

Multi-hazard interrelationships and dynamic risk scenarios in urban areas: a case of Nairobi and Istanbul

Robert Šakić Trogrlić ^A, Bruce D. Malamud ^B, Harriet Thompson ^C, Faith Taylor ^A, Ekbal Hussain ^D, Joel Gill ^E, Emin Menteşe ^F, Emine Öner ^F, Emmah Mwangi ^G, Vera Bukachi ^{H,L}

(A) International Institute for Applied Systems Analysis (IIASA), Austria

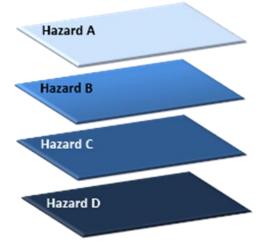
- (B) Durham University, UK
- (C) King's College London, UK
- (D) British Geological Survey (BGS), UK
- (E) Cardiff University, UK
- (F) Kandilli Observatory, Turkey
- (G) Sussex University, UK
- (H) University College London, UK
- (L) Arup East Africa Limited, Kenya

We thank Bruce Malamud and Joel Gill for allowing us to use materials from their previous presentations on the topic.

NEEDS, University of Twente, November 2023

1. INTRODUCTION

1. WHAT ARE MULTI-HAZARDS?


UNDRR Terminology

"Multi-hazard means:

(1) the selection of **multiplemajor hazards** that the country faces, and

(2) the specific contexts where hazardous events may occur **simultaneously, cascadingly or cumulatively over time**, and taking into account the potential **interrelated effects**." More-than-one-hazardsin-a-place (multi-layer single hazard)

- Discrete
- Independent

Holistic approach (**multihazard**)

- Interconnected
- Interacting
- Interrelationships

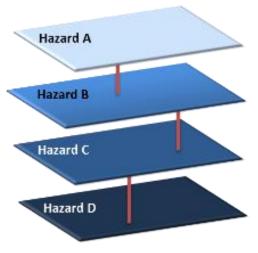
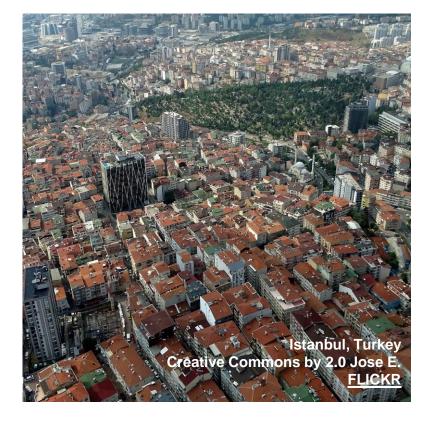



Figure from Gill and Malamud (2014) Rev. of Geophysics

1. MULTI-HAZARDS IN THE CONTEXT OF URBAN AREAS

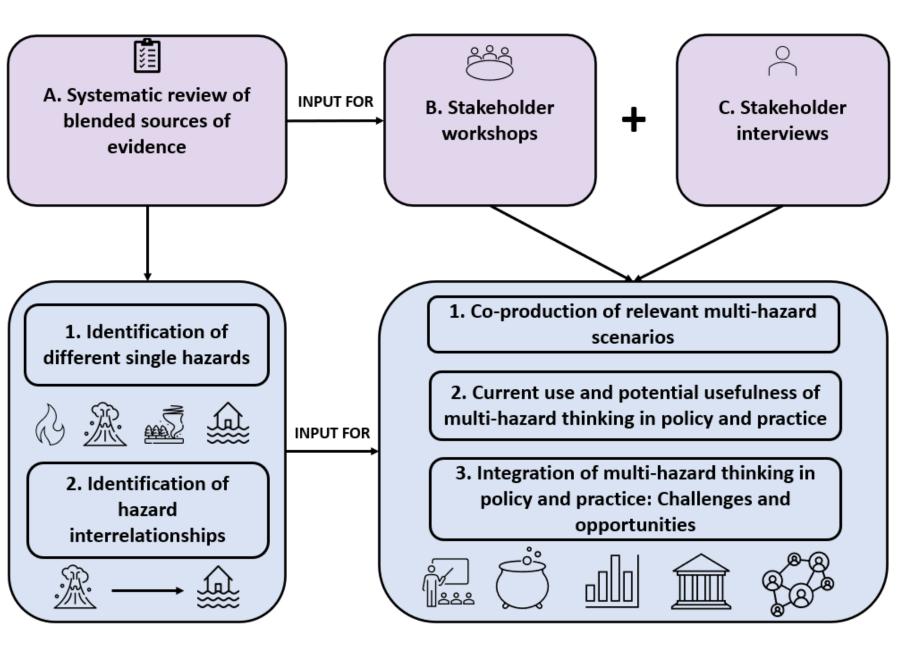
- Urban areas as hotspots of disaster risks and resulting impacts
- Increasing pressures such as rapid urban expansion, increasing populations, poor urban planning, and the global impacts of climate change are exacerbating both exposure and vulnerability to an array of natural hazards
- 95% of future urban development will happen in the context of low- and middle-income countries (UN-HABITAT, 2022): imperative for risk-informed urban development (Cremen et al., 2023)
- Interrelationships between hazards rarely considered

5

1. WHAT IS THIS WORK ABOUT?

- Utilising Nairobi (Kenya) and Istanbul (Türkiye) as case study examples, we aim to present and apply an approach to:
 - Characterize the full breadth of multi-hazards and their interrelationships in an urban setting.
 - **Co-develop multi-hazard scenarios of interest** for local stakeholders in urban areas.
 - Identify potential uses, challenges and opportunities for mainstreaming multi-hazard thinking in DRR efforts in urban areas in low- and middle-income countries.

UK Research and Innovation



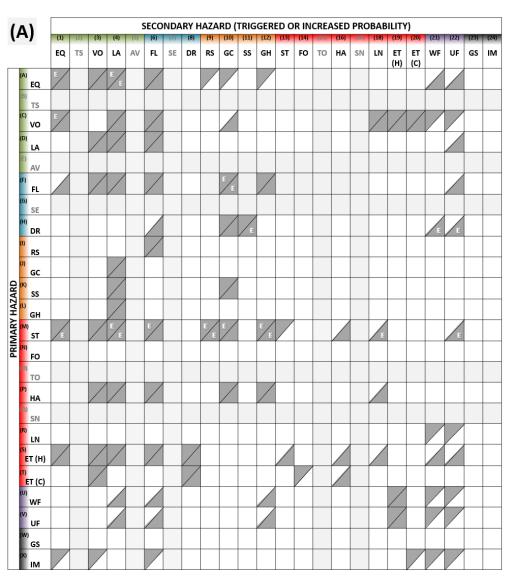
www.tomorrowscities.org

2. OUR APPROACH

2. METHODOLOGICAL APPROACH

3. RESULTS

3A. SYSTEMATIC REVIEW OF BLENDED SOURCES OF EVIDENCE

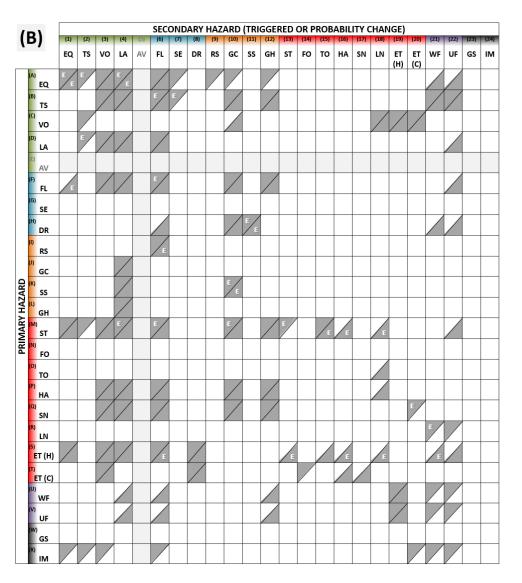

3A. IDENTIFICATION OF SINGLE HAZARDS

	KEY	
HAZARD GROUP	HAZARD	CODE
	Earthquake	EQ
	Tsunami	TS
GEOPHYSICAL	Volcanic Eruption	VO
	Landslide	LA
	Snow Avalanche	AV
	Flood	FL
HYDROLOGICAL	Seiche	SE
	Drought	DR
	Regional Subsidence	RS
SHALLOW EARTH	Ground Collapse	GC
PROCESSES	Soil (Local) Subsidence	SS
	Ground Heave	GH
	Storm	ST
	Fog	FO
	Tornado	то
ATMOSPHERIC	Hailstorm	HA
AIWOSPHERIC	Snowstorm	SN
	Lightning	LN
	Extreme Temperature (Hot)	ET (H)
	Extreme Temperature (Cold)	ET (C)
BIOPHYSICAL	Wildfire	WF
DIOPHISICAL	Urban Fire	UF
SPACE	Geomagnetic Storm	GS
SPACE	Impact Event	IM

- We mapped all single hazards that might impact Istanbul and Nairobi (Classification amended from Gill & Malamud, 2014).
- Evidence for case studies and what might be theoretically possible using multiple sources using:
 - Peer-reviewed literature
 - Grey literature
 - Newspapers
 - Social media
 - Databases (e.g., DesInventar)
 - Expert input
- We found:
 - Istanbul: 23 natural hazards based on 57 sources of evidence
 - Nairobi: 19 natural hazards based on 69 sources of evidence
 - Detailed systematic databases of evidence available

1		
×.		
- 23	7	

3A. IDENTIFICATION OF HAZARD INTERRELATIONSHIPS: NAIROBI

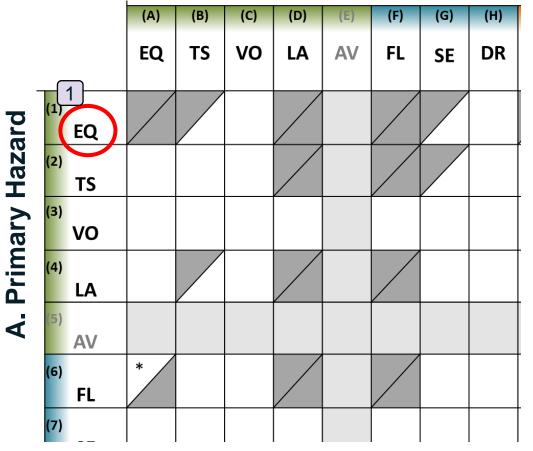


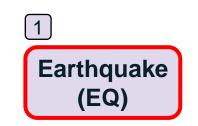
	NAIROBI KEY		
HAZARD GROUP	HAZARD	CODE	ROW, COLUMN
	Earthquake	EQ	A, 1
	Tsunami	TS	B, 2
GEOPHYSICAL	Volcanic Eruption	vo	С, З
	Landslide	LA	D, 4
	Snow Avalanche	AV	E, 5
	Flood	FL	F, 6
HYDROLOGICAL	Seiche	SE	G, 7
	Drought	DR	Н, 8
	Regional Subsidence	RS	I, 9
SHALLOW	Ground Collapse	GC	J, 10
EARTH PROCESSES	Soil (Local) Subsidence	SS	К, 11
	Ground Heave	GH	L, 12
	Storm	ST	M, 13
	Fog	FO	N, 14
	Tornado	то	0, 15
	Hailstorm	HA	P, 16
ATMOSPHERIC	Snowstorm	SN	Q, 17
	Lightning	LN	R, 18
	Extreme Temperature (Hot)	ET (H)	S, 19
	Extreme Temperature (Cold)	ET (C)	T, 20
BIODUNCICAL	Wildfire	WF	U, 21
BIOPHYSICAL	Urban Fire	UF	V, 22
CDA CE	Geomagnetic Storm	GS	W, 23
SPACE	Impact Event	IM	X, 24
SYMBOL	NAIROBI EXPLANATION		
	Hazard Triggers Secondary Hazard	d (Influend	ing Nairobi
	Hazard Increases Probability of S (Influencing Nairobi)	econdary	Hazard
	Hazard Both Triggers and Increas Secondary Hazard (Influencing Na		bability of
	Evidence for the Interrelationship (see Supplementary Materials Exc		
	Single Hazard (TS, AV, SE, TO, SN) Influence Nairobi (entire row and		

• Examined each pair of hazards from the single hazard databases for potential interrelationships (using blended evidence) and created a matrix visualization.

- For Nairobi we found:
 - **126** of potential hazard interrelationships.

3A. IDENTIFICATION OF HAZARD INTERRELATIONSHIPS: ISTANBUL

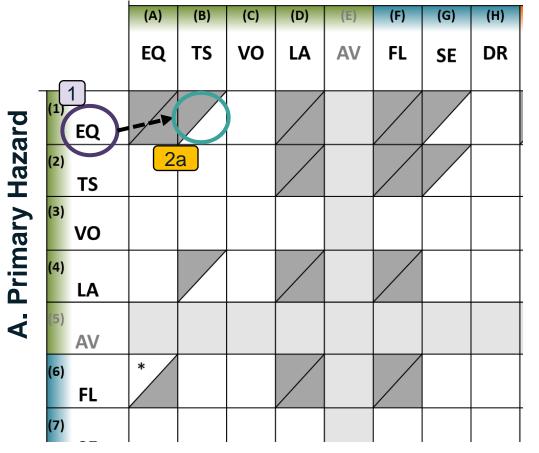

ISTANBUL KEY				
HAZARD GROUP		HAZARD	CODE	ROW, COLUMN
		Earthquake	EQ	A, 1
		Tsunami	TS	B, 2
¢	GEOPHYSICAL	Volcanic Eruption	VO	C, 3
		Landslide	LA	D, 4
		Snow Avalanche	AV	E, 5
		Flood	FL	F, 6
н	YDROLOGICAL	Seiche	SE	G, 7
		Drought	DR	H, 8
		Regional Subsidence	RS	I, 9
	SHALLOW	Ground Collapse	GC	J, 10
	EARTH PROCESSES	Soil (Local) Subsidence	SS	K, 11
		Ground Heave	GH	L, 12
		Storm	ST	M, 13
		Fog	FO	N, 14
		Tornado	то	0, 15
		Hailstorm	HA	P, 16
P	TMOSPHERIC	Snowstorm	SN	Q, 17
		Lightning	LN	R, 18
		Extreme Temperature (Hot)	ET (H)	S, 19
		Extreme Temperature (Cold)	ET (C)	T, 20
		Wildfire	WF	U, 21
	BIOPHYSICAL	Urban Fire	UF	V, 22
		Geomagnetic Storm	GS	W, 23
	SPACE	Impact Event	IM	X, 24
SYMBOL ISTANBUL EXPLANATION				
Primary Hazard Triggers Secondary Hazard (Influencing Istanbul)				
		Primary Hazard Increases Probabi Hazard (Influencing Istanbul)	lity of Seco	ndary
_	Primary Hazard Both Triggers and Increases the Probability of Secondary Hazard (Influencing Istanbul)			
		Evidence for the Interrelationship (see Supplementary Materials Exc		,
		Single hazard (snow avalancheA influence Istanbul (entire row and	,	

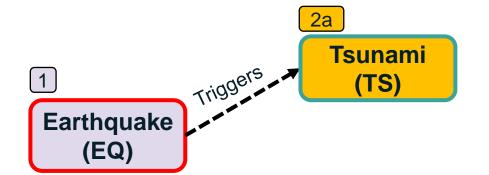

• For **Istanbul** we found:

• **163** of potential hazard interrelationships.

IASA

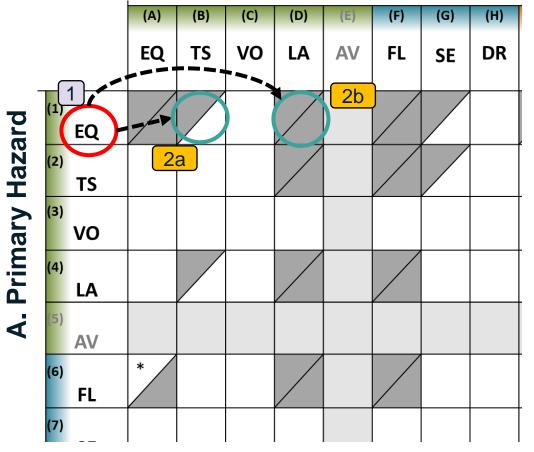
B. Secondary Hazard

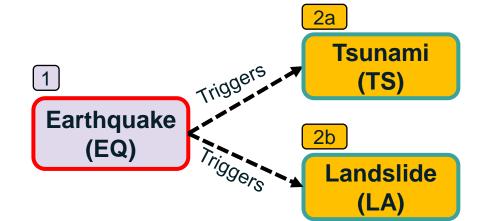




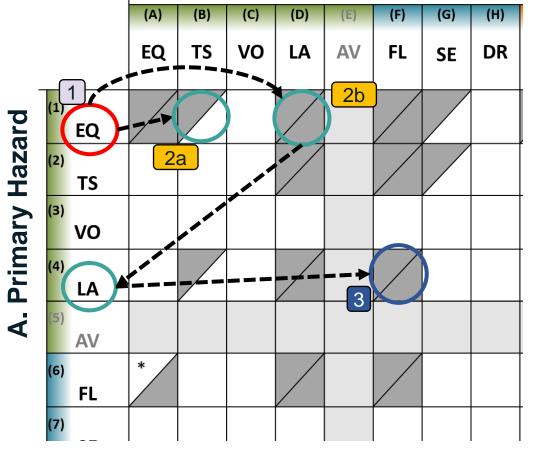
Paper in prep.

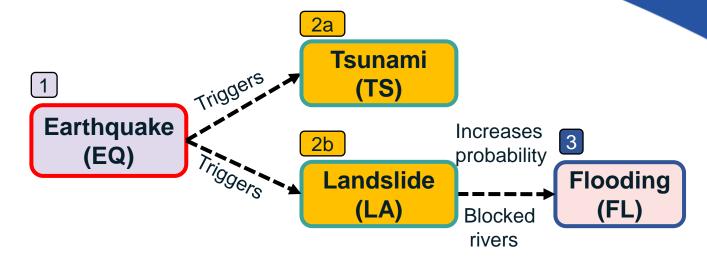
B. Secondary Hazard





Paper in prep.


B. Secondary Hazard

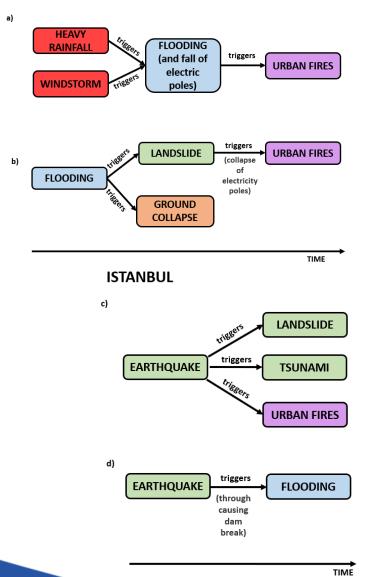


B. Secondary Hazard

3. RESULTS

3B. WORKSHOPS AND INTERVIEWS

3B. MULTI-HAZARD SCENARIOS OF INTEREST FOR STAKEHOLDERS


	Example	scenarios identified by Nairobi participants
WORKSHOPS	Scenario 11: Scenario 12: Scenario 13: Scenario 14:	Heatwave -> Drought and at the same time WIIdFire followed at a later time by Flooding -> Ground Collapse
INTERVIEWS	Scenario 18: Scenario 19: Scenario 10:	Flooding -> Landslides Flooding -> Urban Fire due to improper wiring Lightning -> Urban Fire

Example scenarios identified by Istanbul participants

	Scenario 1:	Heavy rains (Storm) followed by Earthquake -> Flood + Landslide + Tsunami + Regional subsidence + Ground Collapse
WORKSHOPS	Scenario 2:	Earthquake -> Ground Collapse + building Collapse -> Urban Fire
	Scenario 3:	Storm -> Flood
	Scenario 4:	Storm -> Flood + Hail + (coincident) Earthquake
	Scenario 5:	Earthquake -> infrastructure damage -> Flood
	Scenario 6:	rains (Storm) -> dam Collapse -> Flood
	Scenario 7:	Lightning -> Fire
	Scenario 8:	Extreme temperature (heat) -> rain (Storm) -> Flood ->
		building Collapse + Landslide + Ground Collapse or heave + infectious disease
	Scenario 9:	Earthquake -> Liquefaction + Ground deformation
	Scenario 10:	Earthquake -> Landslide + Tsunami + Urban Fire + release of hazardous chemicals/contaminants
INIEKVIEWS	Scenario 11:	Earthquake -> Tsunami -> Landslide
		Earthquake -> Liquefaction
	Scenario 13:	Earthquake -> Landslide
	Scenario 14:	Earthquake -> dam damage -> Flood
	Scenario 15:	Earthquake -> Tsunami + dam damage + Urban Fire -> Flood

3B. MULTI-HAZARD SCENARIOS OF INTEREST FOR STAKEHOLDERS

NAIROBI

Some observations on co-produced scenarios:

- **Thinking beyond natural hazards**: e.g., the importance of including disease outbreaks and interactions with anthropogenic processes (e.g., waste management, illegal electricity connections) resulting in impacts.
- Dynamics of exposure and vulnerability

in multi-hazard scenarios in Nairobi:

- After floods, people move to higher grounds where they're now exposed to landslides.
- After fires, people moved to flood zones.
- After fires, people move to a new area, lacking social networks or access to previous sources of employment.

18

3B. PERCEIVED BENEFITS OF MULTI-HAZARD THINKING

- **Increased preparedness and understanding of impact**: planning around what might happen, awareness raising on cascading impacts, identification of vulnerable groups and targeted interventions, planning of early actions and impact-based EWS
- **Improved disaster response and recovery:** coordination of different institutions in response, reduction of recovery times through multi-hazard-informed preparedness plans
- Prevention of risk creation: prevention of new risks in the planning process
- **Understanding capacity and resource needs:** understanding capacity needs of different institutions and better response planning
- **Informing urban planning and regeneration:** risk-informed planning and stress-testing of existing policies
- **Creation of inclusive disaster risk management policies:** consideration of dynamic risk components helps in the identification of pro-poor approaches.
- **Improvement of existing plans:** Full consideration of multi-hazards would enhance already existing risk reduction initiatives (e.g., risk reduction plans and urban planning documents).

3B. PERCEIVED CHALLENGES AND OPPORTUNITIES IN INCORPORATING MULTI-HAZARD THINKING IN DISASTER RISK REDUCTION

Challenges

Governance-related challenges

- Siloes in policy and practice between different institutions, characterized by single-hazard focused thinking.
- Lack of coordination and communication
- Centralized policy-making
- Lack of enforcement of regulations
- Lack of implementation instruments
- Human and financial resources
- Understanding of multi-hazards and associated risks
- Response-focused disaster risk
 management
- Focus on imminent risks

Opportunities:

- **Increased awareness** of the **factors** that might **influence risk dynamically** in their **urban region** as a possible catalyst.
- Ongoing development and revision of policies and legislations.
- More studies resulting in better understanding.

4. CONCLUSIONS

4. SOME CLOSING REMARKS

- We provide an approach to characterize the full breadth of single hazards and their multihazard interrelationships in urban areas, co-develop multi-hazard scenarios of interest for local stakeholders, and identify practicalities of mainstreaming multi-hazard thinking in DRR efforts.
- The approach can be used for exploring multi-hazard interrelationships in different urban settings, and could be particularly useful in the context of urban areas in low- and middleincome countries where data is often scarce.
- Nairobi and Istanbul are prone to a vast array of possible natural hazards and a large number of interrelationships between them.
- These scenarios also offer an opportunity to engage in discussions on the dynamics of disaster risk and its components.
- Considering multi-hazards offers benefits across different aspects of disaster risk management. However, mainstreaming of multi-hazard thinking in policy and practice remains hindered by many challenges; the main one being various aspects of disaster risk governance.

SOME ONGOING INITATIVES

Inter-journal Special issue of NHESS/ESD/ESSD/GC/HESS

Methodological innovations for compound and multi-risk

Submit your paper

Early Career editorial team: Marleen de Ruiter, Robert Šakić Trogrlić, Anaïs Couasnon, Antonia Sebastian, Silvia De Angeli, Aloïs Tilloy, Avantika Gori

iScience

Call for papers: Early warning systems (EWS) in the context of multi-hazard risk: Challenges and a way forward Submission deadline: March 31st, 2024 **Guest editors**

Marleen de Ruiter Vrije Universiteit Amsterdam Netherlands

Robert Šakić Trogrlić Systemic Risk and Resilience Research Group, IIASA Austria

Submit your paper

Melanie Duncan British Geological Survey United Kingdom

3rd International Conference

Natural Hazards and Risks in a Changing World

Adressing Compound and Multi-Hazard Risk

JUNE 12–14, 2024 Amsterdam, The Netherlands

The MYRIAD-EU project has received funding from the European Union's Horizon 2020 research and innovation programme call H2020-LC-CLA-2018-2019-2020 under grant agreement number 101003276

Thank you for your time

Any questions?

Dr. Robert Sakic Trogrlic Advancing Systems Analysis Programme, IIASA <u>trogrlic@iiasa.ac.at</u>