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Abstract 

For a vast majority of organisms, life-history processes depend on their physiological state, such as 

body size, as well as on their environment. Size-structured population models, or more generally, 

physiologically structured population models (PSPMs), have emerged as powerful tools for modelling 

the population dynamics of organisms, as they account for the dependences of growth, mortality, 

and fecundity rates on an organism’s physiological state and capture feedbacks between a 

population’s structure and its environment, including all types of density regulation. However, 

despite their widespread appeal across biological disciplines, few numerical packages exist for 

solving PSPMs in an accessible and computationally efficient way. The main reason for this is that 

PSPMs typically involve solving partial differential equations (PDEs), and no single numerical method 

works universally best, or even at all, for all PDEs. Here, we present libpspm, a general-purpose 

numerical library for solving user-defined PSPMs. libpspm provides eight different methods for 

solving the PDEs underlying PSPMs, including four semi-implicit solvers that can be used for solving 

stiff problems. Users can choose the desired method without changing the code specifying the 

PSPM. libpspm allows for predicting the dynamics of multiple physiologically structured or 

unstructured species, each of which can have its own distinct set of physiological states and 

demographic functions. By separating model definition from model solution, libpspm can make 

PSPM-based modelling accessible to non-specialists and thus promote the widespread adoption of 

PSPMs. 

Introduction 

Organisms from the plant and animal kingdoms vary over 21 orders of magnitude in body mass 

(Jungers, 1986). Even when focusing on a single individual, growth-driven variation in body size can 

span several orders of magnitude between juvenile and adult life stages. Such ontogenetic variation 

naturally gives rise to strongly size-dependent life-history processes and size-asymmetric 
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interactions among individuals. Individual rates of growth, mortality, and fecundity (collectively 

known as demographic rates) are not only varying with body size but are also modulated by the 

environment, which may include components that are independent of population structure (the 

non-feedback environment, e.g., temperature) and components that are affected by the population 

structure (the feedback environment, e.g., the abundance of a shared resource). Furthermore, the 

size dependence of life-history processes leads to size-dependent demographic trade-offs, i.e., 

trade-offs between growth, survival, and reproduction, which have led to the evolution of diverse 

life-history strategies. In addition to body size, usually measured in terms of length or weight, 

fundamentally different continuously variable dimensions of physiological population structure 

might be important too, such as gonad sizes, body conditions, energy reserves, metabolite 

concentrations, morphological shapes, symbiont densities, and microbiome compositions. 

Therefore, realistic predictions of the structure, dynamics, and life-history strategies of populations 

of organisms typically require accounting for a population’s physiological structure and its feedbacks 

with the environment. 

Several modelling approaches exist for solving models with explicit physiological structure. In two of 

the most widespread and complementary approaches, population-level properties emerge from 

individual physiology and behaviour (Nisbet et al., 2016). They are: (1) individual-based models, also 

called agent-based models (ABMs), and (2) physiologically structured population models (PSPMs). 

ABMs are the most general approach to population modelling (Grimm, 1999). They are simpler to 

formulate, as they explicitly represent populations as collections of individuals and describe life-

history processes and events at the level of individuals. However, ABMs are computationally 

intensive and, owing to the need for describing a finite number of agents, subject to demographic 

stochasticity. PSPMs (de Roos, 1997) offer an alternative, deterministic approach, which works well 

for large spatially homogeneous populations. A PSPM typically involves solving a transport equation, 

which is a partial differential equation (PDE) that describes the flow of individuals within a state 

space. Another approach for describing PSPMs based on renewal equations has also been developed 

(Diekmann et al., 2020), but it is better suited to model inter-generational change, whereas PDEs can 

describe the dynamics of a population in continuous time. 

Specifying a PSPM using additional assumptions leads to three other classes of simpler models: (1) 

PDEs discretised in time, (2) PDEs discretised in state, and (3) PDEs discretised in both time and 

state. First, if the underlying PDE is discretized in time, we get a class of approaches called Integral 

Projection Models (IPMs), which can project a continuous state distribution from one time step to 

the next. The projection depends on demographic rates, which are typically estimated from 

observed data (Doak et al., 2021; Merow et al., 2014). Second, if we discretize the PDE only in state, 

we get stage-structured models, suitable for organisms with naturally discrete life-history stages. 

They entail solving a system of ordinary or delay differential equations (de Valpine et al., 2014). 

Finally, discretizing in both time and state leads to matrix population models (Crone et al., 2011), 

which are mathematically tractable and computationally efficient but are suitable only for organisms 

with naturally discrete life-history stages with constant probabilities of transitioning between stages. 

In principle, a finely state-discretized version of a PDE-based PSPM can be thought of as a matrix 

population model with time-varying matrix coefficients. In that sense, PSPMs combine the best of 

both worlds, i.e., the generality of ABMs with the computational tractability of matrix population 

models. 

Several fundamentally different numerical schemes have been developed for solving transport 

equations in the context of fluid dynamics, meteorology, oceanography, and geophysics. However, 

standard PDE solvers that have been developed for such problems are not best suited for PSPMs 
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because of the following reasons: (1) PSPMs have a solution-dependent boundary condition, (2) 

PSPM solutions have non-local dependencies, and (3) some problems are stiff (i.e., while solving 

them with explicit schemes, the numerical time integration breaks down or gets stuck with 

unreasonably small time steps),  and require some amount of trial and error in choosing the best-

suited numerical scheme for solving them. Existing software packages for solving PSPMs are limited 

in terms of the kinds of PSPMs that can be solved and the methods used to solve them. Examples 

include (1) EBTtool, which is the numerical solver in the PSPManalysis package (de Roos, 2021) and 

can solve PSPMs with multi-dimensional individual states and a distributed boundary condition but 

implements only one numerical method, the Escalator-Boxcar-Train (EBT), (2) Mizer (Scott et al., 

2014), which can handle multiple species but only solves size-structured and thus one-dimensional 

models in the limited context of fisheries with a hard-coded biological model, and (3) Plant (Falster 

et al., 2011, 2017), which solves size-structured models using the characteristic method (CM) but 

only in the limited context of plant communities with a hard-coded biological model. 

Wider adoption of PSPM modelling will be greatly facilitated by a computational tool that is (1) 

ecologically versatile by being applicable to a broad class of user-defined PSPMs, potentially with 

multiple interacting species, and (2) computationally flexible by allowing the application of multiple 

numerical methods to the same problem without having to change any model-specification code. 

Here, we present libpspm, a general-purpose numerical package for solving PSPMs. Compared to 

existing alternatives, the strength of libpspm lies in the following key features: (1) it enables users to 

define their own PSPM by specifying functions to compute the demographic rates and 

environmental conditions, (2) it provides users with the ability to switch, without making any 

modifications to the code, between eight different numerical methods, including semi-implicit 

methods for solving stiff problems, and (3) it allows users to model multispecies communities, with 

each species represented by either a structured or an unstructured population and with each species 

potentially having its own set of physiological states and demographic functions. By providing easy 

access to the numerical solution of the underlying PDE, libpspm will facilitate the widespread 

application of PSPMs to a variety of problems by separating ecological model definition from 

computational model solution, enabling researchers to focus on their system’s ecology. 

Methods 

PSPM definition. A physiologically structured population model (PSPM) describes how the 

distribution of individuals in the physiological state space evolves through time. The state space is 

spanned by 𝑛 individual physiological state variables (𝑖-state variables; 𝑥1, 𝑥2, … , 𝑥𝑛). 

At its core, a PDE-based PSPM is typically represented by the McKendrick-von Foerster equation, 

 
∂𝑢(𝒙, 𝑡)

∂𝑡
= −∇ ⋅ (𝒈(𝒙, 𝑡, 𝐸)𝑢(𝒙, 𝑡)) − 𝜇(𝒙, 𝑡, 𝐸)𝑢(𝒙, 𝑡), (1) 

where vector quantities are expressed in bold letters; 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]T is the 𝑖-state variable, 

𝑢(𝒙) is the density of individuals in state space, such that the number of individuals within a small 

volume d𝒙 centred at 𝒙 is 𝑢(𝒙)d𝒙, 𝒈(⋅), 𝜇(⋅), and 𝛽(⋅) are the demographic rates of individual 

growth, mortality, and reproduction, respectively, as functions of the 𝑖-state 𝒙, the environment 𝐸, 

and time 𝑡. The growth rate 𝒈 specifies the rate of change of all components of the 𝑖-state, 

𝒈(𝒙, 𝑡, 𝐸) = [
∂𝑥1

∂𝑡
,
∂𝑥2

∂𝑡
, … ,

∂𝑥𝑛

∂𝑡
]

T

. 
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The first term on the right-hand side of Eq. 1 represents the change in the density of individuals in 

state 𝒙 due to growth, whereas the second term represents the decrease in the density of 

individuals due to mortality. 

Assuming that all individuals are identical at birth with 𝑖-state 𝒙b, Eq. 1 has an additional condition 

for the population density at the boundary, 

 𝝍 ⋅ (𝒈(𝒙b, 𝑡, 𝐸)𝑢(𝒙b, 𝑡)) = ∫ 𝛽(𝒙, 𝑡, 𝐸)𝑢(𝒙, 𝑡)
Ω

d𝒙, (2) 

where 𝝍 is the inward normal to the boundary surface at 𝒙b, and Ω is the entire state space, i.e., the 

domain of 𝒙. 

Eq. 1 also has a specified initial condition, 

 𝑢(𝒙, 0) = 𝑢0(𝒙), (3) 

The boundary condition represents the fact that the inflow of individuals entering state 𝒙b due to 

the birth of newborn individuals (produced by all individuals in the population; right-hand side of Eq. 

2) must equal the outflow of individuals exiting state 𝒙b due to the growth of newborn individuals 

(left-hand side of Eq. 2). 

The feedback environment 𝐸 is affected by all individuals in the population and thus often involves 

computing integrals over the state space. It typically takes the form 

 𝐸(𝑡) = ∫ 𝑤(𝒙, 𝑡)𝑢(𝒙, 𝑡)𝑑𝒙
Ωs

, (4) 

where 𝑤 is some weighting function and Ωs is some subset of Ω. 

PSPM definition for one-dimensional state space. PSPMs often consider only one state variable, 

typically the body size or related variables such as body weight and body energy reserves. For a one-

dimensional state space, Eqs. 1-3 reduce to 

 

∂𝑢(𝑥, 𝑡)

∂𝑡
= −

∂

𝜕𝑥
(𝑔(𝑥, 𝑡, 𝐸)𝑢(𝑥, 𝑡)) − 𝜇(𝑥, 𝑡, 𝐸)𝑢(𝑥, 𝑡), 

𝑔(𝑥b, 𝑡, 𝐸)𝑢(𝑥b, 𝑡) = ∫ 𝛽(𝑥, 𝑡, 𝐸)𝑢(𝑥, 𝑡)
∞

𝑥b
d𝑥, 

𝑢(𝑥, 0) = 𝑢0(𝑥). 

(5) 

This work focuses on one-dimensional PSPMs with one or more species. However, libpspm will 

support multi-dimensional state spaces in the near future. 

Numerical solution. To solve the McKendrick-von Foerster equation, four numerical schemes are 

commonly employed: (1) the fixed-mesh upwind method (Sulsky, 1993; Ackleh & Ito, 1997; Fischer 

et al., 2006; Krzyzanowski et al., 2006; Hartvig et al., 2011), (2) the characteristic method (Angulo et 

al., 2014, 2016; Angulo & López-Marcos, 2002, 2004; Falster et al., 2016; Ito et al., 1991; Kostova, 

2003), (3) the escalator-boxcar-train method (Brännström et al., 2013; de Roos, 1988), and (4) the 

agent-based method (Nisbet et al., 2016). We implement two versions of the first three schemes, 

one with an explicit integration method and one with a semi-implicit integration method. The agent-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2023. ; https://doi.org/10.1101/2023.08.04.551683doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551683
http://creativecommons.org/licenses/by/4.0/


5 
 

based method can be used as a baseline for comparison and as the main solver method for high-

dimensional models. For the semi-implicit fixed-mesh upwind method, a first-order implementation 

is – as we show in the results – highly robust but prone to high levels of numerical diffusion. 

Therefore, we also provide an option to use a second-order version of this method, also called the 

linear upwind differencing method. Furthermore, we implement two state-of-the-art explicit ODE 

solvers from which users can choose – Runge-Kutta 4-5 Cash-Karp (Cash & Karp, 1990) and LSODA 

(Hindmarsh & Petzold, 2005). Thus, we have a total of eight solver methods: (1-2) explicit and semi-

implicit fixed-mesh upwind methods (FMU and IFMU), (3) semi-implicit linear upwind differencing 

method (ILUD), (4-5) explicit and semi-implicit characteristic methods (CM and ICM), (6-7) explicit 

and semi-implicit EBT methods (EBT and IEBT), and (8) agent-based method (ABM). A conceptual 

description of the FMU, EBT, and CM methods can be found in (Zhang et al., 2017). A full description 

and implementation details of all the methods can be found in the Supplementary Information. 

Test models. To demonstrate the application of the aforementioned methods to PSPMs, we have 

chosen three reference models – the first two have analytical equilibrium solutions, allowing us to 

use them to assess the accuracy of the numerical methods. They also have specific modelling 

requirements, allowing us to showcase the features of libpspm. The third model is a complex 

vegetation model, allowing us to demonstrate not only the successful application of libpspm to a 

real-world problem, but also to construct and demonstrate certain problematic situations in which 

some numerical methods may break down or give divergent solutions. 

(1) The first model, from the animal kingdom, describes a size-structured population of a water flea, 

Daphnia, feeding on an unstructured algal resource (De Roos et al., 1990). The growth rate of the 

fleas depends on body size and algal resource availability, whereas the algae get consumed by the 

fleas and follow logistic regeneration dynamics. This model requires the solver to handle both 

structured and unstructured species and has the characteristic that the flea size distribution has a 

singularity at a certain size because fleas cease to grow beyond that size due to competition for 

food. 

(2) The second model, from the plant kingdom, is a simplified version of a vegetation demographics 

model called RED (for Robust Ecosystem Demographics), which represents a mass-structured 

population of trees (Argles et al., 2019). Each tree grows allometrically, and the recruitment of 

seedlings depends on the shading caused by standing trees. This model has the feature that plant 

size (measured in terms of individual plant biomass) can span six orders of magnitude, and the 

density distribution can reach extremely small values (~10−20 individuals per unit area per unit size) 

at higher sizes. 

(3) The third model, again from the plant kingdom, is the ‘Plant’ model that describes a height-

structured mixed-species community of plants competing for light (Falster et al., 2011, 2017). Taller 

plants shade other plants below them. Plant growth, mortality, and fecundity rates depend on their 

photosynthetic rates, which in turn depend on the light availability throughout their vertically 

extended crowns. The germination of seedlings also depends on the light availability near the 

ground. Competition between species leads to successional dynamics, such that early successional 

species are gradually replaced by mid and late successional species. In our implementation, species 

are characterized by their leaf mass per unit leaf area (LMA), which affects the investment in leaf 

biomass and leaf turnover rate, and consequently affects their demographic rates. The peculiarity of 

this model is that it can become stiff under certain conditions. 
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Criteria for evaluation of numerical methods. We evaluate the performance of the numerical 

methods using the following criteria. (1) accuracy – this is defined in terms of the ‘biomass relative 

error’ 𝑒 at equilibrium, 

𝑒 =
|𝑀numerical − 𝑀analytical|

𝑀analytical
, 

with 

𝑀 = ∫ 𝑥𝑢(𝑥)d𝑥
𝑥m

𝑥b

, 

where 𝑀 is a mathematical analogue of the total population biomass; (2) efficiency – this is 

measured in terms of execution time, and (3) robustness – this is a qualitative measure. A method is 

robust if it does not break (i.e., does not predict negative or exponentially increasing densities) and 

does not get stuck with unreasonably small timesteps. The former typically happens when mortality 

rates become too high, whereas the latter typically happens with stiff problems. We also 

qualitatively assess the methods based on the amount of numerical diffusion in the predictions, and 

the method’s versatility (e.g., whether it can be readily extended to multi-dimensional physiological 

states). 

libpspm. libpspm is a numerical library for solving user-defined PSPMs. For best computational 

performance, it is implemented in C++, with an intuitive interface that allows defining, setting up, 

and simulating PSPMs in three easy steps (Box 1). Box 2 lists key features available for additional 

model specification and performance optimization. libpspm is open source and is available here: 

https://github.com/jaideep777/libpspm. Detailed package documentation and tutorials are also 

available at the associated package website: https://jaideep777.github.io/libpspm. Implementations 

of the test models and code to reproduce the figures in this paper is available in the ‘demo’ folder in 

the package. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2023. ; https://doi.org/10.1101/2023.08.04.551683doi: bioRxiv preprint 

https://github.com/jaideep777/libpspm
https://jaideep777.github.io/libpspm
https://doi.org/10.1101/2023.08.04.551683
http://creativecommons.org/licenses/by/4.0/


7 
 

 

libpspm – PSPM modelling in three steps 

(1) To define a PSPM, define two classes for the Environment and the Individual (not 

necessarily with those names). These classes must inherit from the EnvironmentBase and 

IndividualBase classes provided by the library. In the derived classes, override the following 

member functions (one in Environment and four in Individual): 

class Environment : public EnvironmentBase{ 
    public: 
    // Compute the current Environment and rates for unstructured species 
    void computeEnv(double t, Solver * S, std::vector<double>::iterator s, std
::vector<double>::iterator dsdt); 
}; 
 
class Individual : public IndividualBase{ 
    public: 
    // return the initial density (initial condition)  
    double init_density(double x, void * _env, double bf); 
 
    // return demographic rates as functions of  
    // the physiological variable x, time t, and environment _env 
    double growthRate(double x, double t, void * _env); 
    double mortalityRate(double x, double t, void * _env); 
    double birthRate(double x, double t, void * _env); 
}; 

(2) To set up the PSPM solver, create an Environment object, create a species of Individuals, 

create a Solver by specifying the PSPM method and the ODE solver, and add the species and 

the environment to the solver. While creating the solver, it is possible to choose between the 

eight solver methods simply by changing the name of the method here, without any change to 

the rest of the code. 

Environment E; 
Species<Individual> spp; 

Solver S("ifmu"); // Choose the IFMU solver method  

// add the created Environment 'E' and Species 'spp' to the solver  
S.setEnvironment(&E); 
S.addSpecies(25, xb, xm, false, &spp, 0, -1); 
 

(3) To solve the PSPM, simply initialize and step the solver to the desired final time: 

S.resetState(); 

S.initialize(); 

S.step_to(10); 

Box 1. Defining and solving a custom model with libpspm. 
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Results libpspm – Additional features 

We briefly describe the additional features offered by libpspm for further model specification 

and performance optimization. Tutorials on their usage are available with the package.  

(1) Computing integrals over state. State integrals are often required in the environment 

computation, but are computed differently for each discretization scheme. libpspm provides 

two functions to compute state integrals over the full range of states or above a threshold 

x_low, internally taking into account the method used by the solver. 

// w is the function to integrate, k is the species ID, t is time. 
S.integrate_x(w, t, k);  
S.integrate_wudx(w, t, x_low, k);  

(2) Unstructured species. To create unstructured species, it is possible to add ‘system variables’ 

to the solver, which are also stepped using the internal ODE solver. Their rates can be computed 

in the same function defined for environment computation. 

S.addSystemVariables(n); 

(3) Precomputation of the most intensive model components. Often, the demographic rates 

depend on a common quantity that is expensive to compute. E.g., in the Plant model, all rates 

depend on the photosynthetic rate. In such cases, the expensive quantity can be calculated in a 

separate function called ‘precompute’. The solver calls this function on-demand, i.e., a 

precompute is triggered by a change in the individual’s state or by a change in the environment, 

and the precomputation is executed just before the next demographic-rate computation. 

class Individual : public IndividualBase{ 

    public: 

    // do common expensive computations in this function  

    double precompute(double x, void * _env, double bf); 

}; 

(4) Cumulative variables. It is often desirable to track some cumulative quantities for individuals, 

i.e., quantities integrated over time. For e.g., we might be interested to know the cumulative 

mortality of individuals, which is defined as 𝑀(𝑡) = ∫ 𝜇(𝑥, 𝜏, 𝐸)𝑑𝜏
𝑡

0
. Such variables can be added 

while setting up the solver by defining the initialization and rate calculation for them. The solver 

then integrates them together with all other state variables. 

class MyIndividual : public IndividualBase{ 
    // Define these functions for cumulative variables 
    vector<double> init_state(double t, void * env); 
    vector<double>::iterator set_state(vector<double>::iterator &it); 
    vector<double>::iterator get_state(vector<double>::iterator &it); 
    vector<double>::iterator get_rates(vector<double>::iterator &it); 
}; 
 
S.addSpecies(…, 2, …); //  The number of cumulative variables is specified 
through the penultimate argument. 
 

Box 2. Additional libpspm features for specific modelling requirements and fine-tuning 

performance. 
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Results 

We first demonstrate the application of our eight numerical methods to the first two test problems – 

RED and Daphnia. We compare the analytical equilibrium size distributions with those simulated by 

libpspm. Among explicit methods (Fig. 1), all four are stable, implying that the RED and Daphnia 

models are not stiff. EBT and CM have the best accuracy for the RED model, whereas FMU has the 

best accuracy for the Daphnia model. CM and EBT end up with a lower resolution in the lower body-

size range in the Daphnia model. At computationally reasonable population sizes, the ABM gives 

highly noisy solutions for the Daphnia model and is unable to capture higher size classes in the RED 

model. Among the semi-implicit methods (Fig. 2), all methods give good predictions of the 

equilibrium size distribution for the Daphnia model. However, the transient size distributions 

predicted by the IFMU and ILUD methods suffer from numerical diffusion and predict smoother size 

distributions than expected. In the RED model, the ILUD method breaks at higher sizes, where it 

predicts negative densities. The IFMU method correctly predicts densities at lower sizes but diverges 

from the analytical solution at higher sizes. At a modest resolution, all methods correctly predict the 

temporal dynamics and equilibrium values of population-level reproduction rates in both the RED 

and Daphnia models, in spite of numerical diffusion in the semi-implicit upwind methods (Fig. 3). 

 

Fig. 1. Explicit methods perform well for the RED and Daphnia models. Numerical equilibrium size 

distributions (black lines) for the RED (top row) and Daphnia (bottom row) models compared with 

analytical solutions (thick orange lines) for the four explicit methods, FMU, EBT, CM, and ABM. Thin 

coloured lines show transient solutions, going from red at 𝑡 = 0 to purple for the last simulated 

time. 
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Fig. 2. All implicit methods work well for the RED and Daphnia models. Numerical equilibrium size 

distributions (black lines) for the RED (top row) and Daphnia (bottom row) models match analytical 

solutions (thick orange lines) for the three semi-implicit methods – IFMU, ILUD, IEBT, and ICM. Thin 

coloured lines show transient solutions, going from red at 𝑡 = 0 to purple for the last simulated 

time. Numerical diffusion can be clearly seen in the IFMU and ILUD methods, leading to smoother 

transient size distributions compared to the IEBT and explicit methods. 

 

 

Fig. 3. The eight methods differ slightly in their predictions of emergent population-level 

properties in the RED and Daphnia models. Predictions of transient and equilibrium population-

level reproduction rates in the two models differ slightly among the eight methods, but roughly 

agree with the theoretical value. 

We compare the performance of the eight methods using two metrics: (1) accuracy, measured in 

terms of the biomass error, and (2) efficiency, measured in terms of execution time (Fig. 4). For the 

Daphnia model, versions of the upwind scheme (FMU, IFMU, and ILUD) can be simulated at much 
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lower resolutions compared to other methods and have a higher accuracy at lower resolutions. 

However, the EBT method, despite having lower accuracy at lower resolution, quickly overtakes the 

upwind methods and emerges as the fastest method when higher levels of accuracy are desired. For 

the RED model, the CM and EBT vastly outperform the upwind methods, with an order-of-magnitude 

higher accuracy for the same execution times. The CM method has the worst, almost unacceptable, 

performance for the Daphnia model, as was also reported by (Zhang et al., 2017). Surprisingly, 

however, it emerges as the best performing method for the RED model. The ABM performs 

moderately well for both models and has only a modest improvement in accuracy with increasing 

resolution. The performance of the semi-implicit methods saturates with increasing resolution for 

both models, as the timestep becomes the bigger limiting factor at higher resolutions. 

 

Fig. 4. Performance ranking of the eight methods differs between models. Performance of the 

eight methods assessed in terms of the biomass relative error as a function of resolution (top row) 

and execution time (bottom row). Left panels represent the Daphnia model, whereas right panels 

represent the RED model. 

Next, we apply the eight methods to ‘Plant’ – a complex multispecies vegetation model. This model 

can be simulated in two ways – (a) forced mode, in which the boundary condition is calculated with 
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a fixed input ‘seed rain’ 𝐼 and seed survival probability 𝑠e, such that 𝑔b𝑢b = 𝑠e𝐼, i.e., the flux of 

offspring attempting to enter the population is held constant at each timestep, or (b) feedback 

mode, where the boundary condition is calculated as per Eq. 2. The forced mode is useful for 

predicting the equilibrium properties of a metapopulation of patches (Falster et al., 2017), whereas 

the feedback mode is useful for simulating the transient dynamics of a single patch. We simulated 

the model with three species, each with a different value of leaf mass per area (LMA). In the Plant 

model, species with low LMA are expected to be early successional and are thus expected to be 

replaced by species with progressively higher LMA. We compare the methods in terms of their 

predicted transient and equilibrium size distributions and reproductive output (seed rain). In forced 

mode, all eight methods predict similar transient and equilibrium solutions, albeit with varying 

resolutions (Fig. 6). The IFMU and ILUD methods predict incorrect transient seed rains at a resolution 

comparable to the other upwind methods but give the correct transient solutions when simulated 

with higher resolutions. This is because the IFMU has the highest numerical diffusion, as is also 

evident in its predictions of the size-distribution (Fig. 5), whereas the ILUD has the tendency to 

predict negative densities, especially if the timestep is not small enough. 

 

Fig. 5. All methods correctly simulate the time-evolution of the size distribution of three species in 

the Plant model. For the Plant model simulated with a fixed input seed rain with three species with 

different LMAs, all methods broadly agree on the solutions. 
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Fig. 6. The eight methods differ slightly in their predictions of emergent population-level 

quantities in the Plant model. Timeseries of the reproductive output (seed rain) of three species in 

the Plant model forced with a fixed input seed rain. All methods mostly agree on the solution. The 

fixed-mesh methods did not give the same results at comparable resolution. Here the FMU method 

was simulated with 199 cells, ILUD was simulated with 499 cells, and IFMU with 1069 cells. At lower 

resolution, the ILUD method predicts negative seed rains for parts of the trajectory, and the IFMU 

solver predicts seed rains with high errors. 

The Plant model in feedback mode can become stiff, allowing us to construct and demonstrate two 

kinds of problematic situations one should be wary of in simulating real-world PSPMs. First, when 

starting from ‘bare ground’, with a minimal number of seeds, i.e., 𝑢(𝑥, 0) = 𝑢0𝛿(𝑥 − 𝑥b), where 

𝛿(𝑥) is the Dirac delta function, the eight methods do not agree on the transient solution. This is 

because the model is started with an extremely specific and rather artificial initial condition, leading 

to an accumulation of errors that are characteristic to the method and have little opportunity to 

average out. Thus, even slight differences in the initial condition (arising, for e.g., from the 

differences in discretization) lead to slightly different seed outputs, which feed back into the 

population and lead to divergent transients among the eight methods (Fig. S1). Indeed, this is a 

tricky initial condition that few numerical schemes are developed to handle. The solution to this 

problem is to ensure that the initial condition is slightly spread out. Second, when starting from an 

initial size distribution of the form 𝑢(𝑥, 0) = 𝑢0𝑒−𝑥/4, the problem is stiff. Six of the eight methods 

break down in this case. The solution to this problem is to use semi-implicit methods: particularly, 

we found that the IFMU and IEBT remain stable (Fig. S2, Fig. S3). We also note that in this case, since 

the initial condition is more spread out, accumulation of errors is less characteristic of the 

discretization scheme, and the two methods agree on the transient solution (Fig. S2). 

Discussion 

We have demonstrated the applicability and limitations of eight methods for solving PSPMs, and 

presented a numerical library that allows for simulating any user-defined PSPM with any of the eight 
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methods. Broadly, the eight methods can be categorized in two ways – (1) grid-based (upwind 

methods) vs cohort-based (EBT and CM), or (2) explicit vs implicit. The advantage of cohort-based 

methods is that they are fast and highly accurate, but the disadvantage is that their predictions of 

the full density distribution suffer from low resolution at the lower end of the physiological axis. 

Among the explicit methods, we found that the EBT method consistently delivered the best 

performance and was the fastest method when high accuracy was desired. The IFMU method was 

the most robust and worked for all test problems, while the explicit methods (FMU, EBT, CM), ILUD 

and ICM did not work for the Plant model running in feedback mode. While the IEBT also worked in 

all situations, and should work for most practical problems, it is possible to conceive specific 

situations under which it could become unstable, for e.g., when the boundary cohort has a very high 

growth rate gradient. The IFMU method had the highest numerical diffusion, but this did not 

necessarily compromise its predictions of integrated population-level properties. 

While the ABM’s performance was (unsurprisingly) significantly lower than ODE based methods, it is 

extremely versatile, and allows for modelling features that are difficult to incorporate in ODE-based 

methods. We illustrate this point with two examples. First, if the population is structured along 

multiple variables, i.e., the individual state has dimensionality 𝑚 > 1, the complexity of grid-based 

methods will increase exponentially with 𝑚, i.e., 𝑂(𝑛𝑚), where 𝑛 is the grid resolution. On the other 

hand, the EBT and CM are more amenable to handle multi-dimensional state variables, because they 

can skip simulating empty regions of the state-space. The ABM is even more amenable to such 

situations, and can readily handle states of any dimensionality. Second, cohorts or grid-cells in the 

ODE-based methods consist of necessarily identical individuals. Although trait variation can be 

accounted for by simulating multiple ‘species’ differing in their trait values (as in the Plant model), 

the number of species scales exponentially with the number of traits required. The ABM can readily 

account for trait variation among individuals and species, but at the expense of demographic 

stochasticity that increases with the number of traits and state variables. Table 1 shows a 

comparison of all the methods with respect to five evaluation criteria. 

Method Accuracy Efficiency Robustness Diffusion Versatility  

FMU Moderate Moderate Moderate Moderate Low 

IFMU Low-moderate Low-moderate Guaranteed Very high Low 

ILUD Moderate High Low Moderate Low 

EBT Very high Very high Moderate Zero High 

IEBT Moderate Very high High Zero High 

CM Inconsistent High Moderate Low Moderate 

ICM Inconsistent High Moderate Low Moderate 

ABM Low Very low Guaranteed Zero Very high 

Table 1. Comparison of the eight methods with respect to different criteria. 

The question then arises, which numerical method is suitable for a given problem? In general, in the 

interest of accuracy, we recommend using the EBT or CM methods first, especially if only integrated 

population-level quantities are desired in the final outputs. If accurate predictions of the full density 

distribution are required, then we recommend using the FMU method. Some problems can be stiff. 

It is difficult to assess beforehand whether a specific problem is stiff or not. The best option is to try 

an explicit method, and if it breaks (that is an indication that the problem is stiff), the IFMU or IEBT 

methods are a good choice. Note that the CM method implemented here solves for point mass 

density, but it is possible to conceive a finite-volume implementation of this method, which could 
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resolve the problem of non-uniform resolution across the range of states. Our recommendations are 

summarized in Table 2. 

Method Problem is not stiff Problem is stiff 

Full density distribution desired FMU IFMU 

Only integrated population-level quantities desired EBT or CM IEBT 

Table 2. Recommended methods in different situations. 

With advancements in computational infrastructure, biological models, aiming at incorporating 

greater realism, are continuously getting ever more complex. Incorporating the size structure of 

populations is one such dimension of complexity that has particularly come into focus, for e.g., in 

vegetation modelling with the advent of vegetation demographic models (VDMs). However, many 

such models, being already computationally intensive, do not allow for a rigorous testing of the 

numerical methods used to solve them. For example, some cohort-based vegetation models use a 

discretization scheme similar to the EBT but ignore the boundary cohort dynamics. We found that 

doing so introduces large errors in the numerical solutions (not shown). Thus, by providing multiple 

choices for handling computational complexity and separating model specification from numerical 

model solution, libpspm has the potential to play a critical role in development of the next-

generation size-structured models. 
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