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A B S T R A C T   

In recent years, discussions surrounding climate change have increasingly emphasized the significance of 
demand-side solutions. This shift has led to an interdisciplinary and bottom-up approach aimed at supporting 
global efforts to mitigate climate change. However, conventional modelling tools used to understand the energy 
demand system and to inform policymaking often fall short in capturing bottom-up dynamics accurately and at 
the required level of granularity. This is particularly evident in the nuanced and complex aspects of behavioural 
and social changes and their interactions. This research introduces a novel coupled -agent-based and integrated 
assessment modelling framework designed to analyse the advantages arising from diversity in renovation de-
cisions, social dynamics, and the evolution of residential building stocks. This study demonstrates that, to 
effectively formulate realistic policies leading to substantial changes in building energy demand, policymakers 
require decision-support tools that extend beyond the confines of the rationality principle.   

1. Introduction 

While buildings are essential in providing shelter and services for 
people, they are also responsible for 21 % of global GHG emissions [1]. 
Studies show that demand-side mitigation strategies in buildings could 
technically reduce greenhouse gas (GHG) emissions by 78 % 
(6.8GtCO2e) by 2050 [2] and make the transition to renewables much 
faster and more cost-effective [3]. Given the impact that household 
energy consumption has on emissions and an emerging shift in social 
norms, individual behavioural change becomes central in the discourse 
on climate change mitigation [2,4–8]. 

To assess the energy demand in buildings and its changes over time, 
we rely on models. So far, Integrated Assessment Models (IAMs) and 
macroeconomic Computable General Equilibrium (CGE) models have 
served as standard tools for quantitative policy assessments in climate 
change mitigation [9–13]. IAMs heavily focus on energy supply, tech-
nologies, investments and consumption patterns associated with GHG 
reduction policies by simulating markets for production and foreign 
exchange factors with equations that specify supply and demand 
behaviour. Carbon taxes, emission reduction targets, emission trading, 
renewable energy, and energy efficiency are the main policy levers 
addressed by sophisticated IAMs for energy policy assessments 
[11,14–16]. Yet, most IAMs assume a rational representative agent who 

makes optimal decisions under budget constraints, perfect information 
and competitive markets [17–19]. Their parameters can be either cali-
brated or econometrically estimated using time-series data. Therefore, 
IAMs are suitable for testing the economic effects of GHG reduction 
policies for short-horizons and near-term actions, making it challenging 
to integrate behavioural changes. Hence, their validity and capacity to 
provide unbiased climate mitigation policy advice is debated 
[6,17,18,20,21]. While IAMs have a strong focus on supply-side energy 
technologies [22,23], an improved representation of the end-use sectors 
is needed to capture the full potential of demand-side solutions. 

IAMs typically consider the building sector with a lower level of 
detail, neglecting the building infrastructure [24,25] and requiring 
further linkage with future demand for buildings [26]. In recent de-
velopments, IAMs were coupled to sectoral building end-use models to 
account for infrastructure and stock dynamics and improve the repre-
sentation of demand-side decarbonisation strategies [24,27–29]. 
Despite improving socio-economical and technological detail, these 
coupled models consider behavioural aspects in a simplified way and 
often with exogenous assumptions, e.g. on building floorspace and ac-
tivity levels. However, in reality, individuals make decisions shaped by 
their diverse preferences, socio-economic conditions, behavioural and 
lifestyle biases, climate-energy literacy, social peer influence, and 
technology and infrastructure availability. Each of these factors provides 
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its own policy entry point for demand-side mitigation. Individual energy 
decisions -for example, investment in building renovation- especially 
when amplified through social context (interaction and learning), shape 
energy demand. Individuals can play an essential role in net-zero 
emissions transition by changing their behaviours. Broader engage-
ment of behavioural and social sciences is needed to identify promising 
opportunities for a low-carbon society [2,30–33]. Thus, a new genera-
tion of models is needed to reflect these complex decision environments 
[18]. 

Agent-based Modelling (ABM) is considered the most promising 
approach to address the complexity of individual decisions in energy- 
climate models [6,18,34]. This method is a frontrunner as it is 
designed to account for different behaviours, bounded rationality and 
social influences. Several behavioural ABMs in the buildings sector are 
developed and grounded in empirical data [34–36], yet the focused 
area, spatial operation, and their feedback on the structural and physical 
aspects remain limited. Consequently, this prevents assessing economy- 
wide impacts realistically and generalising ABMs’ results. 

In this study, we introduce an innovative modelling framework that 
combines ABM and IAM to address the limitations associated with each 
approach. This marks the initial step towards the integration of ABM and 
IAM by enhancing the modelling of a particular sector, namely, build-
ings, as an integral module within an IAM. Linking IAM with micro-level 
behaviourally-rich ABM can operationalise behavioural and social 
changes in formal policy analysis and open new synergies between 
socio-behavioural, infrastructural and institutional approaches. 

Earlier attempts to integrate ABM with IAM/CGE models include the 
work of Safarzyńska et al. (2013), who propose an elegant way to 
integrate the evolutionary dynamics of ABMs into a CGE model. Yet, the 
authors leave it at the conceptual level without an implementation. 
Niamir et al. (2020) present a method of systematic upscaling of indi-
vidual heterogeneity and social dynamics to combine ABM and CGE 
models. However, many studies comprehensively reviewed IAMs and 
ABMs, highlighted their strengths and weaknesses and emphasized the 
models integration as one way forward [37,38]. To the best of our 
knowledge, there is no empirical example of resolving the key meth-
odological differences between ABM and IAM modelling while aligning 
with survey data on behavioural heterogeneity. We believe this is a 
unique model complementary exercise which accommodates heteroge-
neity, adaptive behaviour and interactions, bounded rationality and 
imperfect information. 

This paper closes the gap between what the current energy modelling 
can do and what social science highlights as pro-environmental behav-
iour in the transition to low energy demand. To do so, we present a 
systematic way to bring empirically-based heterogeneous households’ 
energy decisions and social influences to behavioural and social 
modelling (ABM) coupled with the buildings module of the energy 
model (IAM). Our choice to emphasize the buildings module within the 
IAM is primarily driven by our aim to align with the scope of our ABM 
domain. This, in turn, establishes the initial point of interaction with the 
broader IAM framework. 

2. Methods 

This research presents a novel model coupling framework to capture 
energy-climate benefits of residential energy behavioural changes and 
social interactions, considering renovation decisions while accounting 
for the building stock evolution. The framework consists of two main 
interlinked models: a bottom-up energy behavioural agent-based model 
(BENCH); and a bottom-up building stock energy model (MESSAGEix- 
Buildings) part of an IAM. 

2.1. Bottom-up modelling 

2.1.1. BENCH agent-based model 
Originally, the BENCH ABM [6,36] was developed to investigate the 

role of behavioural changes with respect to individual energy use in the 
transition to a low-carbon economy. Households in BENCH ABM are 
heterogeneous in socio-demographic characteristics (e.g. income, age, 
education), dwelling characteristics (e.g. ownership status, type, size, 
age), energy consumption patterns (e.g. electricity and gas consumption, 
energy provider), and behavioural factors (e.g. awareness, personal 
norms, social norms). BENCH is spatially explicit, with behavioural rules 
of agents calibrated based on the survey data for two EU provinces: 
Navarre, Spain and Overijssel, The Netherlands [33]. The BENCH model 
integrates both the elements of a rational choice (e.g. economic and 
financial) as well as contextual behavioural factors. BENCH is capable of 
accurately capturing the diversity within renovation actions. Hetero-
geneous households engage in interactions and learn from each other. In 
particular, they can exchange information within their social networks 
(e.g. family, neighbourhood, and institutions), which may alter their 
own awareness and motivation regarding adaptation. We advance this 
ABM further to permit integration with the MESSAGEix-Buildings both 
in terms of the theoretical consistency of functional forms used in ABM 
and IAMs, as well as the datasets and scenario assumptions. In partic-
ular, BENCH (version 04) focuses on a household decision on building 
renovation. 

2.1.2. MESSAGEix-Buildings 
MESSAGEix-Buildings [28] is a bottom-up modelling framework to 

assess the evolution of large building stocks and related energy demand 
under different socio-economic, technology, climate and policy sce-
narios soft-linked to the IAM MESSAGEix [39]. MESSAGEix-Buildings 
brought several advancements in the representation of the buildings 
sector in IAM, by explicitly accounting for housing and households 
heterogeneity, building stock turnover, and key activities and energy 
efficiency improvements dynamics. This allowed for overcoming the 
simplified approaches for sector energy demand projections commonly 
used in IAMs, often GDP-driven and limited in considering sectoral 
transformations and policies. In this study, we focus on the residential 
sector and use two main sub-modules in MESSAGEix-Buildings: CHIL-
LED (Cooling and Heating gLobaL Energy Demand model), an energy 
demand model for space heating and cooling based on spatially explicit 
variable degree days calculation; and STURM (Stock TURnover Model of 
global buildings), a stock turnover model based on dynamic material 
flow analysis (MFA) to assess new constructions, demolitions and ren-
ovations. The scope and resolution of the model are flexible both in 
space and time, with typical scope ranging from national to global and 
mid- to long-term assessments. Here, we run the model for Spain and the 
Netherlands, operating at the national level, with five-year timesteps. 
MESSAGEix-Buildings has high granularity in representing heteroge-
neous households and housing characteristics. In this study, we differ-
entiate the characteristics and energy demand of the housing stock 
according to the following dimensions: location (urban and rural), cli-
matic zone, housing types (single-family and multi-family), periods of 
construction and energy efficiency levels (existing built before 1945, 
between 1946 and 1990, and between 1991 and 2015, renovated, and 
newly constructed after 2015) and energy carriers for space heating 
(biomass, coal, natural gas, oil, district heating and electricity). Adding 
more granularity, e.g. via additional segmentation of periods of con-
struction, could support further analysis of the heterogeneities in the 
stock, but results in additional model complexity and computational 
burdens, that will be addressed in future model implementations. While 
MESSAGEix-Buildings can endogenously represent energy efficiency 
investment decisions of households via dedicated discrete choice models 
[28], in this study we use fixed renovation rates when running the model 
stand-alone. 

Granularity and heterogeneity in both models data is presented in 
the Supplementary Information (Tables SI.1–3). 
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2.2. Integration framework 

An overview of the coupling modelling framework is provided in 
Fig. 1. The workflow consists of three main steps: 1) the building stock 
turnover and future configuration is assessed in MESSAGEix-Buildings; 
2) the building stock configuration is passed over to BENCH and reno-
vation decisions are estimated accounting for heterogeneity in house-
hold socio-economics and dwelling characteristics; 3) renovation 
actions are passed over to MESSAGEix-Buildings and updated building 
stock configuration and energy demand are calculated. 

2.2.1. Step1. Preparatory stock turnover (MESSAGEix-Buildings) 
In the first step, we run the STURM model to assess the housing stock 

turnover in future years and report new constructions and demolitions in 
terms of both housing units and floorspace. Demolitions are calculated 
by applying housing type-specific probabilistic demolition curves to the 
different vintage cohorts. New constructions are determined based on 
population driven demand for housing units, accounting for replace-
ment of demolished units. Based on demolitions and new constructions, 
we obtain an updated configuration of the housing stock at every 
timestep (please, refer to [28] for more details). In this step we don’t 
consider renovations and implicitly assume that the building lifetimes 
are dependent on housing types but not on energy renovations. While 
there are often linkages between energy renovations to improve build-
ings’ energy efficiency and structural renovations to enhance building 
structural performance and extend buildings’ lifetime, the relationship 
between the two is mostly unclear due to data scarcity. Here, we focus 
on energy renovations only and assume the continuation of current 
trends in building demolitions. The stock time-series and share of 
housing by vintage is passed over to BENCH ABM. Initially, the BENCH 
ABM does not incorporate any estimations or narratives related to 
demolishing and new construction. Essentially, in this initial iteration, 
households’ dwelling arrangements remain static, with the model only 
tracking the age of the buildings. 

2.2.2. Step2. Households energy renovation decisions (BENCH) 
In BENCH ABM, household agents are heterogeneous in socio- 

economic and dwelling characteristics, preferences, and awareness of 
the environment and climate change, so they can pursue various energy- 
related choices and actions. Namely, they vary in six economic attri-
butes: (1) annual income in euro; (2) annual electricity consumption in 
kWh; (3) dwelling tenure status—owner or renter; (4) energy label of 
their dwelling varying from A to F; (5) the age of their dwelling; and (6) 
the size of their dwelling in m2. Data for all these variables come from 
the survey [33]. The annual growth value of socio-economic variables 
representing households’ income and electricity consumption (in 5 
quintiles) comes from the EXIOMOD computable general equilibrium 
(CGE) model [40]. 

The behavioural and social aspects impacting households’ energy 
decisions also vary among agents and include (1) general knowledge 
about the environment and climate changes; (2) awareness of the con-
sequences of their actions and behaviour (with a focus on energy 
renovation); (3) information regarding energy investments and reno-
vation; (4) personal norms, which are values that people hold, e.g., 
feeling good when they are energy-efficient; (5) subjective norms, which 
are perceived social pressure on whether to engage in a specific 
behaviour motivated by observing energy-related actions of neighbours, 
family, and friends; (6) perceived behavioural control, which refers to 
the household perception of the ease or difficulty of performing the 
building renovation. These behavioural and social variables are updated 
over time (annually) through social dynamics and learning procedures 
(see [6] for more details). Agents’ decision processes closely follow the 
conceptual framework (Fig. 2) behind the household survey. 

In accordance with the Theory of Planned Behaviour and Norm 
Activation Theory from psychology [41,42], we assume that boundedly 
rational individuals in BENCH make decisions following a number of 
cognitive steps: knowledge activation, motivation, and consideration 
[6,19]. Fig. 2 shows heterogeneous households in socio-demographic 
characteristics (e.g. age, education, income), behavioural and social 
factors (e.g. attitude, personal norms, subjective norms), dwelling con-
ditions (e.g. type, size, energy label), and electricity and gas consump-
tion follow a cognitive process to decide whether to pursue investment 
in buildings insulation and renovation. Niamir et al. (2018a) describe 
how each individual’s knowledge activation and motivation are 

Fig. 1. Models coupling framework.  
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measured and calculated at the model initialisation stage based on the 
survey data. 

Applying BENCH ABM sheds light on the effects of heterogeneous 
household renovation decisions and explores the impact of socio- 
economic, behavioural heterogeneity and social dynamics in the two 
European countries, The Netherlands and Spain, over 33 years 
(2017–2050). As a result, the aggregated share of heterogeneous 
households who took the renovation decision is reported based on three 
main buildings age categories: new buildings (<10 years), middle age 
buildings (11–35 years), and old buildings (>35 years). We provide 
detailed mapping between the age of buildings in BENCH, that is moving 
over time, and the three periods of construction in MESSAGEix- 
Buildings, to ensure full consistency between the two models. 

2.2.3. Step3. Building stock turnover and energy renovation 
Finally, we re-run the scenarios in the STURM building stock turn-

over model incorporating the renovation decisions assessed in BENCH 
and generate new time-series of the housing stock configuration, as a 
result of the demolitions, new constructions and renovations calcula-
tions in the stock turnover model. Renovations are provided as share of 
renovated buildings by the vintage cohort. Types of renovations and 
estimation of corresponding energy savings are parametrized consis-
tently with the BENCH model setup for the scenario runs (see Section 
2.3). Energy intensity for space heating is calculated for a set of building 
archetypes representing different housing cohorts using the CHILLED 
module. The calculation is based on variable degree days (VDD) applied 
to a spatial grid with 0.5◦ spatial resolution, population-weighted, and 
aggregated at the level of countries and climatic zones. VDD are calcu-
lated for each month (m) with the following equation: 

VDDh,m =
∑dm

d=1

(
Tbal,m − Tout,d

)+

where dm is the number of days (d) in the given month, Tbal,m is the 
monthly balance temperature, where nor heating nor cooling is neces-
sary, Tout,d the average daily temperature. 

The VDD method accounts for building characteristics and occu-
pants’ behaviour in the calculation of heating demand by analytically 
calculating the balance temperature. Annual final energy for space 
heating is finally calculated aggregating results from the monthly 
calculation and accounting for the conversion efficiency of the heating 
system. (see [28] for more details). 

The total final energy demand for space heating is finally calculated 
by combining a) the floorspace projections for different housing cohorts 

by period of construction and energy efficiency level from the STURM 
module and b) the energy intensity per unit floorspace of the different 
housing cohorts calculated by country and climatic zone with the 
CHILLED module. A detailed list of the input data used for the calcula-
tions is reported in the supplementary information. 

2.3. Scenarios and model runs 

2.3.1. Step1. Buildings stock turnover scenario 
The building stock evolution and energy demands in MESSAGEix- 

Buildings follow a baseline (B) consistent with the Shared Socio- 
economic Pathway SSP2 [43] and represent the continuation of histor-
ical patterns. SSP2 has medium challenges to both mitigation and 
adaptation [44]. In the residential sector, the baseline is characterized 
by a continuation of current trends in housing size growth, moderate 
energy efficiency increases, and medium energy demand levels [28]. 

2.3.2. Step2. Behavioural and social scenarios 
Besides being heterogeneous in terms of socio-demographic charac-

teristics (e.g. age, income, education), housing they reside in (e.g. tenure 
status, size, energy label), and psychological factors (e.g. attitudes and 
beliefs, personal norms), agents in the BENCH ABM exhibit heteroge-
neous behavioural characteristics, such as knowledge and awareness, 
engaging in social interactions and learning. BENCH_v04 ABM in-
troduces two end-user behavioural scenarios (Slow and Informative 
Dynamic) by differentiating between the intensity of social interactions 
and the learning speed (see Table 1). While the Slow Dynamic (SD) 
scenario represents the BENCH ABM baseline, where social interactions 
of heterogeneous households are limited, the Informative Dynamic (ID) 
scenario assumes an intense information policy that activates and pro-
motes building renovation through raising knowledge and motivation 
across the entire population. 

2.3.3. Step3. Building stock turnover and energy renovation 
We combine the building stock evolution Baseline (B) in 

MESSAGEix-Buildings with the two end-user behavioural scenarios 
(Slow Dynamic (SD) and Informative Dynamic (ID)) from BENCH ABM 
to investigate the building stock evolution and renovation actions under 
different social dynamics and effects on energy demand for space 
heating. The two resulting scenarios (B-SD, B-ID) are compared against 
two benchmark scenarios (without social dynamics) run in MESSAGEix- 
Buildings and assuming a fixed renovation rate over time. In the first 
benchmark scenario (Benchmark with Low Renovation rate (B-LR)), the 
current renovation rates (1.05 %/yr in Spain and 0.95 %/yr in the 

Fig. 2. A household decision-making process in the BENCH ABM.  
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Netherlands) are kept constant until 2050, representing the continua-
tion of current practice. The second benchmark scenario (Benchmark 
with How Renovation rate (B-HR)) assumes a doubling of the renovation 
rate in line with the European “Renovation Wave” ambition [45]. In the 
B-HR scenario, renovation rates accelerate to 2.5 %/yr by 2025 and 
remain constant until 2050. In agreement with similar scenarios from 
other studies [46], we assume that 20 % of the renovations are deep 
(reaching 60 % energy reduction) and the rest medium and shallow 
(average 30 % energy reduction) to reflect prevailing renovation prac-
tices and align with the BENCH model setup. 

3. Results and discussion 

In the following, we present and discuss the results of each integra-
tion step. 

3.1. Step1. Building stock turnover (MESSAGEix-Buildings) 

Fig. 3 shows the projections of residential floorspace, construction 
and demolition rates for Spain and the Netherlands in the Baseline (B) 
scenario calculated in MESSAGEix-Buildings. Total floor space slightly 
increases in Spain and stays mostly constant in the Netherlands, as a 
result of slow population growth and minor changes in housing size until 
2050. Construction rates are not significantly changing from the current 
values (up to 1 %/yr), while demolition rates are only slightly 
increasing. As a result of these dynamics, the composition of building 
vintage cohorts only partially shifts over time. A large part of the 
housing stock (45–55 %) is represented by buildings older than 35 years, 
and therefore less energy efficient, in both countries. Newer buildings 
(vintage <10 year) constitute only around 20 to 30 % of the total 
housing stock, and the share is decreasing over time as a consequence of 
construction rates slowing down (see Fig. 4). The time-series of housing 
stock composition are passed over to the BENCH ABM model to account 
for infrastructure vintage in renovation decisions of households. 

3.2. Step2. Households renovation decision (BENCH) 

In this step, we run the BENCH ABM for Spain and The Netherlands 
under the two behavioural and social scenarios (SD and ID) to track 
heterogeneous household renovation decisions capturing non-linearities 
in renovation rate over time and space. Given the stochastic nature of 
ABMs, we run BENCH ABM multiple times under the same parameter 
settings for each scenario. The ABM results presented below plot the 
means across 100 random runs. 

In scenario SD (as BENCH baseline), the heterogonous households 
with various income, age, education, energy consumption, personal and 
social characteristics, preferences and building conditions go through 
the process to decide whether to apply renovation and save energy or 
not (see Section 2.2.2). Fig. 5 shows that introducing heterogeneity to 
the household’s economic, behavioural, social and building attributes 
leads to non-linear trends of renovation investment over time in Spain 
and the Netherlands. The results show Dutch households -up to 9.4 % in 
the old buildings- intend to invest in renovation and save energy rather 
than those in Spain. 

Table 1 
Scenario setting, buildings stock and behavioural and social scenarios.  

Scenarios Type Setups/explanation 

MESSAGEix-Buildings (Step1) 
B (Baseline) Buildings stock Continuation of current building 

trends (SSP2)  

BENCH (Step2) 
SD (Slow Dynamic) behavioural and 

social 
Slow: in an active neighbourhood: 
individuals interact with four 
available neighbours 

ID (Informative 
Dynamic) 

behavioural and 
social 

Informative: in an active 
neighbourhood: individuals 
interact with all available 
neighbours + Intense information 
policy  

Combined BENCH and MESSAGEix-Buildings (Step3) 
B-SD Buildings stock +

Behavioural and 
social 

Building stock turnover + Slow 
behavioural and social dynamics 

B-ID Buildings stock +
Behavioural and 
social 

Building stock turnover +
Informative behavioural and social 
dynamics  

MESSAGEix-Buildings (Benchmark scenarios) 
B-LR (Benchmark: 

low renovation 
rate) 

Building stock Building stock turnover + Low fixed 
renovation rate 

B-HR (Benchmark: 
high renovation 
rate) 

Building stock Building stock turnover + High 
fixed renovation rate  

Fig. 3. Projections of total residential floorspace (left panel) and average construction and demolition rates (right panel) for Spain and the Netherlands in the 
Baseline (B) scenario. 
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Scenario ID shows what happens if we have more intense social 
dynamics within a neighbourhood – therefore, the diffusion of infor-
mation is faster inside society. In other words, this stimulates the soft 
policy pressure where households receive enough knowledge on energy 
consumption and information on renovation strategies and costs. We 

observe the impact of fast social interaction alone, activates households 
and delivers an additional 4 % and 18.2 % share of renovation in Spain 
and the Netherlands, respectively. As Fig. 5 shows, under scenario ID, 
not only more households decide to invest in renovation in the early 
years (between 2020 and 2030), but also information diffusion activates 

Fig. 4. Composition of the housing stock over time by vintage categories for Spain and the Netherlands in the Baseline (B) scenario.  

Fig. 5. Heterogeneous household renovation decision over time by vintage categories in Spain and the Netherlands under SD and ID scenarios. The renovation rate 
(%) is presented as the percentage of households renovation within specific age cohorts (<10, 11–35, >35), relative to the total number of households in each cohort, 
observed over a 5-year period. 
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other households in the years after. In addition, our results show that the 
main barriers in the renovation decisions in both cases, particularly 
between 2030 and 2050, are rooted in 1) ownership status -households 
who rent the building are not allowed to change the building structure; 
and 2) renovation affordability -the majority of household, particularly 
in the case of Spain- who are the owner and motivated enough to invest 
on building renovation, cannot afford the costs. 

Fig. 6 presents what happens in the presence and absence of build-
ings’ stock turnover dynamics. This highlights how buildings’ age and 
structural changes,– such as new construction and demolishing old 
buildings, introduce a dynamic element into household renovation de-
cisions. This dynamic primarily arises from the fact that renovation 
decisions are significantly influenced by the age of the building, a 
finding that aligns with our empirical study [33]. In other words, the age 
of the building plays a pivotal role in shaping household renovation 
choices. Fig. 7 illustrates that behavioural and social incentives activate 
households to invest in building renovation over various income groups. 
Two distinct scenarios are depicted: 1) the SD scenario, supported by 
empirical research, underscores that the middle and high-middle income 
groups exhibit a higher level of activity in pursuing renovation initia-
tives; 2) the ID scenario illustrates that social dynamics play a pivotal 
role in influencing household decisions related to renovation, a trend 
evident across all income categories. While we observe a more pro-
nounced impact, up to approximately 9 %, on the middle to high-income 
groups over time, the renovation rate in low and low-middle-income 
groups has increased by around 5 %. This suggests that we have a 
greater potential to engage and activate higher-income households 
through information dissemination and awareness. However, lower- 
income households may also become motivated and express an inten-
tion to renovate when provided with information. Yet, they may 
encounter additional obstacles, such as budget constraints or residing in 
rented buildings, which hinder their ability to undertake renovation 
projects. As an example, when comparing SD and ID, it is evident that 
the renovation rate for the high-income group increased by >6 % in 
2030. 

3.3. Step3. Buildings stock turnover and energy renovation 

In the last step, we run the MESSAGEix-Buildings model combined 
with renovation inputs from BENCH to simultaneously account for 
socio-behavioural and building stock dynamics. Fig. 8 shows the average 
yearly renovation rates for the entire housing stocks of Spain and the 
Netherlands over time for different scenarios. Renovation rates are 
higher in the B-ID scenario, under more intense social dynamics, and 
lower in the B-SD scenario. In particular, for the Netherlands, renovation 
rates accelerate in the initial period and then slow down over time as 
upgrading of the existing housing stock advances. In Spain, renovation 
rates are relatively lower due to higher barriers towards energy effi-
ciency interventions. Renovation rates for the B-SD and B-ID scenarios 
can be compared with the additional scenarios B-LR and B-HR with fixed 
renovation rates, showing more complex dynamics over time that 
cannot be capture by exogenously projected renovation rate. 

Different renovation rate influence the composition of the housing 
stock by different energy efficiency cohorts over time (Fig. 9). The share 
of renovated buildings by 2050 is higher in the B-ID scenario for both 
Spain and the Netherlands under faster upgrading of existing buildings. 
It is possible to notice that, due to slow building cycles, the existing 
housing stock will still constitute between 60 and 70 % of the total 
housing stock in 2050 in the two countries. Thus, renovation plays a key 
role in reducing future buildings energy demands. 

Projections of final energy demand for space heating in different 
scenarios are reported in Fig. 10. Final energy is lower in the B-ID sce-
nario for both Spain and the Netherlands as a result of higher renovation 
rates. Energy demand reductions for space heating are more substantial 
in the Netherlands, due to the higher absolute savings potential under 
colder climates and higher renovation rates. Compared to the pro-
jections with fixed renovation rates in B-LR and B-HR, the B-SD and B-ID 
scenarios for the Netherlands are characterized by anticipated timing in 
energy demand reductions, with implications on saved energy. In Spain, 
estimated energy reductions in B-SD and B-ID are lower compared to the 
B-LR and B-HR scenarios, indicating a potential effect of renovation 
barriers not considered in exogenous renovation projections. 

Fig. 6. Comparing household renovation decisions with(out) considering buildings stock turnover by vintage categories over time. The renovation rate (%) is 
presented as the percentage of households renovation within specific age cohorts (<10, 11–35, >35), relative to the total number of households in each cohort, 
observed over a 5-year period. An example of ID scenario in the Netherlands. Dash-lines show ID scenario without considering buildings stock turnover dynamics 
(B scenario). 
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Fig. 7. Impact of social dynamics on activating households in taking renovation decisions in the Netherlands. The renovation rate (%) is presented as the percentage 
of households renovation within specific income group, observed over a 5-year period. 

Fig. 8. Average yearly renovation rate of the housing stock over time for different scenarios in Spain and the Netherlands.  

Fig. 9. Composition of the housing stock over time by energy efficiency cohorts for the B-SD and B-ID scenarios in Spain and the Netherlands. “Renovated” refers 
only to existing buildings renovated after the base year. 
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4. Conclusion, policy implication and outlook 

In the last decade, demand-side solutions, particularly the role of 
individual energy decisions and social norms in reducing final energy 
and carbon emissions, has gained considerable attention as one of the 
climate change mitigation strategies [1,2,22,32]. So far, IAMs have been 
a strong backbone and support mitigation policy assessments. These 
models are strong in tracing macroeconomic impacts. Still, they rely on a 
series of assumptions and equations that reflect past behaviour, making 
it challenging to integrate the heterogeneity of human decision-making, 
behavioural change and social interaction. ABMs complement macro-
economic models (e.g. IAMs) by accommodating heterogeneity, adap-
tive behaviour and interactions, bounded rationality, and imperfect 
information [19]. In the buildings sector, while empirically-rich ABMs 
are strong in capturing heterogeneous adaptive behaviour and exploring 
non-linearities in energy decisions and energy demand reduction, they 
neglected the wide macroeconomics impacts as well as structural 
changes, e.g. building’s stock turnover. Conversely, bottom-up engi-
neering-based building sector models can represent building charac-
teristics, technologies, and structural dynamics with great level of detail, 
but are limited in capturing social and behavioural changes. Thus, in this 
study, we take two models -BENCH ABM and MESSAGEix-Buildings, 
buildings module of the MESSAGEix IAM- as an example to systemati-
cally examine model integration to exploit their strengths and overcome 
their weaknesses. We introduce a step-wise approach to examine the 
feasibility of models integration and address critical methodological 
challenges: a) from static to building stock turnover dynamics: the 
static buildings in BENCH are updated based on MESSAGEix-Buildings 
stock turnover dynamics by introducing share of new constructions 
and demolished buildings overtime; b) from perfect to bounded ra-
tionality: households in the BENCH are boundedly rational due to the 
presence of behaviour factors. The use of the BENCH allows us to assess 
the impacts of pure behavioural changes, while MESSAGEix-Buildings 
–and in broader perspective MESSAGEix IAM– still operates in line 
with the rationality principles, allowing for the coherent treatment of 
macro-economic processes in the IAM; c) from a fixed rate of adoption 
to adaptive households: by default IAMs assume perfect information 
and rational expectations, omitting a variety of behavioural strategies. 
For example, fixed rates of renovation are commonly assigned over 
various buildings and time. However, households are prone to social 
influence and learn from their neighbours. They go through various 
cognitive stages of knowledge activation, motivation and consideration 
and may eventually decide to renovate the building. In this study we 
compare fixed rates of renovation with aggregated inputs from BENCH 

on households renovation decisions, showing that important dynamics 
are overlooked when assuming exogenous renovation rates. 

The insights from this study offer three conclusions also as policy 
implications. Firstly, we underscore the significance of incorporating 
heterogeneity and granularity in various aspects, including households 
socio-demographic and dwelling characteristics, energy consumption 
patterns, as well as behavioural and social factors when simulating and 
assessing mitigation policies. Notably, we demonstrate that incorpo-
rating these elements in models introduces non-linearities over time and 
space. This model coupling potentially offers a platform through which 
we can assess the effectiveness of various mitigation strategies over time 
and space, ranging from social to financial incentives, in accelerating 
renovation rates. Secondly, this study demonstrates that considering 
heterogeneous household renovation decisions improves the policy 
advice that can be derived from buildings models. Our results show that 
there are many drivers that might accelerate household renovation de-
cisions and many barriers that slow down or prevent renovation actions. 
Our study, in particular demonstrates that when we incorporate 
empirically-based heterogeneous household renovation decisions, we 
observe distinct scenarios compared to those based on (a range of) fixed 
renovation rates. One notable example is the lower estimated energy 
reductions in Spain in comparison to the scenarios with the fixed (high 
and low) rates. This suggests that various renovation barriers, including 
building ownership status, knowledge and awareness, motivation, and 
renovation cost (affordability), play a significant role in influencing 
these outcomes. Importantly, these factors appear to be overlooked in 
the existing IAM buildings module. Therefore, to effectively plan 
feasible renovation policies, policymakers need a deeper understanding 
of the key factors that significantly influence household adoption of 
renovation across different time periods and geographic locations. 
Consequently, conducting scenario testing of this nature can offer 
valuable insights and a more comprehensive understanding of the cases. 

Finally, to set up feasible policies, policymakers would benefit from 
decision support tools that go beyond representation of households as 
perfectly-informed optimizers. To see substantial changes in residential 
buildings energy demand, we need localised policy packages. This policy 
package is a mix of various interventions, from soft information and 
nudge policies, such as advertisement, information campaigns, invest-
ment in education, and social interventions aiming to raise knowledge, 
awareness and motivation, to financial incentives, such as carbon pric-
ing, subsidies and loans. 

Future work goes towards two main directions: advancing model 
integration and scenarios and broadening spatial scale. From the model 
integration and scenarios perspective, the very next step involves the 

Fig. 10. Projections of total residential energy demand for space heating for different scenarios in Spain and the Netherlands.  
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completion of the dynamic loops, specifically the interaction sequence 
of ABM to IAM and back to ABM. This is crucial for establishing a holistic 
model. In particular, we are keen on linking building demolition with 
renovation activities (e.g. through the extension of their lifetimes). In 
addition, future work could focus on enabling the evaluation of price- 
based and information policies jointly at multiple scales, which re-
quires further MESSAGEix IAM modules integration. Furthermore, there 
is an opportunity to explore the inclusion of institutional interventions, 
involving property owners and companies, as well as barriers and en-
ablers of energy efficiency interventions, to enrich the narratives within 
our BENCH model and expand the horizons of our investigative efforts. 
We also envision further mapping of various household groups between 
BENCH and MESSAGEix-Buildings. This enhancement would enable 
more comprehensive tracking of diverse energy efficiency interventions 
and energy demands. From the spatial scale perspective, expanding and 
calibrating BENCH AMB in more EU countries would improve model 
accuracy, in particular when examining international and regional 
policies, e.g. EU Green Deal, impacts. 
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