Long-term historical trends in air pollutant emissions in South Korea (2000~2018)

Jinseok Kim¹

Junhee Park¹, Minwoo Park¹, Bomi Kim¹, Youjung Jang¹, Seoyeon Kim¹, Minyoung Choi¹, Younha Kim², Hyejung Hu¹, Jung-Hun Woo¹

¹Konkuk University ²International Institute for Applied Systems Analysis(IIASA)

SCIENCELEADSTHEFUTURE

INDEX

- I. Background & Objective
- II. Data & Methodology
- III. Results
- IV. Summary & Conclusion

I. Background & Objective

Annual changes in Concentration trend for fine dust in South Korea (PM10, PM2.5) (NIER, 2019)

수정필요

I. Background & Objective

- 1. In order to analyze the impact of air quality improvement policies, it is necessary to estimated long-term emission trends.
- 2. CAPSS, Korea's official emission inventory, has been estimated and published every year since 1999, but it is difficult to compare and

analyze long-term emissions due to differences in the method of calculating emissions by year.

- 1. Recalculate past emissions using the 2018 emissions calculation method of the CAPSS emissions inventory
- 2. Analysis of long-term air pollutant emission trends and confirmation of connectivity with air quality improvement policies
- 3. Unification of emissions source categories to participate in TF HTAP, an international long-term air pollutant emission analysis study

4. Emission trend analysis of three Northeast Asian countries using TF HTAP data

II. Data & Methodology

II. Data & Methodology

3.2. Source Category

HTAP Source Category		CAPSS Source Category		
Sector Number	Sector Description	Level 1	Level 2	Level 3
Sector_2.1	Domestic Aviation	Non-road Transport	Aviation	Domestic airport traffic
Sector_3	Energy	Energy Production		
Sector_4.1	Industry	Manufacturing Industry Industrial Processes		
Sector_4.2	Fugitive	Energy Tansport and Storage Biomass Combustion	charcoal manufacturing	
Sector_4.3	Solvents	Solvent Use		
Sector_5.1	Road Transport	Road Transport		
Sector_5.2	Brake and Tyre wear	Fugitive Dust	paved road unpaved road tire wear	
Sector_5.3	Domestic shipping	Non-road Transport	Inland waterways Offshore	
Sector_5.4	Other ground transport	Non-road Transport	Railways	
Sector_6	Residential	Non-Industry Combustion Non-road Transport Biomass Combustion	Construction machinery Fireplace	
Sector_7	Waste	Waste Biomass Combustion	Waste disposal	
Sector_8.1	Agricultural waste burning	Biomass Combustion	Agricultural residue burning	
Sector_8.2	Agriculture livestock	Agriculture Fugitive Dust	Manure management Stockbreeding activity	
Sector_8.3	Agriculture crops	Agriculture Fugitive Dust	Cultures with fertilizers Agriculture activity	
Sector 9	Fires	Other Area source	Forest fire and Fire	Forest fire

II. Data & Methodology

3.3. Summary of Changes to Emissions Inventory Calculation Methods

Changed			
2002	Update of CNG Bus E.F.		
	Development of Two-wheeled Vehicle E.F.		
	Deterioration Coefficient of Mobile source		
2004	Energy Comb., Non-ind. Comb., Ind. Comb. E.F.		
	Ind. Proc. Tier 2 E.F.		
	Road Transport, Solvent use Activies		
2005	Road Transport source E.F.		
	Diesel Vehicle Estimation Method		
	VKT for Passenger Car		
2007	Solvent use, Energy Transport&Storage E.F.		
2009	Construction Equipment Estimation Method		
2006	Error of NH3 E.F. in the Waste Treatment Source		

- A new emission source has been added.
- Emission factors have changed.
- Changes in Emissions Estimate Methods.
- Changes were applied to the previous year.

Added				
2001	Agricultural Sector			
	Industrial Process - Ammonia Consumption			
2007	Wastewater Treatment source - NH3 Emisison			
	Imported Anthracite Activity			
2011	New E.F. for Road transport			
	agricultural manure management-"broiler"			
	New Pollutant - PM2.5			
2015	Official Emission source - Fugitive Dust			
	Official Emission source - Biomass Burning			
2016	Driving Conditions on Actual Roads for Diesel Vehicles			

SCIENCELEADSTHEFUTURE

III. Results

III. Results

III. Results

III. Results

NOx

SO2

Source : Harrison Suchyta et al, EDGAR-HTAPv3 – CEDS – Other Comparison, 2021

III. Results

South Korea = CAPSS-KU

Source : Harrison Suchyta et al, EDGAR-HTAPv3 – CEDS – Other Comparison, 2021

IV. Summary and Conclusion

- 1. Through this study, CAPSS-KU, a recalculated emission inventory from 2000 to 2018, was prepared.
- 2. Emissions of pollutants mainly emitted through combustion, such as NOx, SOx, and PM10, are on the decline.
- 3. NH3 and VOC are steadily increasing
 - NH3 and VOC are the main precursors of secondary aerosol, so it is judged that additional policies should be implemented and the effectiveness of the policies should be increased.
- 4. If Korea's emissions are not recalculated, NOx and CO emissions stagnant and PM10 emissions increase by year.
 - Through the recalculation of emissions, it was confirmed that Korea's emissions showed a decreasing trend.
- 5. Unification of the emissions source categories for the participation of TF HTAP.
 - Comparison of emissions trends in Korea and other countries through participation in HTAP research.
- 6. Among the three Northeast Asian countries, VOCs show a trend of reduction only in Japan.
 - There is a need to refer to Japan's air quality improvement policy to reduce Korea's VOC emissions in the future.

Thank you for your Attention

