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A B S T R A C T

Nonpharmaceutical interventions (NPI) are an important tool for countering pandemics such as COVID-19.
Some are cheap; others disrupt economic, educational, and social activity. The latter force governments to
balance the health benefits of reduced infection and death against broader lockdown-induced societal costs.
A literature has developed modeling how to optimally adjust lockdown intensity as an epidemic evolves.
This paper extends that literature by augmenting the classic SIR model with additional states and flows
capturing decay over time in vaccine-conferred immunity, the possibility that mutations create variants that
erode immunity, and that protection against infection erodes faster than protecting against severe illness. As
in past models, we find that small changes in parameter values can tip the optimal response between very
different solutions, but the extensions considered here create new types of solutions. In some instances, it can
be optimal to incur perpetual epidemic waves even if the uncontrolled infection prevalence would settle down
to a stable intermediate level.
1. Introduction

1.1. Motivation and guiding research questions

The COVID-19 pandemic created a dilemma. When and to what
extent should costly nonpharmaceutical interventions (NPI) be used
to slow contagious spread? This paper addresses that question with a
dynamic optimization model that considers not only the conventional
infection dynamics of a SIR model (see Kermack and McKendrick,
1927) but also the possibilities that (1) immunity to infection by the
current virus variant ebbs over time (e.g., vaccines’ protections are
time-limited), (2) the virus may mutate producing a variant that under-
mines prior immunity, and (3) protection against severe consequences
is more persistent than immunity to infection (i.e., ‘‘breakthrough’’
infections are generally not as severe). We refer to these three addi-
tional features as ‘‘novelties’’ and investigate the effects of adding each
successively to the basic SIR model. We then also add (4) an inflow
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of infections even when no one in the focus population is infected
(e.g., infection entering from abroad), which is not really a novelty,
but does affect the results somewhat.

The primary findings or contributions of enriching COVID-19 mod-
eling in this way are: (a) Showing this can make a new type of
intermediate ‘‘persistent waves’’ strategy optimal, (b) Confirming prior
findings of indifference points at which small changes in parameters
can make sharply different strategies optimal, and (c) Discovering what
is to the best of our knowledge a new type of indifference point. It
also suggests that when mutation leads to loss of effective immunity, it
may be better to think of increasing lockdowns in response to increases
in the number of susceptibles, not increases in numbers of infections;
lockdowns may arrive too late if they are only imposed after infection
rates spike.

All four model enhancements are treated abstractly to keep the
overall model simple, tractable, and focused on the following key
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strategic choice. The more aggressive the deployment of NPI, the fewer
infections, but the greater the economic and social burdens of the NPI.
For example, China’s zero-COVID policy led to an extended and painful
lockdown, and many countries that closed schools experienced harms
to educational progress.

Some NPI are cheap and non-intrusive, such as having office work-
ers telecommute. We assume those measures will always be deployed.
The more interesting question is how aggressively to employ expensive
NPI. For simplicity, we refer to those measures as ‘‘lockdowns’’.

There are interesting questions about how lockdown policy interacts
with the development and deployment of vaccines (see, e.g., Fu et al.,
2021; Buratto et al., 2022 or Caulkins et al., 2023). For example, just
before vaccines are approved and deployed, it may make sense to lock
down more severely than could be sustained if vaccines would not
arrive for a decade. For COVID-19, vaccines already exist, so they are
modeled here simply via a static rate.

The principle of diminishing returns often means that balancing two
competing considerations leads to some happy medium, e.g., an inter-
mediate degree of locking down producing an intermediate number of
infections. However, the powerful positive feedback loop inherent in
infectious diseases can favor boundary solutions. To see why, consider
a virus whose basic reproduction number (𝑅0) is 6.1 Absent NPI, that
irus could spread very quickly. That might seem to favor aggressive
ockdowns, but if lockdowns could only cut the reproduction number
y two-thirds, it would still be 2 — high-enough that the virus would
pread extensively. Lowering 𝑅0 from 6 to 2 might smooth out the peak
revalence, but not reduce the number of people who get infected by
nough to justify the cost. On the other hand, if inexpensive NPI could
educe the 𝑅0 to 2 and lockdowns could reduce it by another two-thirds,
hen long and severe lockdowns might be justified since they could
ush the reproductive rate below the key threshold of 1.0.

Indeed, a recurring theme in the analysis below is the existence of
lternate optimal solutions that reflect fundamentally different strate-
ies, and specific parameter sets that represent breakeven or tipping
oints (more formally, ‘‘Skiba points’’) at which a society can be
ndifferent between pursuing two very different strategies. In trying to
haracterize all such indifference points, we uncover what we believe
o be a new type of Skiba point, as is discussed below.

Past work has identified Skiba points (for an overview see e.g., Grass
t al., 2008) separating strategies that drive infection rates down to
inimal levels (informally, a ‘‘China strategy’’ or ‘‘health-oriented strat-

gy’’) from strategies that use lockdowns more sparingly just to delay
pread but which still permit large proportions of the population to
ecome infected (‘‘flatten the curve’’ strategies). Here, recognizing that
ew variants will emerge and/or that immunity ebbs creates a third
ossibility, namely that it is optimal to oscillate between low and high
ates of infection (a ‘‘persistent waves’’ strategy). That in fact has been
bserved in many countries with multiple waves of the pandemic. With
he parameter constellations used here, the uncontrolled epidemics’
scillations are dampened, converging to a steady state. However,
nder certain circumstances, the optimal dynamic solution can involve
ersistent oscillations, even when the uncontrolled model does not.

We proceed by first reviewing some relevant literature and then
ntroduce the model in Section 2.

.2. Literature review

Our paper is closely related to three strands of literature. First,
major concern has been how best to balance health and economic

nterests (see Layard et al., 2020; Bloom et al., 2022; Scherbina, 2020;
rodeur et al., 2021 for a careful evaluation). Several papers have
pplied dynamic optimization to study these tradeoffs quantitatively. A

1 For a critical discussion of the basic reproduction number especially at
arly stages of an epidemic we refer to Rebuli et al. (2018).
47
few have focused on the optimal timing, length and extent of lockdowns
(see e.g., Gonzalez-Eiras and Niepelt, 2020) taking into account the
tradeoff between health and economic consequences. Some of these
studies explicitly model the capacity of ICU beds that may be in short
supply (Gershon et al., 2020; Piguillem and Shi, 2020). It has been
shown that multiple lockdowns and Skiba points are possible (see
Caulkins et al., 2020, 2021a,b, 2023; Aspri et al., 2021; Rowthorn and
Maciejowski, 2020).

A second strand of the literature studied optimal vaccination poli-
cies within a dynamic optimization framework, again balancing eco-
nomic and health costs. These papers include for instance Fu et al.
(2021), Buratto et al. (2022), Garriga et al. (2022), Alvarez et al. (2021)
and our own studies (see Caulkins et al., 2023). These studies show
that the arrival time of vaccines and how fast their availability can be
expanded can shape whether and to what extent lockdowns should be
used.

Since vaccinations are no longer in short supply and increasing
numbers of breakthrough infections have been observed, a third strand
of the literature takes into account that the virus mutates and immunity
diminishes (despite vaccinations). How to balance health and economic
interests under this new situation is the focus of this paper.

Closest to our study is the paper by Giannitsarou et al. (2021). They
show that for the second wave (i.e., without yet having the vaccine
available) waning immunity implies that COVID-19 becomes endemic
via damped oscillations (with the period of the oscillations being re-
lated to how fast immunity wanes). Through controlling the disease, the
peak infection rate can be reduced and infection waves postponed. As
the authors argue, waning immunity increases the stock of susceptibles
which then induces additional waves of infections. In their simulations,
they show that under perfect immunity, social distancing sets in when
the infections peak, while under the assumption of waning immunity,
social distancing starts immediately. The authors conduct a sensitivity
analysis with respect to the speed at which immunity is lost and the
new variant’s infection fatality rate (IFR). They show that a fast loss of
immunity together with an increase in the IFR (compared to the first
wave) may call for stricter lockdown measures.

A similar study with waning immunity allows multiple strains to
coexist (Arruda et al., 2021). Similar to the study by Giannitsarou
et al. (2021) vaccines are not yet available. The authors assume an
optimal decision framework to mitigate infections while considering
the tradeoff between the economic costs of lockdown and the number
of deaths saved through such nonpharmaceutical measures. The model
is first applied to the state of Amazonas in Brazil where such optimal
control measures have not been implemented and then applied to the
2nd and 3rd waves of COVID-19 in England with mitigation measures
in place. The results show that without mitigation measures each
strain will converge towards an equilibrium once it has reached the
peak infections and the second wave will even exhibit higher peak
infections compared to the first wave. If, however, control measures are
established from the onset of the first strain, the emergence of different
strains can be avoided. By contrast, postponing optimal control to the
beginning of the second strain will only help to prevent the 2nd wave
of infections. Different settings for the costs of these control measures
will determine the specific mitigation measures that are chosen.

Dutta (2022) studies reduced immunity by modeling two major
virus variants with two sets of coupled SIRV-dynamics and considers
three main interventions: vaccination, quarantine and restrictions. The
author finds that the second major COVID wave in the U.S. was caused
by the Delta variant and the rapid surge in infectious cases by the
unvaccinated part of the population. A feedback control is found to
effectively suppress a second wave. Goenka et al. (2024) introduce
the dynamics of an SIRS model to a general equilibrium neoclassical
growth model to study optimal lockdown measures if a disease becomes
endemic and immunity wanes. If there is no welfare loss in a disease
endemic state it is not optimal to continue with lockdowns even if

there is disease related mortality. Variations in optimal restrictions
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and equilibrium outcomes are characterized depending on the efficacy
of the lockdown, the productivity of working from home, the rate of
mortality from the disease, and failure of immunity. Deka and Bhat-
tacharyya (2022) study the effect of the vaccine to strain competition
and virus mutations, and show that the dynamics of cross-immunity
is determined by the interplay of the cross-immune response function,
perceived risk of infection, and the vaccine efficacy.

Çenesiz and Guimarães (2022) use a simple economic model in
which social distancing reduces contagion to study the implications
of waning immunity. In this model COVID-19 likely becomes endemic
and social distancing remains until a vaccine or cure is developed.
The influence of waning immunity crucially depends on the type of
equilibrium. While in decentralized equilibria results are virtually in-
dependent until close to peak infections, in centralized equilibria the
development of a vaccine or cure becomes less likely. Acuña-Zegarra
et al. (2021) use an optimal control model with mixed constraints
describing vaccination schedules. The authors study plausible scenarios
that differ with respect to efficacy and coverage, and differ between
vaccine-induced and natural immunity, which is in contrast to waning
immunity. Within their model the authors explore the effect of the virus
becoming endemic.

An early paper on waning immunity (without a dynamic decision
framework) was published by Crellen et al. (2021). The authors’ aim
was to simulate potential future dynamics of the UK pandemic. At that
time, it was not yet known to what extent immunity would be lost and
vaccinations had also not yet become available. An age-structured SEIR
model is calibrated to the UK experience. In addition to distinguishing
between symptomatic and asymptomatic individuals, the recovered
population is differentiated between recovered after hospitalization and
recovered without hospitalization. The assumption is that waning im-
munity (the flow back from recovered to susceptibles) is larger for those
who were not hospitalized, since they developed fewer antibodies.
The authors consider four scenarios of immunity loss differentiating
between permanent immunity for both recovered sub-populations, two
scenarios where permanent immunity is only obtained for the recovered
hospitalized population and a fourth scenario where both groups loose
immunity. The loss of immunity varies between 3 to 12 months in the
various scenarios. They show that the degree of immunity loss and the
assumed reproductive value in effect after the first wave will determine
the extent of the second wave, with the potential threat of ending up
in an endemic state that overwhelms the health system.

In De Visscher et al. (2021) the role of behavioral change is studied
to explain the second and subsequent waves in the UK when vacci-
nations were already available. The authors focus on modeling four
different demographic groups (active, middle-aged, old, school-going)
to account for behavioral change across these groups, immunity loss,
vaccination, and multiple strains. This paper is descriptive (focusing
on the dynamics of the epidemiological model) without introducing
any optimal decision framework. Within their model, De Visscher et al.
(2021) argue that behavioral changes (and not the loss in immunity)
was a major factor explaining the second wave of the pandemic. It is
also shown that vaccinations gain in importance when immunity is lost.

A similar SEIR model that does not take into account vaccinations,
but introduces the difference between asymptomatic and symptomatic
individuals together with waning immunity, is presented in Anggriani
et al. (2022). An application to West Java Province in Indonesia high-
lights that loss of immunity may induce further outbreaks of COVID-19
and only isolation can reduce the occurrence of such outbreaks. Batis-
tela et al. (2021) introduce another quite similar SIR model that also
differentiates between symptomatic and asymptomatic individuals and
introduces differences in immunity within the population. Vaccinations
are not yet available but nonpharmaceutical measures, like social dis-
tancing, are modeled through an exogenous parameter that reduces
the flow from susceptible to infected individuals. After discussing the
disease-free and endemic equilibrium points (similar to (Anggriani
48

et al., 2022), the model is empirically calibrated to fit the evolution
of COVID-19 in three major cities in the state of Sao Paulo in Brazil.
Numerical simulations indicate that the shorter the time of re-infection
the more likely a second wave may occur and the higher the number
of unreported or asymptomatic individuals.

This review of existing literature indicates that loss of immunity
and the existence of multiple strains of the virus can lead to multiple
waves of the epidemic. The pace at which immunity is lost and the
severity of new mutations will determine the optimal NPI measures and
consequently also the extent and duration of the various waves.

In our paper we extend this literature by considering not only
immunity loss and mutations of the virus, but also a change in the
lethality of the virus and also allowing for infected cases arriving from
abroad. As our benchmark, we start by presenting an optimal dynamic
decision model where a social planner aims to optimally choose the
lockdown strategy that minimizes the sum of economic costs (due to
locking down) and health costs (due to deaths and other health harms
of the virus), given the dynamics of the virus as represented by an SIR
model. We assume a constant availability of vaccinations in all variants
of the model. We then proceed in a stepwise manner and include each
of the four extensions (immunity loss, mutation, lethality reduction,
immigration) step by step. This allows us to shed light on the way
these four extensions influence the optimal NPI policy and the long
run dynamics of the virus. In a nutshell we find, similar to our own
previous studies, that the relative weight that the social planner puts
on economic vs. health costs ultimately determines whether a strict and
persistent lockdown, as compared to modest or recurring lockdowns, is
optimal. In addition, we can show that immunity loss and mutations
may imply that persistent waves of NPI measures and hence persistent
waves of infections may be optimal. While these latter dynamics have
already appeared in the literature, in our model they are not always a
problem to be avoided if at all possible. Rather, we stress the existence
of indifference points where small changes in parameters – notably
changes in the relative valuation society places on the cost of infections
vs. the cost of lockdowns – can tip the social planner from preferring
to avoid recurring waves to seeing them as tolerable given how costly
would be the NPI needed to avoid them.

2. The model

The classic 𝑆𝐼𝑅-model proposed by Kermack and McKendrick (1927
divides the total population (𝑁) into three compartments for suscep-
tible (𝑆), infected (𝐼) and recovered (𝑅) individuals, so that 𝑁 =
𝑆 + 𝐼 + 𝑅. The compartments are disjoint, and flows between them
are represented by differential equations.

COVID-19 can be fatal, so extending this to an 𝑆𝐼𝑅𝐷 model that
ncludes deaths (𝐷) is a possibility. However, COVID-19’s death rate
s not high enough to greatly alter a country’s population dynamics.
ecovery is much more common than death, and COVID deaths fall
ostly on people who are beyond child-bearing age, so they do not
irectly affect birth rates by much. Using a simpler ‘‘closed’’ (i.e., con-
tant) population model does not mean deaths are ignored; they are
ncluded in the objective function as one of the (key) costs of infection.

We extend that model by adding three additional state variables
epresenting the average duration of immunity (𝐴), stock of immunity (𝐶)
nd lockdown intensity (𝛾). In addition, we add a parameter governing
he vaccination rate 𝑉 .

The average duration of immunity (𝐴) influences the rate of im-
unity loss; the backflow from the recovered (𝑅) to the susceptible
𝑆) state is larger the higher the share of individuals who acquired

immunity a long time ago (see Goldberg et al., 2021). As a practical
matter, it is easier to describe the flows for the total (𝑇 ) duration of
immunity, but the average and total carry equivalent information since
the average is just the total divided by the number of people in the
immune (recovered) state: 𝐴 = 𝑇

𝑅 .
Since immunity to infection decays faster than immunity to severe

illness, we also need a second state variable 𝐶 that denotes accumulated
immunity but which has a slower decay rate.
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Fig. 1. Flow diagram of the epidemiological model. Compartments are illustrated with boxes, while the other state variables are represented with circles. Arrows denote flows
(solid lines) and functional dependencies (rates; dashed lines) within the model.
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Finally, since adjusting lockdown policies takes time (and is costly),
the current degree to which the economy is locked down is modeled
with a state variable (𝛾) which can be adjusted upward or downward by

ay of a costly control. To be clear, 𝛾 is not the reduction in infections.
t is the proportion of economic output given up by enforcing the
ockdown. Note: we use the terms ‘‘economy’’ and ‘‘economic output’’
roadly. As explained below, the social planner’s objective function
ncludes only three terms: COVID-related health harms, adjustment
osts, and what we refer to as economic output, so the latter is broadly
verything else the social planner cares about. For example, if locking
own schools reduces learning or locking down elective medical care
xacerbates harms from other diseases, that would be included in what
e call economic output.

Policy makers are assumed to shut down first the types of economic
ctivity that produce the most infections per unit of economic output,
o diminishing returns make infections a convex function of 𝛾.

Fig. 1 gives a graphical overview of the model. The boxes represent
tate variables. Green and red ones enter the objective function in ways
hat reduce or increase, respectively, the costs of the pandemic. 𝐼 and 𝐶

affect health costs. 𝑆 and 𝑅 affect economic output (as labor), as does 𝛾.
The blue 𝐴 state does not influence costs directly. Solid arrows denote
lows between state variables. Black arrows correspond to the flow
f individuals (i.e., between compartments) and green ones between
irus-related measures (i.e., stock of immunity, duration of immunity).
ashed arrows correspond to state variables that influence flow rates
ithin the 𝑆𝐼𝑅-dynamics. Red and green ones increase and decrease,

respectively, the corresponding rate.
The following subsections provide a detailed description of the

dynamics and objective function of this model, starting with a brief
introduction to the dynamics of the 𝑆𝐼𝑅-model.

.1. Core model dynamics

People who are susceptible to infection (i.e., in state 𝑆) become in-
ected (i.e., move to state 𝐼) at time 𝑡 at a rate that is proportional to the
revalence of people who are already infected ( 𝐼(𝑡)

𝑁(𝑡) ) and the effective
contact rate, 𝛽, which depends on the current intensity of efforts to
lockdown the economy (𝛾(𝑡)) to reduce infections. The infection rate 𝛽
depends negatively on 𝛾(𝑡) ∈ [0, 1], where 𝛾(𝑡) = 0 and 𝛾(𝑡) = 1 means
49
no lockdown and full lockdown respectively (for the state dynamics see
(3)). Analogously to Caulkins et al. (2021a,b) we assume

𝛽(𝛾(𝑡)) ∶= 𝛽1 + 𝛽2(1 − 𝛾(𝑡))𝜃 with 𝛽1, 𝛽2 ≥ 0, 𝜃 > 1, (1)

hich means 𝛽(1) = 𝛽1 ≤ 𝛽(𝛾(𝑡)) ≤ 𝛽1 + 𝛽2 = 𝛽(0). Infections from
utside the country are included by the (nonnegative) parameter 𝜄
ndependently of susceptibles and infected (see (2a)).

Infected individuals (𝐼) progress to the recovered state (𝑅) at rate 𝛼,
here 1

𝛼 equals the average time someone remains infectious (i.e., the
average dwell time in compartment 𝐼). Vaccination moves susceptibles
directly to the recovered state (𝑅), without passing through state 𝐼 .
(Note: the word ‘‘recovered’’ is a bit of a misnomer since these individ-
uals were never sick – beyond possible side effects of the vaccination –
but it is the standard term used in the field.) Since COVID-19 vaccines
have already been invented, vaccination at a constant rate 𝑉 is assumed
to be available from the beginning of the planning period.2 We omit
vaccination costs, since vaccinations are so cheap compared to the
health costs of COVID-19 and the economic costs of lockdowns.3 A
more consequential simplification is not modeling how the supply and
demand for vaccination may depend on other state variables. E.g.,
willingness to get vaccinated may be higher when the infection rate
is higher. Tackling that endogeneity would be an important – though
difficult – extension beyond the model considered here.

Infection and recovery from COVID-19 confers only temporary im-
munity, whose exact duration is still being studied but appears to
be measured in months (see Cohn et al., 2022). Likewise, infection

2 Buratto et al. (2022) and Fu et al. (2021) address the question of unknown
accine approval time followed by increasing vaccine administration over
ime.

3 We illustrate this with U.S. figures, but the qualitative point is similar
lsewhere. Vaccines cost about $40 per person, so vaccinating everyone in the
nited States would cost about = $13, or 0.06 percent of annual GDP. That is

equivalent to 0.003 percent of the population dying, if saving a statistical life
is valued at 20 times annual GDP. Aggressive lockdowns reduce annual GDP
by much more than 0.06 percent, and deaths with a curve flattening strategy
greatly exceed 0.003 percent (even with high vaccination rates), so no matter
which strategy is followed, vaccines costs are a negligible share of total social
costs.
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protection even from the Moderna and Pfizer vaccines starts to fade
after about 4 months. Hence, the recovered compartment which collects
vaccinated and healed individuals has an outflow back to the 𝑆 state
from individuals losing their immunity. This flow, which is denoted
by 𝜑, depends, at the level of the representative individual we are
considering, on both the average duration of immunity and on new
mutations of the virus in ways that are elaborated below (see (5) and
(9)).

Finally, all states decrease from non-COVID-19 deaths at rate 𝜇.
For analytical convenience we wish to keep this is a closed or fixed
population model, so we make the (exogenous) birth rate also equal to
𝜇. This shows up as an inflow to 𝑆 because people are born susceptible.
. As a result, the 𝑆𝐼𝑅-model we are working with can be formulated
as

�̇�(𝑡) = 𝜇𝑁(𝑡) − 𝛽(𝛾(𝑡))
𝑆(𝑡)
𝑁(𝑡)

𝐼(𝑡) − 𝜄 + 𝜑(𝐴(𝑡), 𝐼(𝑡))𝑅(𝑡) − 𝑉 − 𝜇𝑆(𝑡) (2a)

�̇�(𝑡) = 𝛽(𝛾(𝑡))
𝑆(𝑡)
𝑁(𝑡)

𝐼(𝑡) + 𝜄 − (𝛼 + 𝜇)𝐼(𝑡) (2b)

̇ (𝑡) = 𝛼𝐼(𝑡) + 𝑉 − 𝜑(⋅)𝑅(𝑡) − 𝜇𝑅(𝑡) (2c)

with initial values (𝑆(0), 𝐼(0), 𝑅(0)) = (𝑆0, 𝐼0, 𝑅0).

.2. Control variable

There are many different NPI. Rather than model each separately,
e presume policy makers invoke them sequentially, starting with

hose that are the least costly relative to their public health benefits and
rogressively invoking additional measures that impose increasingly
arge burdens relative to their benefits. So we treat the extent of locking
own as a continuous variable.

As in Caulkins et al. (2021a,b, 2023) we assume that the lockdown
ntensity cannot be set instantaneously, but reacts sluggishly to political
ecisions. Thus, we model 𝛾(𝑡) as a state variable with the dynamics

̇ (𝑡) = 𝑢(𝑡), 0 ≤ 𝛾(𝑡) ≤ 1, (3)

here 𝑢(𝑡) denotes the control variable that adjusts the lockdown inten-
ity. Due to the interconnections of the economy, lockdown adjustments
re increasingly costly the quicker the adjustments are (increasing
arginal adjustment costs). Therefore, we do not restrict 𝑢(𝑡) on a cer-

ain interval, but impose the following convex adjustment cost function

𝑢(𝑢(𝑡)) ∶= 𝑏(𝑢(𝑡))2 (4)

ith parameter 𝑏 > 0. This quadratic form is a common way of
epresenting increasing marginal costs, and with the parameterization
elow these adjustment costs are small compared to the health and eco-
omic costs, so the specific functional form is probably not particularly
mportant.

.3. Modeling loss of immunity to infection

Immunity to infection decays over time even with respect to the
riginal virus variant. To model this, it is necessary to describe how
ong it has been since people in the recovered state acquired their
mmunity. Let us define state variable 𝑇 (𝑡) as the aggregate duration
f immunity of all individuals currently in the recovered state. Since
uration increases (linearly at rate 1) for all in the recovered state,
he aggregate duration increases by 𝑅(𝑡). On the other hand, the total
uration of people in the recovered state 𝑇 (𝑡) decreases when individ-
als exit state 𝑅(𝑡) via the outflow rate 𝜑(⋅) and via the background

non-COVID-19 mortality rate. Thus, the dynamics of 𝑇 (𝑡) reads

�̇� (𝑡) = 𝑅(𝑡) − 𝜑(⋅)𝑇 (𝑡) − 𝜇𝑇 (𝑡), 𝑇 (0) = 𝑇0. (5)

By definition, the average duration of immunity (per recovered indi-
vidual) is

𝐴(𝑡) ∶=
𝑇 (𝑡)

. (6)
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𝑅(𝑡) A
Virus mutations are an additional cause of immunity loss. According
to Rella et al. (2021), Boni et al. (2004) and Wen et al. (2022) the rate
at which new virus strains emerge depends on the number of infected
people, since mutations are a result of duplication mistakes (within
infected individuals). Therefore, the backflow 𝜑 is increasing in the
number of infected 𝐼(𝑡). In addition, we allow for the possibility that
the immunity loss due to mutations may be faster when the average
duration of immunity is higher (see e.g., Cohn et al., 2022). These
considerations suggest that,

𝜕𝜑(⋅)
𝜕𝐴(𝑡)

> 0,
𝜕𝜑(⋅)
𝜕𝐼(𝑡)

> 0,
𝜕2𝜑(⋅)

𝜕𝐼(𝑡)𝜕𝐴(𝑡)
> 0. (7)

hese three conditions are fulfilled by the following functional specifi-
ation,

(𝐴(𝑡), 𝐼(𝑡)) ∶= 𝜑0 + 𝜑1𝐴(𝑡)(1 + 𝜅𝐼(𝑡)), (8)

here 𝜑0 and 𝜑1 correspond to the constant and variable part of the
mmunity loss (backflow) function. The parameter 𝜅 ≥ 0 defines the
ace at which the virus mutates. 𝜑0 is a constant rate of immunity loss
nd 𝜑1 reflects the extent to which the rate at which immunity is lost
ncreases with the average immunity of the population. While 𝜑0 has
lready been introduced in previous papers, as far as we know 𝜑1 is
ew in the optimal control literature on COVID-19.

.4. Modeling lethality

Conditional on becoming infected, the probability of suffering a se-
ere case of COVID-19 (e.g., resulting in intensive care (ICU) treatment)
s smaller for (multiply) vaccinated or recovered people (see e.g., Gold-
erg et al., 2021). This appears not to be an effect of mutations making
he virus becoming milder, but rather results from a residual benefit
f past immunity. For this reason, we aggregate the total inflow in
he recovered state over time, from people being vaccinated and/or
ecovered from the infection. Its inflow is the same as to the recovered
ompartment, but the outflow of 𝐶 includes only the natural mortality
ate, so the dynamics of 𝐶 reads

̇ (𝑡) = 𝛼𝐼(𝑡) + 𝑉 − 𝜇𝐶(𝑡), 𝐶(0) = 𝐶0. (9)

his state variable reduces the health-related costs, to be introduced
n the next subsection, by the fraction 𝑁(𝑡)

𝑁(𝑡)+𝑐𝐶(𝑡) , where 𝑐 ≥ 0 is a
parameter that reflects how fast the virus-related death rate declines. If
𝑐 = 0, health-related costs are independent of 𝐶(𝑡). A high 𝑐 > 0 means
they are reduced rapidly.

2.5. Types of costs and objective function

We consider three types of costs: adjustment costs from changing
lockdown regulations, health costs arising from the disease, and eco-
nomic costs that arise both because of lockdowns and also the lost labor
of people too sick to work. The lockdown adjustment costs are modeled
by a quadratic specification as in (4) and are relatively small compared
to economic and health costs.

Some infected people suffer severe illness leading to hospitalization,
ICU treatment, and/or death. When infection rates are high, obtaining
proper treatment can become more difficult (i.e., ICU space is becoming
scarce). The detrimental effect of ICU crowding on treatment success
can be captured by a convex increasing function 𝑎1𝐼(𝑡)+𝑎2(𝐼(𝑡))2, where
𝑎1 > 0 denotes the baseline and 𝑎2 > 0 implies that adverse health
outcomes are increasing in the number of infected.4 Adverse events
are valued at a rate 𝑀 , which is treated as a flexible parameter and
expressed as some multiple of the annual GDP per capita.

4 For other papers using the same cost structure w.r.t. COVID-19 deaths see
lvarez et al. (2021) or Freiberger et al. (2022).
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As discussed below, these health costs decline by a factor 𝑁(𝑡)
𝑁(𝑡)+𝑐𝐶(𝑡)

hen many people getting infected have already achieved immunity
n the past, reducing their risk of suffering a severe course of illness.
ence, the health costs at time 𝑡 equal

ℎ(𝑋(𝑡)) ∶=
𝑁(𝑡)

𝑁(𝑡) + 𝑐𝐶(𝑡)
𝑀(𝑎1𝐼(𝑡) + 𝑎2(𝐼(𝑡))2), (10)

where 𝑋(𝑡) denotes the vector of the state variables, i.e., 𝑋 ∶= (𝑆, 𝐼, 𝑅,
𝑇 , 𝐶, 𝛾)′.

Locking down part of the economy imposes a range of social costs,
including disruption to supply chains, loss of educational attainment
when kids cannot attend school in person, and social costs from iso-
lation, among others. There are also losses when infected individuals
are not able to work, study, or travel. To capture this, we assume
the production of societal value is proportional to both the number of
people who are not infected and the share of the economy that is not
locked down (1 − 𝛾(𝑡)), with the proportionality constant 𝐾. Since we
measure time in days, that means, 𝐾(𝑆(𝑡) + 𝑅(𝑡)) (1 − 𝛾(𝑡)) and 𝐾𝑁(𝑡)
denotes the daily production of value during the pandemic and in its
absence, respectively, and the loss at time 𝑡, due to the pandemic, can
be written as the difference between the two:

𝑙(𝑋(𝑡)) ∶= 𝐾𝑁(𝑡) −𝐾(𝑆(𝑡) + 𝑅(𝑡)) (1 − 𝛾(𝑡)) . (11)

The relative weight the social planner places on the good created by
normal activity vs. the health costs of COVID-19 is captured by the
relative values of parameters 𝐾 and 𝑀 .

Finally, we impose a small penalty if the economy is still locked
down at the end of the planning period  , because it takes time for
a partially shutdown economy to fully recover. To capture these costs
that spill over beyond  , we impose a modest salvage function cost that
is proportional to the economic cost at time 𝑇 , with proportionality
constant 0:

(𝑋( )) ∶= 0𝐾𝑁( ) − 0 (1 − 𝛾( ))𝐾(𝑆( ) + 𝑅( )). (12)

Hence, the aggregated discounted costs related to the pandemic can
be expressed as

(𝑋0,𝐮[0, ]) ∶= ∫



0
𝑒−𝑟𝑡

(

𝑙(𝑋(𝑡)) + 𝑢(𝑢(𝑡)) + ℎ(𝑋(𝑡))
)

t.+𝑒−𝑟 (𝑋( )),

(13)

for a feasible trajectory of adjustments to the lockdown intensity 𝐮[0, ],
where 𝑟 denotes the discount rate. With the decision maker seeking to
minimize costs, the full model reads:

∗(𝑋0) ∶= ∗
𝑙 (𝑋0) + ∗

𝑢 (𝑋0) + ∗
ℎ (𝑋0) + ∗(𝑋( ))

∶= min
𝑢(𝑡)∈[0, ]

(𝑋0,𝐮[0, ])

s.t. �̇�(𝑡) = 𝜇𝑁(𝑡) − 𝛽(𝛾)
𝑆(𝑡)
𝑁(𝑡)

𝐼(𝑡) − 𝜄

+𝜑(𝐴(𝑡), 𝐼(𝑡))𝑅(𝑡) − 𝑉 − 𝜇𝑆(𝑡)

�̇�(𝑡) = 𝛽(𝛾)
𝑆(𝑡)
𝑁(𝑡)

𝐼(𝑡) + 𝜄 − (𝛼 + 𝜇)𝐼(𝑡)

�̇�(𝑡) = 𝛼𝐼(𝑡) + 𝑉 − 𝜑(𝐴(𝑡), 𝐼(𝑡))𝑅(𝑡) − 𝜇𝑅(𝑡)

�̇� (𝑡) = 𝑅(𝑡) − 𝜑(𝐴(𝑡), 𝐼(𝑡))𝑇 (𝑡) − 𝜇𝑇 (𝑡)

�̇�(𝑡) = 𝛼𝐼(𝑡) + 𝑉 − 𝜇𝐶(𝑡)

�̇�(𝑡) = 𝑢(𝑡)

0 ≤ 𝛾(𝑡) ≤ 1

𝑁(𝑡) ∶= 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). (14)

Here, ∗
𝑙 (𝑋0), ∗

𝑢 (𝑋0) and ∗
ℎ (𝑋0) denote the aggregated economic,

adjustment and health costs of the pandemic evaluated at the optimal
lockdown adjustment trajectory. Table 1 summarizes the variables and
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functions of the model. n
Table 1
Control variables, state variables, and functions of the full
model (14).
Control variable:

Lockdown adjustment 𝑢(𝑡)

State variables:
Susceptibles 𝑆(𝑡)
Infected 𝐼(𝑡)
Recovered 𝑅(𝑡)
Aggregate duration of immunity 𝑇 (𝑡)
Stock of immunity 𝐶(𝑡)
Lockdown intensity 𝛾(𝑡)

Functions:
Average duration of immunity 𝐴(𝑇 (𝑡), 𝑅(𝑡))
Immunity loss 𝜑(𝐴(𝑡), 𝐼(𝑡))
Infection rate 𝛽(𝛾(𝑡))

Costs — objective function:
Economic costs 𝑙(𝑋(𝑡))
Health costs ℎ(𝑋(𝑡))
Lockdown adjustment costs 𝑢(𝑢(𝑡))
Salvage value function (𝑋(𝑡))

3. Numerical results

Recall that the model has three ‘‘novelties’’ relative to a standard
SIR model: (N1) immunity to infection ebbs over time, (N2) mutations
may produce variants that defeat prior immunity, and (N3) severity of
new infections fades away with the number of infections, plus also (N4)
the possibility of infections arriving from outside the region modeled.

After explaining the key parameters’ values, we first consider the
model including only N1 and then in subsequent sections introduce N2,
N3, and N4 in order (in Sections 3.2–3.5), so that the implication of
each addition can be identified.

3.1. Parameters

The benchmark parameter set is given in Table 2. Most are moti-
vated in Caulkins et al. (2020, 2021a,b, 2023).

Among the new parameters, only those pertaining to the first nov-
elty (𝜑1) are positive throughout. 𝐴 denotes the duration since recovery
or getting the vaccine. Therefore, in the absence of mutation (𝜅 = 0)
and interventions (𝛾 = 1), the value of 𝜑(𝐴, ⋅) is approximately 1

𝐴 in the
steady-state. Hence, we can indirectly express 𝜑1 as a function of the
pair (𝜑0, 𝐴) as follows

𝜑(𝐴, ⋅) = 𝜑0 + 𝜑1𝐴 = 1
𝐴

⟹ 𝜑1 =
1 − 𝜑0𝐴
(𝐴)2

. (15)

Following Cohn et al. (2022), we set the average duration of vaccine
effectiveness without interventions and mutations of approximately 180
days, as per the Pfizer-BioNTech vaccine. Setting 𝜑0 to the small value
of 10−3, we have from (15) that 𝜑1 =

1−10−3180
(180)2 ≈ 2.5 × 10−5.

The benchmark values of 𝜅 and 𝑐 are listed as being zero because
they are added later, in subsequent sections. Since a reliable calibration
for these two parameters is not available, they will be varied in the
numerical analysis.

The parameter governing inflow from abroad (𝜄) is also varied in
ifurcation diagrams because the scale of international arrivals relative
o a country’s population varies dramatically, being much larger for a
ountry like Luxembourg than for Madagascar. Nonetheless, it is useful
o specify an initial point estimate.

Worldwide, there were about 1.4 billion international tourist ar-
ivals annually before COVID-19, suggesting that the average number
f international border crossings per capita is about 0.5. (1.4 billion
s about 0.2 times the world population, but that gets multiplied by
wo for the return trip and then inflated to account for immigration
nd business travel.) Travel was reduced during COVID (e.g., the total
umber of passenger enplanements dropped from about 5 billion to 2
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Table 2
Benchmark parameter values.
Parameter Value Description

 5 × 365 Time horizon, in days

𝛼 2
15

Reciprocal of the 15-day average duration of infection

𝑎1 10−3 Linear part of health costs

𝑎2 5 × 10−3 Quadratic part of health costs

𝛽1 0 Minimum level of infection risk if economy is shut down completely

𝛽2
4
15

Increment in the level of infection risk

𝜃 2 Exponent of lockdown efficiency in the infection risk term

𝑏 1,000 Parameter of the adjustment costs of the lockdown

𝜇 0.01
365

Death rate from non-COVID causes (1 percent per year as a daily rate)

𝐾 1 Coefficient of economic activity; it defines the units with which
the objective is measured

𝑀 ∗ Health costs due to COVID-19, which is varied

0 365 Constant in salvage value function
reflection the duration of economic recovery

𝑉 10−4 Daily vaccination rate

𝜑0 10−3 Measure of immunity loss, constant part

𝜑1 2.5309 × 10−5 Measure of immunity loss, variable part (N1)

𝜅 0 Parameter governing the pace with which the virus mutates (N2)

𝑐 0 Parameter governing to the pace with which the virus loses lethality (N3)

𝜄 8.55 × 10−6 Inflow of infected cases from abroad
w
e
e
c
a

t
i
d

3

n
o
a

billion per year), so we reduce that by 60 percent. Based on Barber et al.
(2022), we estimate that about 2 percent of the world’s population was
infected at any given time midway through the pandemic. A final subtle
point is that the number of days of infectivity per arriving infected
person is a little lower than the number of days of infectivity per person
who gets infected within the country because some of infectious days
happen before crossing the border. A side calculation roughly factoring
in proportions of cases that are asymptomatic, the durations of the
incubation, pre-symptomatic, and symptomatic infection phases, and
testing windows suggests this might be a roughly 22 percent reduction.
Hence, a point estimate of 𝜄 of (0.5∕365) ∗ (1 − 0.6) ∗ 0.02 ∗ (1 − 0.22) =
.55 × 10−6 per day. Note: That value implies this flow is of little
mportance unless the domestic prevalence rate is very low.

A key driver of results is the relative weight the social planner places
n normal economic activity vs. COVID-19 related health outcomes,
hich are captured by the parameters 𝐾 and 𝑀 , respectively. We
ormalize 𝐾 to 1, so the units of the objective function are GDP per
apita per day.

The benchmark parameter values 𝑎1 and 𝑎2 are scaled so that 𝑀
multiplies the number of COVID-19 related premature deaths. So, for
example, if deaths were the only health-related cost and one valued
a statistical life at 40 times GDP per capita, then 𝑀 would equal
40 × 365 = 14,600.

Valuing a statistical life is always difficult, and never more so than
in the COVID context (Aspri et al., 2021; Rowthorn and Maciejowski,
2020). Alvarez et al. (2021) use this value of 40 times GDP per capita,
but Kniesner et al. (2012) suggest 150×GDP per capita for the United
States, while acknowledging lower values for other countries, particu-
larly those that are less affluent. Hammit (2020) offer multiple reasons
why lower values may be preferred for analysis of COVID-19.

Recognizing the diversity in moral values and stages of economic
development around the world, we think figures between 10 and 150
times GDP per capita can be defended (see Caulkins et al., 2020).
Hence, we suggest considering 𝑀 values between 3,650 and 54,750 to
be relevant, and perhaps paying particular attention to the geometric
mean of those two, which is 14,136.

There are also costs of hospitalization, illness, and indirect costs
when other patients are turned away from ICUs that are filled with
COVID patients. (Foregone care from shutting down healthcare facil-
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ities to prevent infections would be captured by the lockdown term,
𝛾.) Since none of the model’s controls alter the ratio of severe non-
fatal cases to COVID-19 deaths, these costs of non-fatal illness can be
accommodated just by considering a larger value of 𝑀 than one would
to account for just deaths alone.

For example, in the U.S., GDP per capita is 70,000 USD and the
probability of death given hospitalization is about 15 percent, so if the
average cost per COVID hospitalization were 15,000 USD, then factoring
in that hospitalization would increase 𝑀 by (15,000∕0.15)∕70,000 = 1.4.

Hence, readers who believe that non-fatal health outcomes of COVID
– including long COVID – are a substantial problem may pay attention
to larger values of 𝑀 . Conversely, readers who believe that lockdowns
harm outcomes not captured in current GDP (e.g., mental health an-
guish from isolation, loss of education, etc.) may wish to pay attention
to smaller values of 𝑀 . Both views are accommodated below because
we treat 𝑀 as a bifurcation parameter below in order to explore
the implications of a wide range of 𝑀 values. (For that reason, the
benchmark value of 𝑀 is not fixed and so noted by ∗.)

The initial state values do not matter much because the time horizon
is relatively long, and the optimal trajectories cover much of the
state space. (And initial conditions on a trajectory that converges to
a steady state will produce solution trajectories going to that same
steady state.) We choose

(

𝑆0, 𝐼0, 𝑅0, 𝑇0, 𝐶0, 𝛾0
)

= (0.999, 0.001, 0, 0, 0, 1),
hich reflects conditions at the beginning of a pandemic, which could
ither relate to an entirely new disease or a dramatic mutation of an
xisting virus. We also verified that state variable values that might
orrespond to conditions when the COVID-19 vaccine was approved
re near trajectories starting at this initial state.

In the figures showing time paths of the pandemic, we use colors
o distinguish the uncontrolled course of the pandemic (grey), periods
n which the optimal solution calls for a lockdown (blue) and when it
oes not (red).

.2. Step 1: Immunity loss

We first consider the standard 𝑆𝐼𝑅-model extended by the immu-
ity loss function which endogenously depends on the average duration
f immunity (by parameter 𝜑1), but not yet mutations, immigration, or
reduction of the COVID lethality. Hence,

−5
Novelty N1: ‘on’ ∶ 𝜑1 = 2.5309 × 10
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Fig. 2. Course of the pandemic for 𝑀 = 7,000 (health costs due to COVID-19) - Economic solution. Grey curve: uncontrolled path of epidemics. Blue and red denote portions of
he optimally controlled path with active and inactive lockdown, respectively.
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ovelty N2: ‘off’ ∶ 𝜅 = 0

ovelty N3: ‘off’ ∶ 𝑐 = 0

ovelty N4: ‘off’ ∶ 𝜄 = 0.

Figs. 2 and 3 show two different optimal solution trajectories cor-
esponding to lower (𝑀 = 7,000) and higher (𝑀 = 13,000) valuations,
espectively.

Both figures also show the uncontrolled path in grey, which reveals
hat in the absence of lockdowns, immunity loss (novelty N1) creates
amped epidemic waves. During each wave many people get infected
nd recover within a short period of time. As a result, they will also lose
heir immunity after about the same period of time, which feeds the
usceptible compartment and starts a new wave. However, as infections
nd immunity loss do not occur on one specific day, but rather are
istributed across a certain time period, the waves are dampening and
he pandemic converges to a long-run steady state.

In Fig. 2 with the lower (𝑀 = 7,000), relatively modest lockdowns
re only employed briefly at the very beginning (a ‘‘curve flattening’’
pproach) and at the end of the planning horizon (because of the
alvage value function). The absence of appreciable locking down in
etween means the damped oscillatory structure is preserved, but with
maller peaks because of the residual benefits of the initial lockdown.

By contrast, Fig. 3 plots the optimal time paths for a substantially
igher value of 𝑀 = 13,000. The higher valuation of COVID-19 health
arms implies a robust lockdown over the entire planning horizon,
ith an extra push at the beginning and a relaxation at the end of
53
the planning period to get people back to work. The strict lockdown
regime represses the wave structure of the pandemic and results in a
’near-zero COVID’ strategy after an initial first wave of infections. This
solution type, with lockdowns during the entire planning period, will be
referred to as a health solution, since it prioritizes preventing COVID-19
infection and related health harms.

Paradoxically, when 𝑀 is low, the health costs suffered can be large
n aggregate because many people are allowed to become infected.
onversely, when 𝑀 is high enough to justify perpetual lockdowns, the
esulting health costs can be smaller than the economic costs, precisely
ecause efforts are made to ensure that few people get infected. In par-
icular, when 𝑀 was only 7,000 (in Fig. 2), the health costs were large
267.8, equivalent to about three-quarters of annual GDP), but when

was 13,000 (in Fig. 3) health costs were smaller (5.9, equivalent to
ess than a week’s GDP) because there were so few infections. But that
eduction was bought with an extended, severe lockdown that cost the
quivalent of 1.4 years of GDP, whereas in Figs. 2 the lockdown costs
ere much smaller.

Figs. 2 and 3 show that the optimal solution depends crucially on
he parameter 𝑀 , which measures how determined the social planner is
o avoid a COVID-19 infection and associated health harms. A relatively
odest increase in 𝑀 (less than a doubling) produces a structurally

different optimal lockdown policy.
Between 𝑀 = 7,000 and 𝑀 = 13,000 the solution structure changes

at a specific value of 𝑀 , referred to as Skiba point (or Skiba surface
if two or more parameters are varied). A Skiba point is characterized
by a value of 𝑀 for which a marginal upward or downward deviation
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Fig. 3. Course of the pandemic for 𝑀 = 13,000 (health costs due to COVID-19) - Health solution. Grey curve: uncontrolled path of epidemics. Blue denote the optimally controlled
lockdown path.
of the parameter induces a structurally (qualitatively) different optimal
solution. Exactly at the Skiba point, both the economic and the health
solution strategies produce exactly the same total costs. So both are
optimal, even though their use of lockdowns and hence the composition
of those total costs are very different. This Skiba phenomenon is well-
known in optimal control theory (see Grass et al., 2008) and has been
detected in other 𝑆𝐼𝑅-models of COVID-19 (see e.g., Caulkins et al.,
2020, 2021a,b, 2023; Aspri et al., 2021; Rowthorn and Maciejowski,
2020).

This abrupt transition between two very different optimal strategies
stems from system dynamics that make it very difficult to hold an
epidemic at an intermediate level of infection and hence, to balance the
health and economic costs at the margin. The decision-maker faces a
stark choice between minimizing economic costs by implementing only
a light-touch lockdown (if at all) aimed at flattening the curve or mini-
mizing the health cost by implementing an extended, strong lockdown.
The choice between these options then turns on the valuation of COVID-
related health harms, 𝑀 , where around the Skiba point, small increases
n 𝑀 may generate disruptive changes in the pandemic strategy.

We can summarize this as follows.

esult 1. For the optimal control problem (14) there exist Skiba points
and surfaces) at which two (qualitatively) different lockdown strategies are
ptimal. Skiba points (surfaces) separate parameter regions which generate
ualitatively different solutions and therefore imply policy discontinuity.
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hus, two different people who agree on all of the ‘‘science’’ (epidemic
dynamics) and whose values (with respect to 𝑀) are only slightly different,
can favor very different COVID-19 response policies.

Between 𝑀 = 7,000 and 𝑀 = 13,000 there are actually two Skiba
points at 𝑀 = 12,589 and 𝑀 = 12,680 with a distinct new solution
structure in the narrow band in between. Fig. 4 shows the two optimal
solutions for 𝑀 = 12,589. The solid line corresponds to the economic
solution. The dashed line shows the new type of solution. It looks like
the economic solution through the first wave of the epidemic and like
the health solution thereafter. For 𝑀 values between the two Skiba
points, only this new intermediate type of strategy is optimal, but the
health solution prevails for 𝑀 ≥ 12,680. At 𝑀 = 12,680 the lockdown
policy changes discontinuously from the intermediate type (see dashed
line in Fig. 4) to a health solution with one long lockdown (see Fig. 3).

This new class of strategies is not, to the best of our knowledge,
much discussed in either the mathematical or the general policy liter-
ature. Informally it corresponds to accepting the ‘‘inevitability’’ of a
severe first wave but then after the population has some immunity,
using lockdowns to drive the prevalence down to minimal levels.
Politically that might be very difficult to implement, because it calls for
pursuing the most stringent preventive measures precisely when there
are not currently many infections. Even if these strategies are infeasible
for political reasons, their existence illustrates the limitations of trying
to intuit what strategies are optimal without the guidance of formal
models.

Plotting the optimized objective function value ∗ (see Fig. 14 in
Appendix B) for varying 𝑀 shows that the costs increase continuously
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Fig. 4. Course of the pandemic at the Skiba point 𝑀 = 12,589 (health costs due to COVID-19). Economic solution (solid line) and intermediate solution (dashed line) are optimal.
rey curve: uncontrolled path of epidemics. Blue and red parts of curve: Optimally controlled path with active and inactive lockdown, respectively.
Fig. 5. Course of the pandemic for 𝑀 = 7,000 (health costs due to COVID-19) and 𝜅 = 70 (pace of virus mutation) - Persistent wave solution. Grey curve: uncontrolled path of
pidemics. Blue and red parts of curve: Optimally controlled path with active and inactive lockdown, respectively.
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n 𝑀 : steeply when the curve flattening strategy is followed (because
here are many infections) and slowly under the health strategy when
here are few infections. At the Skiba points, the costs have a kink. This
s because at the Skiba points the number of people getting infected
hanges due to the change in the solution structure.

.3. Step 2: Adding mutations

We now consider how mutations may accelerate immunity loss
novelty N2). Reliable data are lacking for the parameter 𝜅 so we
55

s

xplore how varying it affects the solution (in mathematical terms, it
s a bifurcation parameter). Hence, this subsection considers

Novelty N1: ‘on’ ∶ 𝜑1 = 2.5309 × 10−5

Novelty N2: ‘on’ ∶ 𝜅 bifurcation parameter
ovelty N3: ‘off’ ∶ 𝑐 = 0

ovelty N4: ‘off’ ∶ 𝜄 = 0.

Fig. 5 depicts the course of the pandemic if the mutation rate
arameter is set to 𝜅 = 70. The uncontrolled trajectories are fairly
imilar to those in Fig. 4, with a damped series of infection peaks that
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Fig. 6. Course of the pandemic at the Skiba point 𝑀 = 8,067 (health costs due to COVID-19) and 𝜅 = 70 (pace of virus mutation). Two persistent wave solutions (solid line: three
aves, dashed line: two waves) are optimal. Grey curve: uncontrolled path of epidemics. Blue and red parts of curve: Optimally controlled path with active and inactive lockdown,

espectively.
m
b

s
O
n
p
o
w
l

o
p
o
m
w
w
t
u
c
i

f
a

ccur at roughly the same times as before, though, mutations some-
hat attenuate the damping and the oscillations approach a higher

teady-state of infection (closer to 4% than 2%).
However, the optimally controlled pandemic trajectory is now very

ifferent. With the same relatively low social cost of health harms
s before (𝑀 = 7,000), the optimal solution now alternates between
eep lockdowns and no lockdowns. The resulting trajectory exhibits
ersistent waves until the end of the planning period, rather than
amped waves as in the economic solution or no waves at all as in
he health solution. This new solution type will be referred to as a
ersistent wave solution. In the economic solution, infection numbers
luctuate with high frequency around roughly the same level as in the
ncontrolled pandemic (except at the end of the planning period, when
he decision maker anticipates the end of the pandemic by a second
hort lockdown to facilitate the economic recovery). In the persistent
ave solution, the infection spikes are higher (between 10% and 12%),
ut they are brief and infrequent, which reduces the total number of
nfections and associated health-harms. The additional lockdown costs
re justified by the resulting lower health costs. This is summarized as
ollows.

esult 2. If the pace of the immunity loss increases because the virus
hanges frequently (i.e., mutations set in), the optimal solution can involve
lternating cycles between deep lockdowns and low lockdowns, producing
ersistent waves of infection for certain parameter constellations.
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The second sentence of Result 2 is a bit vague, but it will be made
ore precise later when presenting the bifurcation diagram that varies

oth the parameters 𝑀 and 𝜅 (see Fig. 7).
This is a striking result. Many countries have experienced repeated

witches between strict lockdowns and relaxing pandemic restrictions.
ne might be tempted to label such oscillations as evidence of policy
ot being well-informed, but the present model suggests alternating
eriods of stricter and less strict lockdowns may be a feature of an
ptimal policy. Of course, that also does not mean policy in practice
as optimal. In particular, there is an issue related to the timing of the

ockdown spikes, which we discuss next.
Because mutations occur at a rate that is proportional to the number

f people who are currently infected, they follow the waves of the
andemic. When there are few infections, mutations have little impact
n backflow, and the important driver of backflow is the loss of im-
unity with respect to the current viral variant. However, when a new
ave begins, it produces more infections that produce more mutations
hich increase the backflow. So mutations create a positive feedback

hat acts as an amplifier in subsequent infection waves, making the
ncontrolled or minimally controlled (i.e., economic) solutions more
ostly. Hence, the social planner uses lockdowns more aggressively than
n the economic solution.

A second striking observation in Fig. 5 is that the lockdown is
ully anticyclical to the infection wave: As a comparison of panels 5(b)
nd 5(d) shows, the lockdown is fully abandoned just at the take-off of
new infection wave, and reimplemented only towards the very end
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of the infection wave. Panel 5(a) shows that what might appear to be a
lockdown policy that is grossly out of tune with the pandemic wave, is
actually closely aligned with the stock of susceptibles. This illustrates
that lockdowns are ultimately implemented for the protection of sus-
ceptibles, the stock of which is moving strongly countercyclically to
the stock of infections in the presence of immunity loss and mutations.
The mounting economic cost and the risk of excessive immunity loss
ultimately leads the planner to reduce the lockdown, which, owing to
the loss of immunity, triggers a new wave.

Result 3. In this model, when mutations lead to a considerable immu-
nity loss the optimal lockdown policy may be fully countercyclical to the
pandemic wave.

As it turns out, while many countries have implemented multiple
waves of lockdowns, these were typically viewed as following the
infection wave and often criticized for being too late. Our finding sug-
gests an entirely different interpretation as regards an ‘‘optimal policy’’:
Implementing lockdowns should not be conditioned on infections at
all but rather aimed at the number of susceptibles and the aggregate
state of immunity. Through this lens, an optimal lockdown policy is
not aimed at breaking a pandemic wave but rather at triggering it with
the aim to limiting economic costs to containing economic costs and
avoiding excessive immunity loss.

Next, as in Section 3.2, let us vary 𝑀 , but this time for a fixed
𝜅 = 60. Whereas previously varying 𝑀 produced two Skiba points (for
𝜅 = 0) separating the economic, intermediate, and health solutions, ad-
ditional Skiba points appear now distinguishing not only the economic
and health solutions but also multiple persistent wave solutions with
varying numbers of waves. For example, Fig. 6 depicts the course of the
pandemic at a Skiba point that occurs for 𝑀 = 8,067 (𝜅 = 70) where
two different persistent wave solutions with two and three epidemic
waves, respectively, are optimal. Fig. 6(d) shows that the solution with
three waves is associated with a less restrictive lockdown policy at
the expense of an additional epidemic wave. Before we discuss the
parameter dependency of the solution structure in more detail, we
summarize this observation as follows.

Result 4. When mutations lead to a sufficiently strong immunity loss,
different persistent wave solutions can be optimal, differing with respect to
the number of epidemic waves that occur during the planning period.

Since no reliable data are available to estimate the parameter 𝜅
governing the pace at which the virus mutates, we treat 𝜅 as a second
bifurcation parameter and vary it jointly with 𝑀 . Fig. 7 presents the
resulting bifurcation diagram in the (𝑀,𝜅)-space. Blue lines denote
Skiba curves where two different solutions are optimal. Moving from
left to right (i.e., increasing 𝑀) for a fixed 𝜅 the solution structure
changes as follows. For low 𝑀 the economic solution always dominates.
Crossing the first Skiba curve implies that a persistent wave solution
becomes optimal. At Skiba curves separating regions 2, 3, 4, and 5 the
number of waves in the persistent wave solution changes. For instance,
Fig. 6 corresponds to the point 𝜅 = 60 and 𝑀 = 8,411, which is marked
as a cross in Fig. 7. Here solutions with two or three epidemic waves
are both optimal. Moving from left to right (for fixed 𝜅) results in a
reduction in the number of epidemic waves within the persistent wave
solutions. In particular, we have four waves in region 2, three waves in
region 3, two waves in region 4, and one wave in region 5.

Varying the mutation parameter 𝜅 affects the qualitative structure
f the optimal solution. A high mutation rate means a faster immunity
oss, undermining the benefit of surviving an infection and increasing
he relative appeal of a health solution which avoids large-scale infec-
ions altogether (region 6). This is seen by the Skiba curve separating
egions 5 and 6 being downward sloping, so for greater values of 𝜅

the health solution obtains for lower values of 𝑀 . Likewise, the region
where the economic solution dominates becomes smaller if 𝜅 increases.
57

p

Fig. 7. Bifurcation diagram in (𝑀,𝜅)-space. At the blues lines (Skiba curves) two
ifferent solutions are optimal, red dots denote tripple Skiba points (three different
ptimal solutions). Region 1: economic solution; region 2–5: persistent wave solutions;
egion 6: health solution.

In addition, for low 𝜅 only persistent wave solutions with one
pidemic wave can be optimal (region 5). For 𝜅 higher than ≈ 10,
ersistent wave solutions with two epidemic waves may also be optimal
or certain values of 𝑀 (region 4), etc.

Note that Fig. 7 includes the two Skiba points at 𝑀 = 12,589
nd 𝑀 = 12,680 that we had identified in the absence of mutations
i.e., 𝜅 = 0) along its horizontal axis. Hence, the intermediate solution
iscussed above lies in region 5, i.e., it is a persistent wave solution
ith one epidemic wave.

The following result summarizes our findings.

esult 5. Increasing 𝜅 implies that (i) the range of 𝑀 values where the
conomic solution dominates shrinks, (ii) the range where persistent wave
olutions dominate expands, and (iii) the range where a health solution
ominates becomes larger. Moreover, increasing 𝜅 increases the number of
pidemic waves that can be optimal in a persistent wave solution.

Along any of the Skiba lines in Fig. 7 two different solutions are
ptimal, but at the intersection of two Skiba lines (marked by red
oints), three different solutions are optimal. The red dot at 𝑀 = 6,671
nd 𝜅 = 50, for instance, lies at the intersections of regions 1, 2, and
so three different solution types are optimal: the economic solution

rom region 1, the persistent wave solution with 4 waves from region
, and the persistent wave solution with three waves from region 3.
ig. 15 in Appendix B shows the course of the pandemic for different
olutions in one plot. The existence of this triple Skiba point5 is stated
n the following result.

esult 6. When mutations lead to a sufficiently pronounced immunity loss,
here are parameter sets at which three qualitatively different solutions are
ptimal.

Fig. 8 decomposes the optimal objective value ∗(𝑋0) into its main
arts, i.e., the economic costs ∗

𝑙 (𝑋0) and the health costs ∗
ℎ (𝑋0)

or the same fixed 𝜅 = 70 that was used for Fig. 6 and for varying
. (Lockdown adjustment costs 𝑢(𝑢(𝑡)) and economic recovery costs

5 Note that in a two dimensional bifurcation diagram triple Skiba surfaces
an only emerge as points. However, by varying a third parameter (which
s numerically costly and hard to illustrate) the triple Skiba surfaces can in
rinciple be continued to curves.
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Fig. 8. Decomposition of objective value ∗(𝑋0) (red line) for 𝜅 = 70 (pace of virus mutation) and variable 𝑀 (health costs due to COVID-19) into economic costs (green line)
nd health costs (blue line).
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(𝑋(𝑡)) turn out to be negligible.) Naturally, the total costs (denoted
y the red line) increase continuously with 𝑀 , since all other cost
arameters are fixed. At the five Skiba points (compare the (𝑀,𝜅)-
ifurcation diagram Fig. 7) denoted by the vertical black lines, the total
osts are continuous but have a kink.

The economic cost part (denoted by the green line) jumps upward
pon crossing each Skiba threshold (from left to right) because that
eans reducing the number of epidemic waves by employing a more

ntense and/or sustained lockdown and, thus, a higher economic costs.
ote that within the first region, economic costs increase faster with
rowing 𝑀 than in the other regions because its lockdown is relatively
ild, so, a marginal increase in 𝛾 has more effect with respect to
reventing new infections than when lockdowns are already severe. For
his reason, an increase in 𝑀 triggers a relatively large increase in 𝛾,
nd this results in a larger increase of economic costs.

The health cost part (denoted by the blue line) jumps downwards
t every Skiba threshold, as the number of epidemic waves is reduced.
ithin all regions except the last, health costs increase as a higher
implies a higher penalty COVID-related health outcomes. The far-

ight region corresponds to the health solution where there are so few
nfections that the health care cost is minimal.

Comparing economic and health costs explains the dominant solu-
ion structures in Fig. 7. For low 𝑀 (region 1), low economic costs
ompensate for the relatively high infection rates around which the
ampened waves oscillate. In region 2 the two cost parts are of similar
agnitude. At the Skiba threshold between regions 2 and 3, the inten-

ive lockdown measures lead to economic costs that exceed the health
osts. This gap grows with further increases in 𝑀 . In region 6, where
he ’zero-COVID’-strategy dominates after the first very mild wave, the
conomic costs are very high, while the few infections produce only
ery low health costs.

.4. Step 3: Adding mortality reductions

This subsection adds the impacts on the pandemic system of a
eduction in virus lethality (novelty N3) stemming from the gradual
djustment of the human immune system to the virus, tantamount to
he accumulation of background immunity 𝐶(𝑡), in a way that bestows
rotection against severe and possibly deadly courses of the disease
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breakthrough infections are less likely to be fatal). As with 𝜅, reliable
ata are not available for the mortality reduction parameter 𝑐, so we
onsider it as a varying parameter as well. Hence, the scenario we
onsider is

Novelty N1: ‘on’ ∶ 𝜑1 = 2.5309 × 10−5

Novelty N2: ‘on’ ∶ 𝜅 bifurcation parameter
Novelty N3: ‘on’ ∶ 𝑐 bifurcation parameter

ovelty N4: ‘off’ ∶ 𝜄 = 0.

Figs. 9 and 10 show the course of the pandemic for 𝑀 = 10,000
nd 𝑐 = 0.15 with two different rates at which the mutations set in,
.e., 𝜅 = 50 (for Fig. 9) and 𝜅 = 70 (for Fig. 10). The mortality reduction
arameter 𝑐 has been chosen rather low such that the virus loses
3.04%/23.08%/31.03%/37.50%/42.86% of its lethality if the average
ndividual has been infected or vaccinated one/two/three/four/five
imes, respectively. The uncontrolled epidemic trajectories are not
reatly altered, but even this relatively small change in mortality
roduces noteworthy differences in the optimally controlled solutions.

For 𝜅 = 50 (Fig. 9) it is optimal to follow an economic solution,
ith lockdowns at the beginning and at the end of the planning period
nd little to no locking down in between. Panels 9(a)–9(d) follow the
xpected course as already observed in Sections 3.2 and 3.3. Panel 9(e)
lots the mortality reduction factor 𝑁

𝑁+𝑐𝐶 over time. Lethality drops
quickly at the beginning of the pandemic due to substantial epidemic
waves. After one year the waves are moving around the long-run steady
state level of 𝐼 meaning a convex reduction in lethality. At the end of
the planning period the virus has lost almost 50% of its lethality. This
reduction in mortality strengthens the appeal of the economic solution,
because the economic solution allows for infections that trigger a
reduction in lethality and the reduction in lethality benefits more a
solution strategy that involves considerable infection. This effect is
stronger the larger is the parameter c.

Nevertheless, for a slightly larger 𝜅 = 70 (Fig. 10) the decision
maker follows a persistent wave strategy. By and large the strategy
is analogous to the one described Sections 3.2 and 3.3, but with an
interesting adaptation. Panel 10(b) shows that the peak number of
infected individuals increases with each successive pandemic wave,
which is in contrast to the strategy described in Section 3.3 where this
number was approximately the same across waves. The reason is the re-
duction in mortality over time makes a greater number of infections less
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Fig. 9. Course of the pandemic for 𝑀 = 10,000 (health costs due to COVID-19), 𝜅 = 50 (pace of virus mutation) and 𝑐 = 0.15 (pace of virus losing lethality)- Economic solution.
Grey curve: uncontrolled path of epidemics. Blue and red parts of curve: Optimally controlled path with active and inactive lockdown, respectively.
problematic and so allows a less restrictive lockdown. The persistent
wave solution then transforms into a strategy that permits the epidemic
waves to become larger over time (in terms of numbers of infections but
not health consequences).

As one would expect, immunity loss favors more severe lockdown
measures, but the opposite seems true for the loss in lethality. There-
fore, it is interesting to see what happens when both parameters 𝜅 and
𝑐 are varied jointly.

Fig. 11 shows two bifurcation diagrams depicting the optimal solu-
tion structures. The parameter variation in the (𝑐,𝑀)-space in the left
panel has been derived for the case without mutations, i.e., 𝜅 = 0,
to isolate the effect of novelty N3 from that of novelty N2. On the
horizontal axis (case 𝑐 = 0) only novelty N1 is applied (as discussed in
Section 3.2) and the optimal solution structure switches at two Skiba
points (economic solution for low 𝑀 values, intermediate or persistent
wave solution between the two Skiba points, health solution for high
𝑀 values) at 𝑀 = 12,589 and 𝑀 = 12,680, as can be seen from the
zoomed part of the figure.

Increasing parameter 𝑐 implies a stronger decline in lethality due to
background immunity. That expands the range of health costs (parame-
ter 𝑀) for which the economic solution dominates (i.e., the Skiba point
shifts to higher values of 𝑀 if 𝑐 is increased). The intuition is that as
the effect of the virus on health becomes less severe, the decision maker
can concentrate more on preserving the economy. By contrast, very few
people get infected under the health solution, so the value of parameter
𝑐 matters little to the appeal of that strategy. As already observed in
Section 3.2, persistent wave solutions take only a minor role in the
case of 𝜅 = 0. If mortality reduction is considered, the solution with
persistent waves seems to disappear already even for quite small values
of 𝑐.

The following result summarizes the observations from the left
panel of Fig. 11.
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Result 7. If the lethality of the virus decreases with greater background
immunity (𝑐 > 0) and the virus does not mutate (𝜅 = 0), the economic
solution becomes more prominent and the persistent waves solution does not
occur anymore.

In the right panel of Fig. 11 we focus on the dependence of the
optimal solution structure on 𝜅 (corresponding to novelty N2) and 𝑐
(corresponding to novelty N3) for a constant 𝑀 = 10,000 (already used
for Figs. 9 and 10). Within regions 1 and 6 the economic and health
solutions are optimal, respectively. In regions 3, 4, and 5 it is optimal
to implement persistent wave solutions with 3, 2, and 1 waves, respec-
tively.6 Again we see the economic solution getting more attractive for
increasing 𝑐 (more infections lead to a fast mortality reduction), but
less attractive for increasing 𝜅 (fast immunity loss implies higher health
costs). As in Section 3.3, persistent wave solutions become optimal if
the virus mutates (𝜅 > 0, see also Fig. 7), since a faster immunity
loss implies higher infections over time and a higher long-run infection
level. However, as 𝑐 increases the reduction of lethality over time kicks
in, and this results in disappearance of the persistent wave solution at
𝑐 = 0.38. Hence, the Skiba curve for higher values of 𝑐 and 𝜅 separates
the economic from the health solution.

The red dots in both panels of Fig. 11 where two Skiba curves
intersect denote triple Skiba points. For example, at the triple Skiba
point of the left panel, the economic, persistent wave, and health
solutions are all optimal.

3.5. Step 4: Infected cases arriving from abroad

We finally consider the effects of an inflow 𝜄 of infected individuals
from abroad, that is independent of the prevalence of infection in the

6 Comparison with Fig. 7 for 𝑀 = 10,000 (and 𝑐 = 0) reveals that region 2
oes not show up in this bifurcation diagram.
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Fig. 10. Course of the pandemic for 𝑀 = 10,000 (health costs due to COVID-19), 𝜅 = 70 (pace of virus mutation) and 𝑐 = 0.15 (pace of virus losing lethality) - Persistent wave
solution. Grey curve: uncontrolled path of epidemics. Blue and red parts of curve: Optimally controlled path with active and inactive lockdown, respectively.

Fig. 11. Bifurcation diagram in (𝑐,𝑀)- and (𝑐, 𝜅)-space (left and right panel, respectively). At the blues lines (Skiba curves) two different solutions are optimal, red dots denote
tripple Skiba points (three different optimal solutions).
Region 1: economic solution, region 3–5: persistent wave solutions, region 6: health solution.
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Fig. 12. Bifurcation diagram in (𝑀, 𝜄)-space. At the blues lines (Skiba curves) two different solutions are optimal, red dots denote tripple Skiba points (three different optimal
solutions).
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area being modeled. The basic finding is that such an inflow makes
it more difficult to suppress infections, so larger values of parameter
𝑀 (meaning greater concern about COVID-related health harms) are
required to justify solutions that involve suppressing infections. That is
true both when considering the choice between economic and persis-
tent waves solutions and also the choice between persistent wave and
health solutions.

It is difficult to both compute and to display three-dimensional bi-
furcation diagrams, so we fix 𝜅 and 𝑐 at values that for an intermediate
value of 𝑀 = 10,000 produced a persistent wave solution with three
waves, which is in some sense an intermediate between the economic
and health solutions. Hence, the scenario we consider is

Novelty N1: ‘on’ ∶ 𝜑1 = 2.5309 × 10−5

ovelty N2: ‘on’ ∶ 𝜅 = 70

ovelty N3: ‘on’ ∶ 𝑐 = 0.15

ovelty N4: ‘on’ ∶ 𝜄 bifurcation parameter.

Fig. 12 presents the bifurcation diagram in the (𝑀, 𝜄)-space. The
point on the horizontal axis (𝜄 = 0) corresponding to 𝑀 = 10,000 is
in region 3 with 3-wave solutions, as is also indicated in the right-hand
panel of Fig. 11. From that point, reducing concerns about COVID-
related death and other health harms down to about 𝑀 = 9,400 crosses
ver to region 1 where economic solutions are optimal, and increasing
t to about 𝑀 = 10,800 makes health-solutions optimal.

Rising up vertically to the level of 𝜄 = 8.55 × 10−6, which might be
oughly the worldwide average, has the same sequence of strategies
eing optimal as 𝑀 increases, but with the thresholds shifted to the
ight.

The first and second rows of Fig. 13 show 𝛾, 𝐼 , and 𝑆 for both
ptimal solutions at the Skiba points that occurs for 𝑀 = 10,165 and
or 𝑀 = 10,966 (𝜄 = 8.55 × 10−6), labeled 𝑆1 and 𝑆2 in Fig. 12. They
re similar to Fig. 5 except that, as in the previous subsection, the
conomic solution involves smaller, subsidiary pulses of locking down,
ot just the initial and final efforts. In particular, the Skiba 𝑆1 separates
n economic and a 3-wave solution. The economic solution involves
he same number of waves as the uncontrolled solution, but they have
maller peaks and damp more quickly. The 3-wave solution has larger
ut fewer waves. Likewise, Skiba 𝑆 separates a 3-wave solution from a
61

2 t
ealth-oriented solution. The health-oriented solution in the face of an
nflow from abroad does not need to be appreciably more intense than
hose seen above. Locking down forcefully enough to make a domestic
ool of infections ebb can also ensure that infections arriving from
broad do not trigger explosive growth. However, the steady inflow
rom abroad does ensure an ongoing (relatively low rate) of infections.

Contrasting the 𝑀 values for Skiba points 𝑆1 and 𝑆2 shows that
he solution strategies can be quite sensitive to the 𝑀 parameter. A
ess than 8 per cent reduction in 𝑀 swings the solution from a health
olution all the way to an economic solution.

By contrast, moving vertically from Skiba point 𝑆2 to Skiba point
3, where an economic solution becomes optimal, requires almost
uadrupling 𝜄 to 3.2 × 10−5. The two solutions there (shown in the
ottom row of Fig. 13 are very similar to those in the first row of
ig. 13.

That is not to say that variation in the inflow parameter may not
e important for driving what solution is optimal. There may be large
ifferences across countries in both natural (pre-pandemic) rates of
order crossing and the extent to which COVID-controls can shut off
uch movement. For example, both New Zealand and the Netherlands
ad about as many international visitors per year pre-pandemic as
hey had people, so about five times the global average, but New
ealand had relatively greater capacity to halt that flow than would
ost countries with frequently crossed land borders.

. Conclusions

Previous models for exploring the optimal, dynamic lockdown strat-
gy for countering pandemics like COVID-19 found that policy makers
ould face a stark choice. It may be optimal to lock down very aggres-
ively (a so-called ‘‘China’’ or ‘‘health strategy’’) or it may be optimal
o use lockdowns more sparingly to somewhat delay but not avoid
ost people getting infected (a so-called ‘‘economic strategy’’), and

nfinitesimally small changes in certain key parameters can flip the
ptimal strategy from one extreme to the other. Formally these tipping
oints are known as Skiba points.

Among those key parameters is the valuation society places on
voiding a COVID-19 induced death and other health harms relative to
he economic, social, and educational harms caused by ‘‘locking down’’
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Fig. 13. Course of the pandemic at the Skiba solutions 𝑆1 (upper row), 𝑆2 (middle row) and 𝑆3 (lower row). Grey curve: uncontrolled path of epidemics. Blue and red parts of
curve: Optimally controlled path with active and inactive lockdown, respectively.
important aspects of societal activity. That is notable because there
is no single objective, scientific answer for how any individual or a
society should judge that relative valuation. Hence, two people who
agree on the science and have rather similar values can still support
very different policy approaches.

The analysis here supports that broad findings, but adds to it in
several important respects. When the standard SIR epidemic model is
augmented to include the possibilities that (1) the protective effects of
vaccines can ebb over time, (2) the virus can mutate in ways that render
past immunity less effective, and (3) the resulting re-infections are less
deadly then a third type of solution emerges that employs alternating
periods of stricter and less strict lockdowns that accompany recurring
epidemic waves.

Many countries have in fact experienced recurring waves of both
infection and lockdowns, but what is striking here is that such trajecto-
ries can be optimal. Superficially policy that vacillates back and forth
between lockdown and no lockdown coupled with an unending cycle
62
of epidemic waves might seem like proof of policy failure, but at least
within this model that outcome can be optimal.

This third type of solution comes in many flavors depending on how
quickly the epidemic waves recur and hence how many cycles there are
within any given fixed planning horizon.

The presence of additional types of solution allows the model to
display not only conventional Skiba points separating two different
strategies but also Skiba surfaces separating two strategies and 3D Skiba
points separating three very different strategies.

The variation in parameter values that favors one solution over
another is interpretable. For example, if immunity ebbs, the range of
parameter constellations favoring the ‘‘economic’’ solution (i.e., using
lockdowns sparingly to merely flatten the curve) becomes smaller,
because the protective ‘‘benefit’’ that infection confers becomes smaller.

The meta message is threefold. First, as in past papers, small changes
in parameters reflecting subjective values (notably, the ‘‘cost’’ of a
COVID-19 death) can produce big changes in what policy is preferred.
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Fig. 14. Bifurcation diagram with respect to 𝑀 . Grey lines correspond to continuations of solutions dominated by others.
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Thus, people who agree on the science can nonetheless sharply dis-
agree on what policy should be followed. Second, small changes in
parameters that are impossible to know at the outset of a pandemic
can lead to radically different policies being optimal. Examples of
such a parameter include how long vaccine-conferred immunity lasts,
and whether important mutations will be common. That means it is
essentially impossible for anyone to be certain in real-time what policy
will be optimal as a pandemic is unfolding. Third, the policy that
would have been optimal for COVID-19 might not be optimal for the
next pandemic, if the virus causing the next pandemic is a little more
contagious or a little less deadly or a little less prone to mutate.

Together those three structural findings suggest a degree of humility
is in order, with advocates of one policy or another being a little less
adamant that their favored approach is ‘‘right’’ or is the only rational,
science-based approach. Ultimately, any given society experiences one
collective epidemic, and so has to cohere around one set of policies.
It would do little good for half of society to lockdown and another
half with whom they live, work, and play to not do so. But whatever
policy is pursued, its implementation should perhaps be tempered by
the knowledge that it will not be the preferred or ‘‘right’’ policy for
everyone, and evolving understanding of that new virus’ idiosyncratic
properties might require even experts to change their mind. A small
example of that from this last epidemic is the shift from an initial
emphasis on disinfecting surfaces to a later focus on mask wearing.

The knife-edge or Skiba character of the solutions to this (ad-
mittedly, highly simplified) model suggests thinking about picking
a collective epidemic policy as an exercise in compromise for the
collective good, not a matter of mechanically deducing the one, true,
evidence-based policy that all rational people must favor.
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Appendix A. Full model (for numerical implementation)

In order to facilitate a numerical solution of the full model (14) we
have to introduce two small model adaptations.

First, we use

𝐻𝑠(𝜁, 𝑥) ∶=
arctan(𝜁𝑥)
arctan(𝜁 )

, and 𝜁 ≫ 1. (16)

s smooth approximation of the jump function 𝑥 = 0, 𝑥 ≤ 0 and
= 1, 𝑥 > 0, which we need for people vaccinated. Thus, we are using
𝑠(𝜁, 𝑆)𝑉 (with parameter 𝜁 = 5,000) instead of 𝑉 in the state dynamics

f 𝑆, 𝑅 and 𝐶.
Second, to avoid difficulties with the state-constraints and for the

ase the recovered state approaches zero, we replace the denominator
in the definition of the average duration of immunity 𝐴 (see (6)) by

+ 𝜏, with 𝜏 = 10−5. (17)

ppendix B. Additional figures
See Figs. 14 and 15.
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