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Abstract

Food production is at the heart of global sustainability challenges, with unsustainable prac-

tices being a major driver of biodiversity loss, emissions and land degradation. The concept

of foodscapes, defined as the characteristics of food production along biophysical and

socio-economic gradients, could be a way addressing those challenges. By identifying

homologues foodscapes classes possible interventions and leverage points for more sus-

tainable agriculture could be identified. Here we provide a globally consistent approximation

of the world’s foodscape classes. We integrate global data on biophysical and socio-eco-

nomic factors to identify a minimum set of emergent clusters and evaluate their characteris-

tics, vulnerabilities and risks with regards to global change factors. Overall, we find food

production globally to be highly concentrated in a few areas. Worryingly, we find particularly

intensively cultivated or irrigated foodscape classes to be under considerable climatic and

degradation risks. Our work can serve as baseline for global-scale zoning and gap analyses,

while also revealing homologous areas for possible agricultural interventions.

Introduction

The terrestrial surface of the Earth has a long history of human use across most geographic

regions [1]. Today, global agricultural and livestock production accounts for the largest share

of harvested biomass [2] and anthropogenic land use [3, 4], while being a major driver behind

the destabilization of planetary boundaries [5]. In order not to jeopardize these planetary

boundaries or new post-2020 policy targets (e.g., the SDGs, UNFCC or CBD), it becomes

important to navigate the complex tradeoffs between agricultural production and safe-operat-

ing spaces for human health, biodiversity and the wider nexus [6–8]. Not all forms of agricul-

tural production however are sustainable or productive everywhere, particularly in the context

of nutrient management [9], conservation agriculture [10] or the ‘land sharing vs land sparing’

debate [11, 12]. To align possible interventions for improved land practices globally, we need

to better understand where commonalities and differences between food production systems

exist. Globally, food production is incredibly diverse. It can be spatially concentrated [4],

driven by an often long history of use and socio-economic dynamics [1, 13], and varying in
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terms of its environmental impacts and sustainability [14]. Nevertheless, there are some

regional commonalities with much of the world’s food being produced among biophysical and

socioeconomic gradients and constraints [15]. Some of the most well-known examples include

intensively irrigated ‘bread basket’ regions such as the Indus valley, the black Earth or Cherno-
zem regions in the Russian Federation or the US Corn belt, which house a large part of the

world’s contemporary food production [16]. Similarly, food production in other regions is

characterized by dispersed small-scale farming, dominated by animal husbandry, or tree plan-

tations [17]. Despite this heterogeneity, there likely exist homologous conditions of food pro-

duction systems even across large distances and their identification could benefit the design of

possible broad-scale interventions for sustainable agricultural intensification [18] and support-

ing knowledge and financing transfers towards transformative change in the food sector.

Here, the concept of a ‘foodscape’ as distinct combinations of biophysical, production and

socio-economic factors related to food production may be useful in identifying such homolo-

gous conditions.

The quest to identify commonalities of terrestrial land surface is not new and is usually

undertaken through the concept of archetyping. Here different frameworks have created clas-

sifications of land systems as defined by patterns of land cover and land use at global [19–21]

or regional scale [22–24]. Such classifications can be used to better understand similarities and

differences in current trajectories of change [25, 26] or patterns of vulnerabilities [27]. Most of

such classifications, however, are created for a particular need and are—owing to differences

in spatial, temporal and thematic resolution—not necessarily adaptable for different use cases.

For example, previous archetyping studies that aimed at mapping global land systems had the

aim to primarily lay out the diversity of land systems in terms of land cover and land use [20,

21]. To our knowledge no such global archetypes exist that explicitly focus on different forms

and intensities of global food production.

Archetyping food production systems would allow us to better understand and compare

different and analogous types of food production globally. Knowing which factors broadly

determine food production across regions can open up opportunities for bundling interven-

tions and innovations in the food sector [28, 29]. There are many reasons behind yield gabs

globally, with especially inefficient management practices are considered to be common [30],

and addressing them can provide opportunities to reduce impacts and increase the resilience

of food production. For example, it has been found that a higher diversity of crops and the

inclusion of livestock in mixed systems can stabilize yields, improve nutritional value and bio-

diversity benefits, and increase resilience to extreme climatic events [31–34]. Similarly, there

might be opportunities in increasing soil organic carbon stocks through altered crop rotations

and tillage practices [35], which has been shown to increase crop yields and reduce yield vari-

ability to extreme weather events [36, 37]. Obviously, any such archetyping at the global scale

is necessarily an approximation and can only reflect the broad similarities of food production

at coarse grain. Yet, it can serve as an important first step in coming up with a scope of possible

interventions and identification of homologous systems.

Advances in remote sensing techniques and statistical modelling have created a wealth of

new global spatial information on the biophysical and socio-economic conditions of food pro-

duction. Increasingly, high-resolution data on the distribution of land cover and soil types

[38, 39] and land use are becoming available, the latter being able to identify factors related to

farming such as crop production, field size, forest management or livestock density [16, 40–

43]. Harmonized data sources such as the new Global Agro-Ecological Zones data (GAEZ v4,

[15] being an integrated view of the potential suitability of agricultural production, yet criti-

cally miss aspects of land use and management. Despite the many uncertainties and thematic

differences in global land-use data [44], we believe there is an opportunity to integrate these
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novel data sources to map broad classes that approximate foodscapes from a biophysical and

socio-economic point of view.

In this work we collated and harmonized currently best available global spatial datasets on

the biophysical and management properties of terrestrial food production systems (S1 Fig in

S1 File). We then—in an unsupervised classification approach—used those datasets to identify

global clusters of units with similar properties of food production, coined ‘foodscapes’. Our

aim is to (a) identify broad classes of foodscapes that are comparable and consistent across bio-

geographic regions, (b) investigate the characteristics and heterogeneity of foodscape classes

across scales and production factors, and (c) assess the various contemporary risk factors that

these foodscape classes are exposed to. We note that this form of predominantly data-driven

clustering highlights regions of similar distinctive characteristics, rather than areas described

based on a priori defined legend or classification system. Rather than a “one-size-fits-all”

approach, we envisage these clusters to be particularly useful in identifying homologue regions

of global food production as well as for screening opportunities of possible interventions. All

output layers are made openly available as part of this publication.

Methods

Experimental design and preparation of variables

Characteristics of global food production systems are widely determined by a series of geo-

physical and management related factors. Together with global and regional experts from the

wider team at The Nature Conservancy we identified a minimal set of 59 global variables that

are key characteristics of global food production systems (S1 Table in S1 File, see also below).

This minimal set was drawn from an initial, broader list of known factors to influence food

production, many of which included variables such as governance, value chains or informal

norms, which however were not sufficiently quantified on a global scale. We chose the mini-

mal set of variables included here based on data availability, data quality, interpretability and

reduction of collinearities after visual examination (see statistical analyses). We separated all

variables into two levels, one including biophysical and land-use variables and the other

including management related variables. All data preparation was done at a target resolution

of 5km loosely resembling the extent of a broader landscape in each area and the finest grain

possible with global data (see also caveat section in discussion). As a template for further ras-

terization and downscaling we created a global land area and coastal cell mask based on the

GADM dataset (https://gadm.org/), which we first rasterized at 1km resolution and then used

to calculate the fraction of land area in any 5km grid cell. Variables were scaled (subtracted by

their mean and divided by 1 standard deviation) for the analysis to ensure comparable units,

and included either in binary or continuous form.

For terrestrial biophysical variables at level 1 we broadly considered data on topography,

land cover and growing season (S1 Fig in S1 File). For topography we used data on the distri-

bution of global landforms at 250m resolution [45]. Landform types were merged into either

plains, hills or mountains and then fractionally aggregated to a 5km grid cell. To include infor-

mation on soil type we considered farming related soil groups from the United States Depart-

ment of Agriculture (USDA) soil database [39, 46], specifically Alfisols, Andisols, Entisols,

Histosols, Inceptisols, Mollisols, Oxisols, Spodosols, Ultisols and Vertisols. For each of those

soil groups we identified the dominant soil type through a majority aggregation from the origi-

nal 250m to 5km grid cell. For land cover we used data from the Copernicus global land cover

(CGLC, [38]) dataset for the year 2015. Here we used the predicted fractional cover of trees,

shrubs, grasses, bare, crops and built-up covered land, which we aggregated (arithmetic mean)

to the target resolution of 5km. We included data on the distribution of forest-related
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agroforestry [40], which although it is a management related variable, was primarily used to

help separating mixed forests and cropland systems (but see [40]. Lastly, we considered data

that represent the biophysical limits of vegetation growth, specifically the aridity index describ-

ing a continuum of humidity to aridity globally [47] and the global length of growing period in

days per year from the Global Agro-Ecological Zoning dataset [48]. Data on aridity was aggre-

gated to 5km and length of growing period data was resampled to 5km (original resolution

10km), while joining areas with a 365-day growing period into a single class. We also consid-

ered data on global climatic zones from the Köppen-Geiger climate system [49]; however,

because of the large number of discrete classes those were not directly included in the analysis,

but only considered for post-hoc identification and separation of dominant climatic zones (see

overlay analysis).

For variables at level 2 for terrestrial land management we considered a series of global

datasets related to management intensity or cropping practices. A key data source for crop

groups was the latest global data from the Spatial Production Allocation Model (SPAM) for

the year 2010 [16]. From the SPAM database we collated data on the physically and production

area of all reported crop types across cropping technologies. We considered maize, rice, wheat,

potato, cassava, soybean, sweet potato, yams, sorghum and plantains as “staple crops”, having

some of the largest production globally. The total sum of staple crop production was finally

resampled (bilinear) to a target resolution of a 5km grid cell. We combined these production

estimates to identify hotspots of global food production, recognizing that especially oil crops

are also used for feed and fuel [50]. In addition, we grouped all crops covered by SPAM into

six crop groups: Cereals and Oil Crops, Tubers, Legumes and Pulses, Perennials, Vegetables,

and Other crops (S2 Table in S1 File). These groupings were chosen based on similar cultiva-

tion forms, practices, or their commonly associated cultivation such as cereals and oil crops in

animal feed production. We then calculated for each crop group and grid cell the total produc-

tion area relative to the total area of cropland, resulting in a series of maps highlighting which

crop group is predominantly grown in an area. Using data of physical area for all crops from

SPAM we furthermore calculated the proportion of cropland for the year 2010 that is either

irrigated or rainfed in a given grid cell, and furthermore estimated the diversity of crops in a

given area by calculating a Shannon diversity index (H0 ¼ �
Pcrops

i¼1
pi lnðpiÞ, where i is a given

crop and pi the physical area estimates). The resulting maps were then resampled (bilinear or

nearest neighbor in case of binary data) to the target resolution of 5km.

We then linked the SPAM physical area estimates with data on tillage practices [43]. Based

on expert feedback and similarities in effects on soil properties we grouped the six categories

of predicted tillage into three groups: Conventional and Rotational tillage, Conservation and

reduced tillage, and Traditional annual and rotational tillage practices. The resulting layer of

dominant tillage practices was then resampled (nearest neighbor) to the target resolution of

5km. To separate areas that are single cropped we included the fraction of crops grown under

a single cropping season only [51]. This data was created by aggregating (arithmetic mean)

both irrigated and rainfed fractions of crops and then resampled (bilinear) to the target resolu-

tion of 5km.

Croplands with smaller fields often have particular cropping systems [52] and are pre-

dominantly cultivated by smallholders, although farm size and other landscape-related fac-

tors can also play a role. We used data on global field size distribution [53] to distinguish

between very small fields (less than 0.64ha) to large fields (over 100ha). Instead of using the

six binary classes on field size distribution in Lesiv et al. (2019), we converted them to a con-

tinuum per grid cell, using the bounded field size information in Lesiv et al. and the amount

of area containing cropland according to Copernicus as additional information to assign in a
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heuristic manner the maximum average field size bounded by the available cropland area in

a given grid cell.

In the most intensively used cropland high rates of nutrient fertilizers are commonly

applied. To assess how strongly an area is on average fertilized we calculated the area-weighted

nitrogen application rate across major crops in a given pixel using data on crop-specific nitro-

gen input from mineral fertilizer, manure, and atmospheric deposition [54]. For each crop we

first calculated the fertilizer application volume and then summed up the resulting estimates

across crops. Total nitrogen inputs were then weighted by total crop harvest area. Because of a

few large outliers in some grid cells, caused by high manure application estimates, we applied a

“winsorization” on the average estimate, capping the maximum possible nutrient application

rate to the 95% percentile. The final map was then resampled (bilinear) to the target grid cell

resolution of 5km.

Data on animal husbandry and grazing are notoriously difficult to obtain at high spatial res-

olution. To capture some variation in grazing intensity and the intensity of livestock keeping

as such, we included estimates on the average density of ruminant (cattle, buffalo, goats,

sheep) and other livestock (pigs, chicken, ducks and horses) which we obtained from the latest

global livestock density data [42]. We used the area-weighted (AW) version of the data from

Gilbert et al. to reduce circularities due to different land cover products. Predicted counts of

livestock heads were converted into standardized livestock units (LSU) using region-specific

conversion estimates [55]. We calculated the average density of LSU—relative to total area in a

target 5km grid cell—to be further considered in the analysis. We note that the percentage of

animals that are actually grazing will vary by region and is context specific, thus these estimates

are only an approximation of area use by animals.

Besides the final variables considered for this analysis, a much larger set of potentially rele-

vant variables was originally considered. However, we removed many of those variables from

the clustering based on expert feedback (S1 Fig in S1 File), high collinearity with other

included dataset, undesirable data gaps or spatial artefacts or circularity of input datasets

(some layers were for instance the result of statistical predictions based on different land cover

reference datasets). Some of the variables that we decided not put into the global clustering, we

considered separately in an overlay analysis (see section below). A list of all included variables

for identifying the foodscape classes is highlighted in the supplementary materials (S1 Table in

S1 File).

For the purpose of this analysis, we were only interested in identifying and clustering food

producing regions. After consultation with experts and multiple iterations we decided to apply

a series of filters on the 5km grid cells of level 1 and level 2. We only considered not water cov-

ered grid cells and also only land areas north of -60˚ latitude including Antarctica. Using the

Copernicus land cover dataset we removed grid cells with highly urbanized land, identified

through the upper quantile of the fraction of built up land (> 80%), from the analysis given

that those areas are unlikely to be significant food production regions. We also removed areas

with permanent snow cover (> 75%), hyper arid or polar deserts with bare land only (> 90%),

e.g. BW or EF climatic zones according to [49] or grid cells with permanent water occurrence

(equal to 100%) according to the fractional layers of the Copernicus land cover dataset [38].

Forested landscapes that are considered to be largely intact according to the Intact Forest land-

scapes layer [56] as well as grid cells with more than 95% of tree cover were also excluded,

owing to the fact that those cells are unlikely to be significantly farmed at a broad 5km grid

cell. The management related variables (level 2) relate to cropland and pasture lands only and

we therefore removed from the level 2 clustering all grid cells that were not potentially grazed

or cultivated, e.g. cells without any kind of fractional cover of bare, grass, crop or shrubland.

We do acknowledge that many of the filtering thresholds are based on subjective decisions,

PLOS ONE Global mapping of foodscapes

PLOS ONE | https://doi.org/10.1371/journal.pone.0296846 February 14, 2024 5 / 21

https://doi.org/10.1371/journal.pone.0296846


although they were chosen based on multiple iterations, expert consultation and visual inspec-

tions of the resulting maps.

Statistical analysis

All prepared variables were subjected to an unsupervised clustering algorithm so that areas

with commonalities are grouped together, resulting in clusters that are formed based on spatial

similarities in biophysical or management related variables. Here we used a neural-network

clustering algorithm called self-organizing map (SOM), that is particularly suited for non-lin-

ear and heterogeneous data [57, 58]. Other, supervised clustering methods exist and can be the

preferred method of choice when a-priori knowledge about the type and name of clusters exist

[22]. However, the purpose of this work was to discover and let the data speak about emergent

clusters using available global data. SOMs are able to reduce heterogeneous multi-dimensional

sets of variables to a lower, two-dimensional space where topological properties are preserved

among neighbours, making them ideal for the visual exploration and clustering of geographic

data, such as data on food production [25, 58]. We conducted all procedures and clustering

separately for each variable grouping (biophysical lvl1 and management lvl2, S1 Fig in S1 File).

The rationale behind this approach was to support an easier labelling and ability to separate

biophysical and management components, while still resulting in an intermediate level of

complexity for classes. Most variables in the SOM were continuous with exception of soil type

which we included as a binary variables. Although binary variables can have a considerable

influence on the resulting clusters, we believe it is justified given the influence soil has on any

kind of crop production.

A key decision in SOM parametrization is the resulting node size, which directly influences

the number of classes obtained. Choosing an optimal node size is commonly a tradeoff

between maximizing node quality, separability in terms of variance retained and the occur-

rence of imbalances or an excess of empty nodes. To identify an optimal node or cluster size,

we performed a sensitivity analysis with varying node sizes ranging from 2x2, 3x2 up to 15x10

possible clusters. For each we build rectangular grids of nodes with 1.5 x times the width com-

pared to height and for computational efficiency we extract (random sampling) values from all

variables equivalent to 50% of the total grid size. We then performed a SOM clustering on each

subset and calculated the mean distance between nodes, the average node quality, the Davies-

Bouldin cluster index that measures intra- and inter- variability among nodes [59] calculated

using the ‘clusterSim’ package [60] and the proportion of empty nodes as indication of separa-

bility. The optimal node size was then determined (see S2 Fig in S1 File for an example)

through a joint minimization of the Davies-Bouldin cluster index and the break point in the

mean distance between nodes while taking consideration of node quality and proportion of

empty nodes [61].

To determine the most optimal allocation to clusters, further hyperparameter tuning can be

beneficial. Other important hyperparameters to choose in unsupervised SOM clustering are

those that determine size, number and stopping rules of the algorithm. For the SOM we tested

a range of different parameters, altering learning rates, epochs, neighborhood sizes and dis-

tance decay for a hypothetical clustering of a 2x3 neural network. Based on a visual assessment

of node quality we choose a starting learning rate of 1 and a finishing learning rate of 0.001, an

epoch size of 50 as well default gaussian kernels with linear decay. Throughout we used a

Queen’s case of a neighborhood function (3x3) as well toroidal grids, meaning that opposite

edges of the reduced two-dimensional space of the SOM share their neighbouring nodes.

Although SOMs are the preferred method for the kind of spatial data used in this work,

applying them at global scale can be quite costly in terms of computation time and resources
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as runtime scales exponentially with the number of grid cells. To perform the global cluster-

ing we used a high performance port of the popular Kohonen framework called Somuclu

[62]. All other data preparation analysis was conducted in R [63], with occasional aggrega-

tion and exporting of data (particularly for Satellite-based data) being done with Google

Earth Engine [64].

The maps of terrestrial classes at level 1 and level 2 were finally evaluated and further pro-

cessed based on an expert consultation (S1 Fig in S1 File). SOMs partition the input datasets

into classes within emergent properties and of similar variable loadings. Particularly in cases

where the number of classes is large, a ‘post-hoc’ clustering of the SOM nodes is often desirable

and possesses particular efficient properties compared to individual separate clustering algo-

rithms [65]. We therefore further reduced the number of nodes by applying a k-means cluster-

ing on the codebook vectors obtained from the SOM [65]. Here the optimal number of

clusters for k-means was determined using the ‘NbClust’ package across all possible indicators

[66] and was bounded by the minimum dimension mapped by the SOM and the maximum

possible combinations of a reduced set of clusters (N-1). We furthermore applied a modest

global modal filter using a 3x3 moving window on each individual map to reduce minor ‘Salt-

and-pepper noise’ resulting from inconsistencies and minor errors in mapped classes.

We note that although these measures taken post hoc necessarily result in a loss of detail,

(a) they more closely refine an essential set of global clusters of food production making label-

ing and interpretation more viable, (b) clusters of both level 1 and level 2 were ultimately com-

bined across levels (see below) thus combining strengths of both biophysical and management

data in mapping foodscapes in a hierarchical manner [58], and (c) all clusters were carefully

visually assessed by experts with knowledge of regional centers of food production and eventu-

ally further refined (i.e. by separating nodes from another) if deemed necessary. For example,

based on a visual assessment of one class formed in level 2 as part of the post-hoc refinement,

we decided to implement a further split up into two separate nodes in the SOM. Here we used

the data on highly dominant irrigation (>75% of crops irrigated) and high nutrient application

rates (>75% relative to global maximum) to separate out areas with these levels of intensity.

These thresholds were chosen based on a visual assessment of the mapped variables and desir-

able features to be represented in the map.

Visualization and labelling

The clustering conducted in this study does not follow any a priori agreed legend and there is

thus a necessity to label each of the resulting clusters. The labelling was conducted as part of an

expert assessment among co-authors and colleagues from regional representatives from the

Nature Conservancy (TNC), where labels were agreed upon based on the variable loadings for

each cluster and alignment between geographic distribution and regional knowledge. The

labels were in a first iteration assigned by the author and expanded global TNC team, and then

afterwards representatives of regional TNC teams were asked for their whether spatial delinea-

tion and name aligned with their knowledge of a region. Such an expert-derived labeling is

common in interpretations of unsupervised clustering exercises [20, 23, 25]. To visualize the

magnitude and direction of impact of each variable we extracted mean estimates of the scaled

variables (see above, commonly referred to as z-scores) separately for each cluster. Positive z-

scores refer to above-average, negative z-scores to below-average values regarding the indica-

tor’s overall global mean.

In total we selected 11 classes at Level 1 and 10 classes at Level 2 for the terrestrial realm.

Class labels at level 1 were multiplied with XX00 counting upwards and classes at level 2 with

an index from 000X counting upwards to 00XX, thus enabling simple matching and overlap
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analyses. A draft combined map was then produced by overlaying the terrestrial classes at level

1 and level 2 and again subjected them to an expert assessment of the combined classes (S1 Fig

in S1 File), after which we decided to merge a number of classes and decide on a taxonomy for

the class labels. The terrestrial label taxonomy is based on a combination of predominant soil

type, topography, land cover with varying descriptions of intensity and/or diversity of use as

well as eventual grazing and other land cover. The final foodscape map contained a total of 86

labeled terrestrial classes.

For visualization all maps were reprojected into world Mollweide projection. For visualiza-

tion convenience we also grouped all classes into three levels of intensity, namely “Scattered

Cropland and grazing”, “Mixed and diverse food cultivation” and “Irrigated and/or intensive

food production”. Flows between variables and production systems are visualized in a Sankey

diagram with key elements of food production, such as the soil type, management intensity

and type of crop are highlighted. All produced maps are made openly available as part of this

manuscript (see data availability section) and can also be interactively explored and summa-

rized online (https://www.globalfoodscapes.org/).

Overlay analysis

The combined terrestrial foodscape map was finally overlaid with a series of 8 independent

spatial layers to estimate to what extent foodscapes globally are exposed to pressure factors and

biodiversity values. The layers considered in this overlay analysis are thus explicitly character-

izing factors that affect global food production but are not necessarily part of the foodscape as

such. First, we identified areas with crop- and grassland gain in the period 1992 to 2015 as

‘frontier expansion zones’ using data from the ESA CCI program [67, 68]. Data on the

observed relative change in human population counts between 1975 to 2015 were calculated

from the GHS POP dataset [69] and converted into a mask to reflect the areas with the 95%

greatest population increase. To capture areas with declining yield trends across the world, we

used reported spatial-explicit changes of yield estimates from the period 1961–2008 [70]. For

the purpose of our overlay, we focused again only on areas with the largest yield losses (5%).

Other important pressures on agricultural land are climatic variability, water depletion from

irrigation water withdrawal, and soil erosion. We took data on global topsoil loss owing to

water erosion from the Revised Universal Soil Loss Equation (RUSLE) model [71] and focused

particularly on those areas with the greatest (95%) estimated topsoil loss. We also created a

mask indicating areas that have an annual global depletion of more or equal than 75% or avail-

able water, using data from the WaterGAP model [72]. Climatic variability was estimated from

an upcoming data layer of global climate hazards [73], where we particularly focused on areas

with relative drought risk and/or high climate variability. Another considerable pressure on

food production is the yield loss owing to crop pests. In the absence of any global spatial esti-

mates of the pest-attributed loss in crop yield, we used downscaled global data of pesticide pol-

lution risks [74], of which we considered the regions with the largest reported risks (95%).

Finally, we also used a global mask of climatic zones from the Köppen-Geiger stratification to

highlight present day climate [49].

To estimate exposure of foodscapes to global values related to biodiversity, we used spatial

information from a new global priority map (ranked values 1–100) depicting areas with the

greatest conservation value, e.g., those that contribute the most in reducing species extinction

risk [75]. From this layer we created a mask of the 10% most valuable area for species conserva-

tion globally. In addition, we used data from TNC global Last chance ecosystem layers [76]

which indicate the ecosystems most at risk on a scale from vulnerable, endangered to critical

from human pressures globally, while considering current protection measures. Unless
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otherwise noted, we used data on the distribution of critical ecosystems for any overlay analy-

ses. Lastly, we included a mask indicating areas with high numbers (95% quantile) of assessed

threatened amphibian, bird and mammal species using data from the IUCN redlist (https://

www.iucnredlist.org/resources/other-spatial-downloads). It should be stressed that the distri-

bution of both the Last Chance ecosystem and the threatened species mask are not informed

by the distribution of land cover, in contrast to the conservation priority map which is consis-

tent with Copernicus land cover.

All layers were aligned—and resampled if differing in resolution—using nearest neighbour

sampling to the global terrestrial foodscapes layer. Continuous layers were first scaled (mean

subtracted and divided by standard deviation) and then summarized as 5% largest (95% per-

centile), or 5% smallest where noted, areas globally. Finally, we extracted the amount of inter-

secting foodscape area for each overlay. Overlays were explored by investigating the

proportion of foodscape area exposed to a certain pressure or value. We used relative area

measures because both the size of overlay masks and areas of foodscapes classes differ from

each other. A stacked map of the global pressures and values can be found in S3 Fig (S1 File).

Results

State and distribution

Humans produce substantial amounts of food in the form of farming and grazing globally. We

identified that broader landscapes containing food production comprise 63% (9113 million

ha) of the terrestrial land area with the remaining area only under marginal to little food pro-

duction. We identified a total of 86 terrestrial foodscapes classes globally that are distinct in

various aspects of food production and management (Fig 1). The average foodscape class has a

size of about 168 million ha (� 514.85 SD). The most spacious terrestrial foodscape class is

‘Entisols on plains with grazed bare land and grass cover’ and covers 9.3% of global land area

(1341 million hectare), while the smallest terrestrial foodscape class ‘Oxisols on humid tree-cov-
ered land with little food production’ covers just 0.005% (0.72 million ha) of terrestrial land area

(S3 Table in S1 File). When recategorized into intensity of use, we find that approximately

34.5% (4988 million ha) of the terrestrial land surface are only under scattered cultivation and

grazing, 21% (3113 million ha) are under mixed and diverse, and 12% (1721 million ha) under

irrigated and/or intensive production (Fig 1B). As also stressed in the discussion all these esti-

mates are conditional on the underlying data used and our classification of intensities.

Different types of foodscapes classes are spatially clustered globally and some parts of the

world harbor regions with on average greater heterogeneity than others. Tropical and dry cli-

matic zones of the world contain the largest number of terrestrial foodscapes classes, with sev-

eral climatic zones being dominated by intensively cultivated foodscapes classes (S4 Table in

S1 File). Critically, foodscapes classes labelled as intensively cultivated are already the most

predominant in 5 of the 30 terrestrial climate zones of the world, with the other climatic zones

having foodscapes classes labeled as diverse and often used by smallholders (17) or little to no

food production (8) as the most dominant. The most common foodscape class on the South

American continent was “Oxisols and Ultisols with mixed grazing and crop production on large
fields”, while in North America and Europe foodscapes classes identified as scattered food pro-

duction in mixed forests, grasslands and grazed land was the most common.

Out of the total 9,824. million ha of land that contains more than marginal food cultivation,

and producing cereals, tubers, vegetables and other crops, 16.2% (1,722 million ha) is under

intense food production, compared to the 36.9% (3,630) of mixed-mosaic and 46% (4,601) of

scattered land under cultivation and grazing (Fig 2). Yet, on the ~16.2% of intensively man-

aged land, or the combined area of 26 different foodscape classes, about 64.5% of all cultivated
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crops for human or animal consumption are grown (Fig 2), indicating the high dependency of

food production to a select few regions. Cereals and oil crops from the largest part (41%) of all

produced crops and are almost exclusively produced in foodscape classes with intensive or

mixed-mosaic food production (Fig 2). Interestingly, almost half of all perennial crops and

tubers are grown in mixed-mosaic food production systems (Fig 2), highlighting the impor-

tance of complex landscapes for the global food sector. All soil profile groups were present

Fig 1. (A) The global foodscape map (combined for lvl1 and lvl2) for the terrestrial realm, (B) a layer where all foodscapes classes are remapped into

intensities of use. Owing to the large number of classes a legend is not shown. A crosswalk between the intensity groupings in (B) and the foodscape

classes can be found in S5 Table (S1 File). Owing to the large number of classes a legend is not displayed, however class descriptions and labels can be

found in S3 Table (S1 File).

https://doi.org/10.1371/journal.pone.0296846.g001
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across the foodscape classes with Molisols being most intensively cultivated and Entisols the

least despite being the most common (Fig 2). Overall, these statistics highlight both diversity

and concentration of food production within the mapped foodscape classes.

Pressure exposure

Many of the mapped foodscape classes are affected by a series of pressures and risks, while also

being in regions considered to be of high value to biodiversity. In terms of absolute area, food

production in grazed Entisols on bare land (class 102) is the most exposed to high climate vari-

ability (18 mill. ha) while being situated in regions of expanding agriculture and pasture (13.7

mill. ha). Almost half of the total area of food production in classes such as “Inceptisols in arid
hilly land with rainfed cereal and legume production and other livestock” (610) or “Entisols on
dry rainfed plains with legumes and pulses production and occasionally other crops” (110) were

affected by high climate variability and particularly noteworthy is also a group of foodscapes

classes (607, 607, 610, Fig 3A) each with similar properties, being intensively irrigated and on

Inceptisols in often arid and hilly land. These data highlight the increasing vulnerability of

Fig 2. Sankey diagrams highlighting the shares of dominant soil type, the intensity of cultivation and total crop production across all foodscape

classes. Values indicate the percent of terrestrial land area, million ha and million tons respectively. Intensity group colors as in Fig 1B. See S3 Table in

S1 File for a legend and crosswalk table between foodscape classes and intensity groups. Figure adapted from a version created by Nicholas Rapp for the

TNC Foodscape report [77].

https://doi.org/10.1371/journal.pone.0296846.g002
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food production in dry cropland and rangelands systems and in some of the most intensively

cultivated food production regions.

Most foodscapes classes are not only exposed to single, but multiple pressures globally (S3

Fig in S1 File). On average 39.4% (range 1.7% to 92.2%) of the terrestrial foodscape area is

exposed to at least one considered pressure variable. Critically, foodscapes classes considered

to be irrigated and/or intensive cultivation (Fig 1B) were more often (33.7%) than less inten-

sively cultivated foodscapes (scattered 21.2% and mixed use 26.4%) affected by more than one

pressure. Among those foodscapes classes dry bare and grazed land dominated by Entisols

(classes 102 & 103) as well as intensively cultivated Mollisol foodscapes (i.e. classes 409 & 402)

are particularly exposed to multiple pressures such as climate variability or water depletion

(Fig 3). Most foodscape classes that are exposed to high climatic variability tend to be in

Fig 3. Intersection of foodscapes area with biophysical and socioeconomic risks globally (A). Shown on a bivariate scale are those foodscapes most

exposed by single or multiple pressures, with darker green colours indicating a greater exposed proportion of the individual foodscape (Fig 1). Barplot

highlights the average proportion of exposed foodscape to biophysical or socio-economic risks. Circular plots show cumulative exposed proportion of

foodscape area by pressures separated by biophysical (B) and socio-economic risks (C).

https://doi.org/10.1371/journal.pone.0296846.g003
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regions that can be considered as land cover frontier, depleted of groundwater and with sub-

stantial increases in human population density (Fig 3), bringing food production in those

regions at risk. Crop production in foodscape classes with high topsoil loss and often substan-

tial pesticide application were more often in regions that are of high importance to threatened

species and can be considered critical ecosystems (Fig 3).

Foodscapes that more exposed to biophysical risks also tend to be more exposed to socio-

economic risks (r = 0.482, df = 83, p< 0.001). The most common combination of co-occur-

ring biophysical pressures on foodscapes classes were high climate variability and severe water

depletion, particularly in areas with a recent expansion of agriculture and pastures (average

proportion of all foodscapes 39.3%) or reduction in crop yield (27.7%). Crucially, foodscape

classes that contained critical ecosystems or high amounts of threatened species were also

exposed to considerable climate variability (37.2%) or topsoil loss (34.4%). These combinations

of risks with biodiversity seem to occur more often than others, potentially indicating that

some of the main pressures to food production are in areas where species are either threatened

or where potential conflicts between food production and biodiversity might arise.

Indeed, food production in many parts of the world takes place in regions that are of high

biodiversity conservation value or contain critical ecosystems. On average 34.3% (range 0.3%

to 86.1%) of the area of foodscapes can be considered of some value to biodiversity (Fig 3). The

foodscape class that had most of its area intersecting with the distribution of critical ecosys-

tems and threatened species are mixed production landscapes predominantly distributed in

India (class 508), while notably mountainous tropical and south-east Asian forested areas had

high conservation value (Fig 3), with Foodscape classes such as Inceptisols on humid hilly-
mountains with tree cover and small farmed mixed and intensive diverse production (class 203)

containing the most critical areas in terms of extinction risk reduction and threatened species,

highlighting the conservation value of mixed and diverse small-holder production systems in

tropical countries.

Discussion

In this work we identify and map global classes of analogous centers of food production, or

foodscapes. There are 86 distinct foodscape classes of broadly comparable biophysical and

socio-economic conditions (Fig 1), some of which can only be found in certain geographic

regions (S4 Table in S1 File), while others are distributed across all realms. We find that inten-

sively cultivated foodscapes classes in terms of total area are already the most dominant in 5 of

the 30 terrestrial climatic zones of the world, although foodscapes with mixed purposes were

most common falling into the areas shared between natural land cover and human modified

land [78]. Further, we find that global food production was highly concentrated in a few foods-

capes classes, with about 60% of all global food being produced on about 16.2% of terrestrial

land area (Figs 1 and 2). Yet our results also indicate that not all foodscape classes are equally

responsible for crop production globally and thus discussions about sustainable intensification

or management interventions would benefit from a global and regional perspectives such as

the one provided by the concept of foodscapes.

A more optimised food production by crops in some foodscape classes could contribute to

a more sustainable food system and align production needs and constraints with those of

regional and global agendas. Despite most cereal and oil crops being produced in few foods-

cape classes, we also found that a substantial amounts of perennial, tuber and vegetable pro-

duction occurs in foodscape classes considered to be of mixed landscapes (Fig 2). This

indicates such landscapes might require more integrated solutions and interventions that con-

sider multiple objectives [79, 80]. Especially since many of those crops types are deemed to be
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key importance to healthy diets globally [6, 8]. Further, some of the most productive groups of

soils, e.g. Mollisols, Alfisols and Oxisols, contain a large share of land with potentially ineffi-

cient production methods compared to other land in the same foodscape classes (Fig 2).

Although we only visually investigated broad patterns of crop production (Figs 1 and 2), ignor-

ing other key constraints such as market access or potential crop suitability [15], this might

indicate that there exist opportunities to sustainably intensify and manage foodscapes better in

a regional and global context [77]. Potentially NBS, such as restoration, agroforestry or better

soil, watershed and nutrient management can effectively address inter-related challenges to

help humanity stay within its planet boundaries [81, 82]. Overall, the concept and our initial

mapping of foodscape can contribute towards identifying opportunities for agri-economic

interventions and sustainable intensification, especially in areas with inefficient current pro-

duction or with considerable risk factors.

The spatial concentration of global food production in very few foodscape classes also

results in considerable risks towards food security [83] as well as creating tensions with the

achievement of other sustainable development goals such as clean water or life on land [81,

84]. We also find that about ~40% of all foodscape classes are exposed to single or multiple

pressures globally (Fig 3), with particularly intensively cultivated foodscapes being more often

affected by multiple rather than single pressures. Notably foodscapes exposed to high climate

variability and water depletion are also more likely to be situated in an area considered as a

frontier zone (e.g. land with expanding cropland or grassland), which could indicate that

intensifying production in these areas might not be sustainable in terms of food production.

However, there are many theories behind what drives land-cover and land-use change at the

agricultural frontier [85, 86], and depending on the assumptions behind the expansion of a

frontier it could be seen not as pressure on food production, but a driver and key factor in the

creation of novel foodscape classes [87].

The finding that foodscapes classes with high soil erosion and pesticide inputs often co-

occur (Fig 3), highlights the need to address possible interacting effects [81], for example,

increased risk of pesticide pollution in water bodies owing to runoff caused by soil erosion and

unsustainable agricultural production [88]. Finding possible interventions for such interacting

pressures might be one way to address multiple aligned pressures [80], and maps of foodscapes

could be considered as possible decision support tool to reveal homologous areas in which

similar interventions and strategies could be applied.

Our results also strikingly reveal that the diversity of wild animals and plants on Earth is in

many places interlinked with different types and intensities of food production, with tree cov-

ered and small-holder dominated foodscapes commonly covering areas with high biodiversity

value (Fig 3). Possibly those species are able to persist in smaller habitats within these foods-

capes, or they have low sensitivity to pressures related to agriculture and occupy the same

space (“land sharing”, [11]). It could also be that biodiversity-mediated benefits for crop pro-

duction may be at peril in the same regions as those services usually are similarly affected by

landscape simplifications, climate variability and soil degradation [89], which may reinforce

losses in crop productivity. Overall, this emphasizes the need to find integrated solutions to

the biodiversity-food nexus [7, 79], so as not to jeopardize the value of local food production

biodiversity and increase food security risks.

Error sources and caveats

Similar to most analyses at global scale there are a number of caveats and limitations, and we

stress that the current map of foodscape classes is a global assessment and does not intend or

can reflect the full diversity of foodscapes at local or sub-national scale. Notably we do not
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claim to have mapped the entire “foodscape” comprehensively, only distinct classes that can be

used to identify broad-scale synergies and homologous situations [90]. Thus, when using the

foodscape map in subsequent analyses it is important to be aware of a number of error sources

and caveats, including spatial, temporal and thematic mismatches:

Spatial Some of the delineations of foodscape classes can be inaccurate owing to mismatches

in spatial resolution of the input layers, where some layers are only available at a resolution

coarser than the target 5 km grid cell. For the analysis we disaggregated those datasets to a finer

scale, which might cause not only spatial artefacts, but can also misrepresent the target variable

values. Similarly, by aggregating fine-scale data (such as global 100 m Copernicus land cover

data) to a coarser scale there is a loss of detail and information. We believe these mismatches in

resolution are acceptable given the global scale of our analyses, however stress that cluster

boundaries should be interpreted with caution. Similarly, It should be highlighted that some of

the management related data layers are downscaled census data at regional or national scale,

which can cause spatial artefacts due to the Modifiable Areal Unit Problem (MAUP). This

might also relate to an overestimation of certain management practices, for instance, broad

areas with little cropland cover can be classified as having high nutrient input if data for nutri-

ent application rates was derived from regional rather than farm level. Temporal There can

also be mismatches in temporal resolution. Our work broadly focused on the time span

between 2010 and 2015 and a number of the used datasets were produced years ago. Land man-

agement practices, however, are dynamic and often change between year [91], there can be

temporal mismatches between different input variables and thus identified clusters. We partly

account for this uncertainty by merging smaller clusters and a posthoc reduction of speckle.

Thematic Many of the included variables rely—also indirectly through auxiliary data used to

create those variables—on different definitions, for example of what constitutes for instance a

cropland or pastoral system. We accounted to some degree for this issue by pre-filtering grid

cells for management related variables to only those with significant proportions of crop or

grassland (see Methods) and by relying on Copernicus land cover data where possible [38].

Gaps and missing data

In this work we used some of the best available global data on biophysical and management

related factors of the food sector, fully recognizing that some data simply do not yet exist at

global extent or at the spatial resolution that would allow a delineation of foodscapes according

to our definition. For example, we lack higher resolution and temporally up to date data on

pastoral grazing intensity, farm size (opposed to field size) or thematically well resolved sys-

tems of agroforestry types (e.g. intercropped systems opposed to home-garden systems). Simi-

larly in our overlay analysis we did not consider factors related to the genetic diversity of crops

owing to a lack of openly available at a sufficient resolution [92] and also ignored biodiversity

mediated factors related to crop production, such as pollination or pest-control [89]. Lastly it

should be highlighted that there are inherent uncertainties in all spatial products, and that

such errors can naturally propagate into analyses such as ours [93]. We highlight the need for

more highly resolved, recent and accurate global data on land use and management practices.

Conclusion

The concept of foodscapes enables a more holistic view towards food production, enables the

planning of interventions across similar homologous regions and help the design of more inte-

grated planning approaches [94, 95]. For example, it can serve as a starting point to identify

benefits of nature-based solutions that benefit the climate, contribute towards more sustain-

able agriculture and also free up land for restoration [77]. In particular the identification of
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opportunities for ecosystem restoration [96] together with solutions that maximize synergies

and minimize tradeoffs with food production can provide a valuable avenue for further

research [11, 79]. However, any restoration actions need to be undertaken with careful consid-

eration of regional and local socio-economic factors as often the highest potential for restora-

tion exists in areas with human inhabitation or intensively cultivated land [77, 96, 97]. Similar

use cases might involve the prioritization of climate adaptation and mitigation actions in the

face of climate change by evaluating synergies and tradeoffs with sustainable food production.

In future work we plan to build on similar archetyping exercises at finer resolution, for exam-

ple by building nested representations within broader foodscapes at national and regional

scale, or by identifying bundles of transformation pathways within and across homologous

regions together with stakeholders [28, 90]. Clearly, the mapping and identifying foodscapes at

global scale might be only the start of the quest for a better representation of the diversity of

food systems.

In this work we present a global stratification of food production systems or foodscapes,

based on currently best available global biophysical and socio-economic data and following an

intensive refining and expert-based assessment. We make these new maps of foodscape classes

openly available at various levels (see data availability statement). We anticipate the newly cre-

ated maps to be particularly useful for large-scale intervention, global modelling exercises and

scenario-based analyses, or for the identification of homologous food production regions to

conduct more detailed integrated planning at regional or national scale.

Supporting information

S1 File. Additional details and supplementary tables. Further spatial summaries and tabular

description of the used input data can be found in the Supporting information.
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