.

This study is a step forward toward a better understanding of
WEF nexus analysis at a scale between the provincial and national
scales. The causality analysis carried out through this study to
explore causal interrelationships among WEF resources, GDP,
and GHG sectors can reflect the effects of changing the scale on
nexus variables within the prairie provinces and the prairie as one
region. In other words, this multiscale analysis can determine
how sensitive nexus variables are to the scale change. As causality
is inherently linked to decision-making (Zheng et al., 2020), the
results of this study obtained through causality analysis can help
us to highlight variables that have the maximum potential to
affect others allowing decision-makers to intervene to change
them, effectively.

Future research directions should involve i) incorporating a
process-based model to quantify and analyze nexus interlinkages to
assess causal relations to have a more insightful understanding of the
system ii) assessing the interprovincial effects of WEF resource
management changes in the Canadian prairies, iii) considering a
broader environmental context by including additional
environmental dimensions such as the impacts of climate change
and biodiversity loss within the nexus system to advance our
understanding for promoting resilience and sustainable strategies in
WEF resources management, iv) evaluating the existing agreements on
inter-provincial water apportionment based onWEF nexus perspective
to assess their effects on the equitable distribution of WEF integrated
resources in the region in a sustainable way, and v) improving WEF
security targets (increasing the efficiency of the whole system, reducing
trade-offs, building synergies, and improving governance across
sectors) by using simulation techniques.

4 Conclusion

A data-driven analysis of theWEF nexus in the Canadian prairie
provinces and the prairies as one (virtual) administrative unit has
been conducted based on historical data. A database containing
information on WEF sectors, GDP, and GHG emissions within the
Canadian prairies has been built to examine the pattern associated
with the aforementioned sectors from 1990 to 2020. The database
has initially been used to explore any local and/or global continuous
increasing, decreasing or fluctuating patterns of any individual
WEF, GDP, and GHG variables and then to perform a
preliminary identification of anomalies and unexpected changes
in the occurrence patterns. Correlation and causality analysis was
performed on WEF, GDP, and GHG data to quantify and analyze
the interlinkages between each pair of WEF, GDP, and GHG
emissions over time. This helped with the understanding of
interactions between each pair of WEF, GDP, and GHG sectors
on a yearly time-basis during the specified 31-year period. The
analysis was also beneficial to the identification of the influence on
WEF, GDP, and GHG emissions caused by changes in any
individual sector and the measurement of the strength of such
influence. Results showed that food had more influence on
energy than the other way around in the prairie provinces. The
strength of causality between food and energy in the prairies was
almost equal to that of Saskatchewan. The water influence on the
food sector was higher than the other way around in both prairies
and any individual provinces. Water influence on energy was higher
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than the other way around in all prairie provinces except for
Manitoba. The influence of food on GDP was more than the
other way around in Manitoba and the prairies. However, there
was no significant difference in this influence between both
directions in Alberta and Saskatchewan. GDP had the highest
influence on energy in Alberta, while Manitoba possesses the
highest influence the other way around among the prairie
provinces. The prairies had a slightly higher GDP influence on
water use (equal to that of Alberta) than the other way around (equal
to that of Saskatchewan). As to WEF-GHG sectors’ causal
relationships, it was observed that all WEF sectors had a
significant influence on the GHG to almost the same extent. The
maximum GHG influence occurred in the energy sector. However,
the GHG influence onWEF sectors was not as high as the other way
around. This study provides useful information on i) the
interrelationships among the WEF, GDP, and GHG sectors
within the context of nexus analysis, and ii) the dominant sectors
in each province and the dominant province in the prairies for each
sector; comparison between dominant sectors among different
provinces can interpret WEF interrelationships in the prairies to
some extent. This helps identify priority sectors and local
communities (prairie provinces) to invest in, to improve WEF
security in the prairie region. Investigating the WEF nexus
starting from the provincial scale and then moving up to the
prairie scale in the Canadian prairies indicated the significant
role of multi-scale analysis in assessing interrelationships among
WEF and other sectors. Taking into account the GHG emissions in
WEF nexus analysis can help to enhance the understanding of the
fundamental role of environmental impacts in the nexus leading to
achieving holistic and effective decision-making for sustainable
resource management.
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