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Abstract

The era of modern smartphones, running on Android version 7.0 and higher, facilitates nowadays acquisition of raw dual-frequency
multi-constellation GNSS observations. This paves the way for GNSS community data to be potentially exploited for precise position-
ing, GNSS reflectometry or geoscience applications at large. The continuously expanding global GNSS infrastructure along with the
enormous volume of prospective GNSS community data bring, however, major challenges related to data acquisition, its storage,
and subsequent processing for deriving various parameters of interest. In addition, such large datasets cannot be managed manually any-
more, leading thus to the need for fully automated and sophisticated data processing pipelines. Application of Machine Learning Tech-
nology for GNSS IoT data fusion (CAMALIOT) was an ESA NAVISP Element 1 project (NAVISP-EL1-038.2) with activities aiming to
address the aforementioned points related to GNSS community data and their exploitation for scientific applications with the use of
Machine Learning (ML). This contribution provides an overview of the CAMALIOT project with information on the designed and
implemented cloud-native software for GNSS processing and ML at scale, developed Android application for retrieving GNSS obser-
vations from the modern generation of smartphones through dedicated crowdsourcing campaigns, related data ingestion and processing,
and GNSS analysis concerning both conventional and smartphone GNSS observations. With the use of the developed GNSS engine
employing an Extended Kalman Filter, example processing results related to the Zenith Total Delay (ZTD) and Slant Total Electron
Content (STEC) are provided based on the analysis of observations collected with geodetic-grade GNSS receivers and from local mea-
surement sessions involving Xiaomi Mi 8 that collected GNSS observations using the developed Android application. For smartphone
observations, ZTD is derived in a differential manner based on a single-frequency double-difference approach employing GPS and Gali-
leo observations, whereas satellite-specific STEC time series are obtained through carrier-to-code leveling based on the geometry-free
linear combination of observations from both GPS and Galileo constellations. Although the ZTD and STEC time series from smart-
phones were derived on a demonstration basis, a rather good level of consistency of such estimates with respect to the reference time
series was found. For the considered periods, the RMS of differences between the derived smartphone-based time series of differential
zenith wet delay and reference values were below 3.1 mm. In terms of satellite-specific STEC time series expressed with respect to the
reference STEC time series, RMS of the offset-reduced differences below 1.2 TECU was found. Smartphone-based observations require
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special attention including additional processing steps and a dedicated parameterization in order to be able to acquire reliable atmo-
spheric estimates. Although with lower measurement quality compared to traditional sources of GNSS data, an augmentation of
ground-based networks of fixed high-end GNSS receivers with GNSS-capable smartphones would however, form an interesting source
of complementary information for various studies relying on GNSS observations.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Global Navigation Satellite System (GNSS) has
revolutionized the area of positioning, navigation and tim-
ing. GNSS is also a key tool in many areas of science, such
as the quantification of global-scale geodynamical phe-
nomena (Hammond et al., 2016; Beutler et al., 2020), or
realization of the International Terrestrial Reference Sys-
tem (Altamimi et al., 2023). Due to its all-weather capabil-
ity and the high spatio-temporal resolution of the estimates
that this technique can provide, GNSS is also considered to
be an invaluable tool for geophysical research and moni-
toring of complex large-scale phenomena occurring within
the Earth’s system, such as those connected to the iono-
sphere or troposphere. The latter two domains are being
thoroughly investigated with the use of GNSS observations
as a large number of observations collected from various
parts of the globe as well as the sensitivity of the GNSS
technique to changes in the ionospheric and tropospheric
states allow the phenomena driving changes in these
domains to be quantified (Flores et al., 2000; Takahashi
et al., 2016; Yu et al., 2017; Bosser et al., 2021). This is
reflected in the observed variations in total electron content
(TEC) or water vapor content, where the latter is deduced
based upon information contained in the time series of
zenith wet delay (ZWD) and tropospheric gradients. Usu-
ally, the latter two are set up as solve-for parameters in
the GNSS data analysis, but this can be also extended to
vertical TEC (VTEC) when considering the raw (uncom-
bined) observation approach (Strasser et al., 2019).

Precipitable water vapor (PWV) overlying the GNSS
receiver can be determined from the derived time series of
Zenith Total Delay (ZTD) if certain constants related to
the refractivity of moist air and of the weighted mean tem-
perature of the atmosphere are known (Bevis et al., 1992;
Bevis et al., 1994; Ning et al., 2013). Thanks to continu-
ously operational GNSS, long-term PWV trends can be
acquired globally, at a high frequency, allowing changes
in the hydrological cycle, atmospheric radiation, and cli-
mate to be studied. The use of GNSS-derived PWV for
atmospheric studies is now a well-established field of
research and the GNSS-derived PWV estimates are in good
agreement with the conventional instrumentation (ra-
diosondes or microwave radiometers) that is used for this
purpose (Van Malderen et al., 2014). Atmospheric water
vapor estimates from static ground-based GNSS receivers
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are nowadays operationally assimilated into numerical
weather prediction models (NWP), either in the form of
PWV or ZTD (Uppala et al., 2005; Bennitt and Jupp,
2012; Guerova et al., 2016).

GNSS can also provide a very precise estimation of the
slant total electron content (STEC), which is the linear inte-
gral of the electron density along any satellite-receiver ray
path (Davies and Hartmann, 1997), with units of electrons

per square meter, where 1016electrons=m2 corresponds to 1
TEC unit (TECU). The satellite-receiver-specific iono-
sphere TEC at the line of sight is compressed at a point
referred to as the ionospheric pierce point (IPP), and
mapped into the vertical direction with the use of the iono-
sphere mapping function. Commonly one utilizes dual-
frequency GNSS signals and their geometry-free linear
combination to acquire STEC (Ciraolo et al., 2007). When
satellite-specific VTEC is obtained from many globally dis-
tributed GNSS receivers, such as with those comprising the
International GNSS Service (IGS) network, they can be
used to generate global ionosphere maps (GIM,
Hernández-Pajares et al., 2008), which represent snapshots
of global VTEC that find many applications in single-
frequency positioning or studies of the ionosphere. In an
alternative approach, commonly referred to as uncombined
precise point positioning (UC-PPP), one leverages the
uncombined observations recorded at different frequencies
and utilizes them directly in the analysis in order to derive
ZTD and VTEC (Zhang et al., 2012; Wang et al., 2020).
Single-frequency PPP (SF-PPP) can in principle be
employed for the same purpose (Zhang et al., 2018; Zhao
et al., 2019).

Over the past years, GNSS has been developing signifi-
cantly and rapidly, with the dawn of the fully operational
Galileo or BeiDou Navigation Satellite System as well as
continuous developments of the space segments of the
well-established GPS (Global Positioning System) and
GLONASS systems. Besides the higher level of interoper-
ability and consistency between satellite systems present
nowadays, the most important advance in terms of GNSS
technology has been the introduction of modern signals of
improved quality as disseminated in the L5/E5 band.
GNSS infrastructure has also been expanding significantly
and rapidly in recent years, not only in space but also on
the ground. Nowadays, the group of devices with GNSS-
capable receivers also includes a wide range of mass-
market sensors that are utilized as static or kinematic sen-
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sors for multiple applications ranging from self-driving cars
to unmanned aerial vehicles, deformation monitoring
(Poluzzi et al., 2020), or land surveying (Odolinski and
Teunissen, 2019). Besides providing coordinates of a satis-
factory quality, such a network of low-cost dual-frequency
GNSS can also be used for atmospheric sounding with the
quality of the troposphere products having comparable
accuracy to the same estimates acquired with the use of
the geodetic equipment (Stezpniak and Paziewski, 2022).

When treating ionospheric contributions as an estimable
parameter, single-frequency multi-GNSS low-cost receivers
can be also applied for retrieval of VTEC and PWV with
the use of the PPP approach (Zhang et al., 2018; Zhao
et al., 2019). Mass-market receivers, offering an acceptable
trade-off between performance and affordability, can
already be considered a cost-effective solution for the
improvement of the spatial resolution of GNSS observa-
tions that are collected with the use of the conventional
permanent GNSS networks. Such a tendency will also
not likely change in the future.

The era of modern smartphones, running on Android
version 7.0 and higher, facilitates nowadays the acquisition
of multi-constellation GNSS observations from such
devices through the related application programming inter-
face (API). This paves the way for the GNSS community
data to be potentially exploited for mass-market precise
positioning, GNSS reflectometry, or in various geoscience
applications, as smartphone use brings low weight, low
power consumption, and portability benefits. Smartphones
have already been evaluated in terms of their capacity to
determine precise coordinates based on GNSS observa-
tions (Darugna et al., 2020; Paziewski et al., 2021). Recent
studies with such devices also include their utilization in
VTEC determination through the carrier-to-code leveling
(CCL) approach (Xu et al., 2022). However, currently there
are a few technical aspects that limit the accuracy of
smartphone-based positioning (Paziewski, 2020) or the
quality of the solve-for parameters set up during the GNSS
analysis. As smartphones are characterized by an increased
sensitivity to the reflected GNSS signals, multipath is the
main error source hindering high-precision GNSS-based
positioning with such devices. In addition, smartphones
are characterized by diverse performance in terms of GNSS
signal tracking, which results in model-dependent perfor-
mance (Paziewski et al., 2021). An additional factor in this
regard is also the orientation of the smartphone while tak-
ing the measurements, where an upward (vertical) orienta-
tion tends to be the most beneficial in terms of the quantity
and quality of the GNSS observations that can be available
for the subsequent analysis (Yong et al., 2021; Li et al.,
2022a). Nevertheless, the continuous progress in the area
of GNSS and smartphones may result in the near future
in a performance that is comparable to the GNSS receivers
employed for atmospheric sensing.

Although with lower measurement quality compared to
traditional sources of GNSS data, an expansion of ground-
3

based networks of fixed high-end GNSS receivers with
GNSS-capable smartphones would form an interesting
source of complementary data for various studies relying
on GNSS observations. The latter are potentially available
at large scale from affordable smart devices and hundreds
of low-cost single-frequency/dual-frequency GNSS recei-
vers, yet such data is currently far from being fully
exploited for science and society. Access to such observa-
tions is also currently limited, the means for their collection
is missing, and the data processing itself is rather challeng-
ing. The continuously expanding global GNSS infrastruc-
ture along with the enormous volume of prospective
GNSS community data bring therefore major challenges
related to data acquisition and storage as well as subse-
quent processing in conjunction with conventional GNSS
observations for deriving various parameters of interest
such as those related to precise positioning, the tropo-
sphere, or ionosphere. Such large data sets cannot be man-
aged manually anymore, leading to the need for fully
automated and sophisticated data processing pipelines.
The same applies to the analysis and fusion of huge
amounts of heterogeneous auxiliary data and models,
requiring a dedicated approach in order to exploit this type
of data in a thorough manner and fully benefit from such a
concept.

Machine Learning (ML) in high-performance comput-
ing environments tends to be an appropriate solution in
terms of data fusion, classification or forecasting tasks.
The additional benefit is that the large volume of heteroge-
neous data can be exploited and introduced into the mod-
eling related to both spatial interpolation and forecasting.
ML or Deep Learning (DL) facilitate incorporation of
information from different and rather complex domains
(e.g. solar data), which tends to be a challenging task as
a direct physical relation is usually difficult to formulate
mathematically. ML and DL can also facilitate overcoming
systematic biases and different spatio-temporal resolution
of datasets (Zhang and Yao, 2021). In terms of GNSS-
based ionospheric observations, ensemble methods and
DL architectures have been utilized for single-point, regio-
nal, and global TEC modeling and forecasting (Cesaroni
et al., 2020; Kaselimi et al., 2020). Similar remarks apply
to PWV or Zenith Wet Delays, as derived from various
techniques, which can be exploited by means of ML/DL
and in conjunction with parameters from the meteorologi-
cal domain (Benevides et al., 2019). In this context, interpo-
lation carried out with ML can be considered as an
alternative to different approaches that have been sug-
gested such as iterative tropospheric decomposition (Yu
et al., 2017), a seasonal Gaussian function (Hu and Yao,
2019), or least-squares collocation (Wilgan and Geiger,
2018).

The ESA NAVISP Element 1 project (NAVISP-EL1-
038.2) entitled Application of Machine Learning Technology
for GNSS IoT Data Fusion (CAMALIOT) focused on a set
of activities covering the aforementioned topics with a
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proof-of-concept cloud-native software and community
data collection campaign in order to investigate the poten-
tial and increase the usability of IoT (Internet of Things)
GNSS data for scientific purposes. The quantifiable goals
of this project concerned the integration and utilization
of heterogeneous GNSS datasets for modeling and predic-
tion of parameters describing the change in the ionospheric
and tropospheric states with the use of the chosen ML
algorithms and the proposed technology stack. The
proof-of-concept cloud-native software (SW), hereafter
referred to as the CAMALIOT SW, encompassed acquisi-
tion, ingestion, and pre-processing of smartphone-based
GNSS observations, the development of a crowdsourced
GNSS repository, GNSS code and carrier-phase processing
of the collected assets, and the inclusion of the components
related to ML, all to be seamlessly integrated into the exist-
ing infrastructure of the GNSS Science Support Centre
(GSSC) of ESA. The main goal of the GSSC is to integrate
various sources of information from all GNSS domains
into a single platform while providing comprehensive pro-
cessing assets to deliver advanced analysis services concern-
ing continuously increasing GNSS data sets and products
(Navarro et al., 2021).

This contribution focuses on providing an overview of
the proof-of-concept architecture designed and imple-
mented in relation to the CAMALIOT project with infor-
mation on the SW functional architecture, collection and
processing of community GNSS data at scale, and related
GNSS analysis approaches that were established in order
to process observations collected by both geodetic-grade
static receivers and smartphones. In Section 2, the
CAMALIOT SW is introduced with the description of its
sub-components and information on ML and GNSS pro-
cessing at scale as exploited in relation to the project goals.
Given the highlighted approach and developed software,
example processing results related to ZTD and STEC
based on the analysis of observations collected by perma-
nent GNSS stations and from local (controlled) measure-
ment sessions involving Xiaomi Mi 8 are presented in
Section 3 in order to showcase the feasibility of our strat-
egy. The general discussion concerning the obtained results
is given in Section 4. The summary and outlook given in
Section 5 conclude this contribution.

2. Methods

GNSS processing and application of ML for a robust,
scalable andautomated collection, processing, andcombina-
tion of the aforementioned data had to be properly accom-
modated in the proposed software architecture, with the
technology stack that would be sufficient to address multiple
challenges related to this pilot project. In addition, the aim
was to secure GNSS data from the modern generation of
smartphones, exploit their usefulness for thisproject, anduti-
lize it in conjunction with observations from high-grade
GNSS stations through ML/DL. The CAMALIOT SW
had also to be compliant with the current architecture of
4

theGSSC,which is a cloud-native system built upon the con-
cept of micro-services and utilizing Docker and Kubernetes
technologies. Due to the limited scope of the study, this sec-
tion concentrates on the high-level overviewof the developed
SW and its features as well as providing information on the
GNSS data analysis approach applied to meet the goals of
the activity. The detailed information concerning ML in
relation to GNSS-based atmospheric estimates or the
implementation details of the developed Android
application are not discussed here.

2.1. CAMALIOT Software Architecture

The proposed software has been designed to run on a
Kubernetes cluster that can be understood as a set of phys-
ical or virtual machines that run containerized applica-
tions. Kubernetes is the new operating system for the
cloud and it has grown to become a powerful and flexible
tool that can be run on a variety of cloud platforms and
on-premises. On Kubernetes, all programs (developed
code) run in containers so that they can be isolated from
each other and can be easily developed, configured,
deployed, monitored or removed without affecting any of
the other containers comprising an application. Kubernetes
addresses many of the manual processes associated with
the deployment and scaling of the containerized applica-
tions as well as issues including high availability (HA)
and load balancing. Kubernetes can therefore be under-
stood as a container orchestration tool that provides an
additional level of coordination for combining individual
containers (software components, separate applications)
into a cohesive entity.

This proof-of-concept cloud-native application has been
designed and implemented as a set of services that carry out
specific tasks and are connected via the hypertext transfer
protocol (HTTP). The CAMALIOT SW can be perceived
as a self-contained modular system that is designed to
interact with numerous components of the GSSC through
its external interfaces, both realized with the use of the
implemented Representational State Transfer (REST)
API (also known as RESTful API). The functional archi-
tecture of the CAMALIOT SW is depicted in Fig. 1. The
proposed architectural pattern allows services to be devel-
oped and deployed independently depending upon current
needs. The service-based architecture (or a microservice-
based architecture) also allows the individual services to
be scaled horizontally (increasing the number of instances
of the same service), which provides resource and cost opti-
mization benefits. A common practice is also deployment
of multiple service replicas in order to ensure high-
availability and fault-tolerance of the cloud-native applica-
tions. In such a case, a single SW component running on
Kubernetes contains in most of the cases at least one
deployment and service definitions. The former is used to
establish the components (applications) on the cluster,
whereas the service defines a logical set of component repli-
cas (pods) and a policy by which to access them. Then mul-



Fig. 1. SW functional architecture designed and implemented for CAMALIOT. The names of the software components are given in light blue.
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tiple (three or more) pods are always created. In case one
node of the Kubernetes cluster fails, the data processing
is not disturbed as the unaffected replicas of the applica-
tions are still available to receive the incoming files or
messages.

The incoming data within the CAMALIOT SW under-
goes many different steps including validation, windowing,
aggregation and conversion of the crowdsourced GNSS
observations to hourly RINEX files, quality control, and
GNSS processing for ionosphere and troposphere. The
processing pipeline is complemented with ML-related tasks
(pre-processing, model training, model validation, model
prediction). Therefore, many open-source SW packages/li-
braries constitute the CAMALIOT SW, with some of the
parts covered by the code that was developed for the pur-
poses of this activity. Among the chosen SW packages, this
included Apache Kafka, Apache Spark 3, FastAPI, Ten-
sorFlow2 (TF2), Open MPI, scikit-learn, joblibspark, Hor-
ovod, JupyterLab, Prometheus, and Grafana. The utilized
programming languages included C/C++, Python, and
Java. The continuous integration (CI) and continuous
deployment (CD) were arranged with the use of a Jenkins
server and a private image repository. Both components
were hosted externally, but were accessible from the target
computing infrastructure (Kubernetes). The latter was
established along with the object storage on the resources
provided by Exoscale1.
1 www.exoscale.com
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Containerized applications are immutable implying that
all data created during their lifetime is lost if they crash or
are deleted. This might be convenient for some applica-
tions, but in most of the cases the containerized services
need to preserve some information or share information
with other applications. For the CAMALIOT SW, two
types of storage were used, i.e., a persistent storage and
object storage. Concerning the former, Kubernetes persis-
tent volume (PV) is a storage resource that is established
within the Kubernetes cluster and employed to retain data
for long periods of time. PV allows a storage unit to be
mounted to a Kubernetes node and also share information
between nodes. The object storage systems allow, on the
other hand, retention of massive amounts of unstructured
static data, also commonly referred to as data lakes. Object
storage is an important element in relation to cloud appli-
cations as it offers optimization of resources, reduction in
costs, essentially infinite scalability, or faster file retrieval
compared to traditional solutions. In this activity,
Longhorn2, a cloud-native distributed block storage for
Kubernetes, was used for creation of PVs that were utilized
by the components of the CAMALIOT SW for persistence
of intermediate or temporal files that needed to be shared
across pods. In terms of fault-tolerance, persistent volumes
are usually replicated (replication factor of three) and
backed up to ensure that no data is lost in case one of
the nodes of the Kubernetes cluster fails. The crowd-
2 https://longhorn.io
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sourced community data, collected assets as well as the
assets produced within the CAMALIOT SW were
uploaded to the dedicated bucket (object storage) for
backup and processing/re-processing purposes.
Fig. 2. CAMALIOT Android Application: User Interface (ver. 0.5.9.8).
Shown is an interface for configuration of the logging session (left), an
interface displayed while taking measurements (center), and a subpage for
data upload and RINEX conversion (right). Besides GNSS observations,
the developed application allows also to collect data from environment
and motion sensors.
2.2. High-level Overview of the Software Components

In order to meet the requirements of the CAMALIOT
project in relation to securing smartphone GNSS commu-
nity data through dedicated crowdsourcing campaigns (See
et al., 2023), an Android application3 was designed, devel-
oped, published, and assessed throughout the course of the
project. The Android application was created by consor-
tium members from the International Institute for Applied
Systems Analysis (IIASA). The target audience in this case
were researchers working in the area of GNSS, who might
be interested in using the data for research purposes, and in
general volunteers motivated to contribute to a citizen
science project. In order to encourage participation from
many people with various backgrounds and experience
with GNSS, the application was intentionally designed to
be simple to use. An example of the pages from the user
interface (UI) of the CAMALIOT Android application is
shown in Fig. 2.

During the course of the two consecutive crowd-
sourcing campaigns, spanning from March to November
2022, the registered users were asked to collect GNSS
observations and then upload them to the server, i.e., the
CAMALIOT SW. This was not mandatory as with the
use of the list of logged sessions the user could decide
which of the generated files can be removed from the
phone, uploaded to the server, or converted to RINEX-3
files for their own use. The application can also work in
a continuous mode, where there is no need for the user
to interact with the application as the file upload is carried
out in an automatic fashion and based on a pre-defined
observation window, as visible in Fig. 2. This implies that
instead of submitting a single file with observations per
logging session, which can last a few to several hours,
the files can be split automatically into hourly files and
then submitted (also automatically) to the server.

The primary output of the developed Android Applica-
tion, hereafter referred to as the CamaliotApp, are com-
pressed text files with the format similar to the one
applied by the GnssLogger App, an Android application
developed and maintained by Google. Apart from their
compression to a zip format, no additional modifications
of the files are made before uploading. Therefore, rather
than collecting the RINEX files as a result of the in-
phone conversion, the users were uploading GNSS obser-
vations in the form of comma-separated-values (CSV) files,
which were subject to subsequent processing at the server
side. As a consequence, other sensor data can be submitted
in the same file besides having the possibility of preserving
3 Camaliot: available on Google Play Store
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original GNSS observations. The file uploading itself was
realized via a POST command that was made to the dedi-
cated endpoint connected to the component responsible for
their ingestion (CamaliotIngest). Although possible due to
the utilized software stack (currently apart from the GNSS
engine), real-time data streaming of observations from the
CamaliotApp to the server has not been implemented and
this activity focused on a quasi-continuous collection of
GNSS observations from smartphones.

The compressed zip files from the CamaliotApp

instances reached the CamaliotIngest component, where
they were processed in an asynchronous manner. The
CamaliotIngest component was directly connected to an
Ingress Controller, which is a service that routes the traffic
from outside of the cluster to the services and pods inside
the cluster. At that stage, the received files were forwarded
to object storage (backup of raw observations) as well as
uncompressed and parsed for subsequent processing.

CamaliotConnect represents middleware that, when uti-
lized as one of the SW components, keeps the data integra-
tion simple with the option to seamlessly integrate new
micro-services or services. Via this middleware, e.g., the
compressed log files (as produced by CamaliotApp) from
CamaliotIngest are continuously uploaded to the dedicated
bucket (in the object storage), whereas the serialized data
from CamaliotIngest undergo further processing using the
remaining CAMALIOT SW components that might need
to process the same data differently. Connection of the
CAMALIOT SW components, communication with exter-
nal services (object storage or GSSC) and the support con-
cerning the streaming data paradigm, where data are
represented as streams of events, was implemented with
the use of the Apache Kafka ecosystem (and by leveraging
the AVRO serialization format), its open-source exten-
sions, schema registry as well as the custom Python-based
REST API in order to meet specific tasks related to data
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backup/retrieval or triggering of the processing to be car-
ried out by the components of the CAMALIOT SW.

The CamaliotProcess component, the multi-purpose
processing layer, concerned batch and stream processing
of the collected data where the required assets are provided
through the CamaliotConnect component. Tasks associated
with this component included data enrichment, aggrega-
tion, and creation of RINEX-3 files with GNSS observa-
tions acquired with the use of CamaliotApp. In terms of
scalability, batch/stream processing required for the pur-
poses of this activity was addressed with the use of Apache
Kafka and Apache Spark, open-source frameworks com-
monly used in modern platforms working with huge vol-
umes of data. More details concerning the processing
steps are given in Section 2.3.

ML-related parts for spatial interpolation and forecast-
ing of time series related to the troposphere and iono-
sphere were implemented as separate components, see
Fig. 1. The subset of libraries mentioned in Section 1
formed a proof-of-concept setup that was tested through-
out the course of the project for ML and DL at scale. The
output of such components are ML-based models and
predictions, where both can be treated as the final output
of the CAMALIOT SW. More information concerning
the ML/DL framework as implemented in the
CAMALIOT SW are given in Section 2.5.

CamaliotLab represents a web-based sandbox compo-
nent that has been established for demonstration purposes
allowing to experiment with GNSS and ML. The user per-
forms analysis tasks with the use of JupyterLab, the pro-
vided inputs and/or stored assets.

Software component monitoring plays an important
part in assuring high availability of any software running
in production and when aiming for minimal down-times.
For the CAMALIOT SW, a component dedicated to mon-
itoring (CamaliotMonitoring) was built upon three entities,
i.e., Prometheus Operator, Prometheus, and Grafana. Pro-
metheus is a tool that collects metrics from the monitored
applications (components and subcomponents) and stores
it with the timestamp at which it was recorded. The metrics
can be of various kinds as different types of applications
can be monitored (databases, Ingress controllers, Apache
Kafka). Such metric scraping occurs over HTTP via a pull
model. In other words, the SW components and sub-
components expose the metrics at a certain port so that
the Prometheus server can collect this data. Subsequently,
such time series data allows the performance of the appli-
cations to be investigated, and, if needed, utilized to
improve their performance. However, a more important
aspect is the capability of a quick response in case one of
the SW components fails. Moreover, Horizontal Pod
Autoscaling (HPA), that is used in conjunction with the
scraped metrics, can be used in the Kubernetes environ-
ment for an optimal resource management by scaling up
or scaling down (horizontally) specific micro-services based
on specific metrics, e.g., those related to the data load or
the number of files in the processing queue. Finally,
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Grafana is an open-source analytics web application (with
built-in support for Prometheus) providing charts, graphs,
and alerts in order to visualize and interact with metrics of
various kinds. An example of the Grafana web-based inter-
face with metrics related to the CamaliotConnect compo-
nent is shown in Fig. 3.

2.3. GNSS Data Pre-processing

A number of processing steps occur within the
CamaliotProcess component. Due to the variety of tasks,
several subcomponents comprise that part of the
CAMALIOT SW.

GNSS-related serialized data present in the Kafka topics
are utilized in the CamaliotProcess component to create
device-specific hourly RINEX-3 files. The RINEX con-
verter developed by IIASA (and present also in
CamaliotApp) is used to convert the incoming data into
RINEX-3 files. That custom converter was implemented
for an efficient and automated conversion of the available
files while ensuring receiver clock consistency between the
pseudo-range and carrier-phase measurements in the cre-
ated files. At this stage, the 9-character device name is
either generated or retrieved in order to create such
RINEX files. To diminish the size of the files while includ-
ing an additional validation step, the created RINEX files
are subsequently converted to Compact (Hatanaka)
RINEX (CRX) files and then compressed to gzip files.
The latter are then uploaded to CamaliotConnect for their
backup on the object store, where they are partitioned by
year and day of year, based on the timestamp present in
the filenames. Such files are also available for further pro-
cessing, in conjunction with RINEX files that contain
observations from geodetic stations.

In order to save processing time and minimize the
impact of poor quality GNSS observations on the quality
of the derived products and models, it is proposed that,
at this stage, the RINEX files undergo the screening pro-
cess in the subcomponent dedicated to quality control.
Only the hourly files with measurements of proper quality
are utilized at a later stage to form a complete observation
session. Based on the utilized measures, RINEX files con-
taining observations of low quality are therefore not
included in the subsequent processing.

The available RINEX files form an input to the GNSS
processing subcomponent that was implemented as a
micro-service with the dedicated API for receiving
RINEX-2/RINEX-3 files, configuration files or calls from
other SW (sub) components. At this stage, GNSS products,
auxiliary information and collected RINEX files are used
in the GNSS processing utilizing the Extended Kalman Fil-
ter (EKF) that is present in the dedicated GNSS engine,
hereafter referred to as CamaliotGNSS. Parallel processing
of RINEX files is implemented based on the concept of a
processing queue that is shared across the micro-service’s
replicas. Depending upon the needs, the GNSS micro-
service can be then scaled horizontally in order to accom-



Fig. 3. CAMALIOT SW: An example of the utilized Grafana dashboard (based on the Strimzi template) displaying metrics from the CamaliotConnect

component and related to the Kafka cluster.
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modate an increased amount of the incoming RINEX files.
Once the processing is finished, the troposphere-related
estimates are separated into files in the SINEX TRO
format4, whereas the acquired ionosphere-related
satellite-specific VTEC/STEC estimates are stored in the
SINEX ION files. In the last step, both SINEX TRO and
SINEX ION files can be submitted via CamaliotConnect

for backup and their further utilization either as new assets
of the GSSC or as an input to the CamaliotIono and
CamaliotTropo components. The SINEX ION format
was introduced for this activity and corresponds closely
to the SINEX TRO format in the way how the estimates
are represented. Example SINEX ION files can be found
in the related data repository, see Acknowledgments.
2.4. GNSS Engine

As a part of this activity, a dedicated GNSS engine has
been developed that allows diverse static/kinematic multi-
GNSS observations to be processed, either single-
frequency or dual-frequency, such as those collected by
high-grade IGS stations, low-cost receivers or crowd-
sourced GNSS observations. The motivation was the pos-
sibility of deriving a consistent set of ionospheric and
tropospheric estimates from various GNSS sources to be
used at a subsequent stage that is related to ML/DL.

The analysis approaches relevant for this activity
include CCL, differential GNSS (known as relative posi-
tioning or baseline processing) and PPP with the latter
introduced by Zumberge et al. (1997) for static GPS and
later used for kinematic GPS (Kouba and Héroux, 2001).
4 https://files.igs.org/pub/data/format/sinex_tro_v2.00.pdf
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RTKLIB ver. 2.4.3 b34 (Takasu and Yasuda, 2009) formed
the base of CamaliotGNSS, which has been extended with
additional features (e.g. multi-GNSS support, flexible
GNSS observation type selection, SINEX interface, CCL
module) tailored to the considered use cases. Parameter
estimation is performed using EKF with the target and nui-
sance parameters expressed as EKF states (epoch-wise
state vectors and covariance matrices). In the case of
post-processing, the parameter estimation is possible with
either a forward-in-time filter, backward-in-time-filter or
via the combined solution taking advantage of both for-
ward and backward filter solutions in order to address
the initialization periods of the KF, apart from improving
the quality of the solve-for parameters through smoothing
(in essence a weighted average). For baseline processing
(BP), the carrier-phase integer ambiguity resolution
(Teunissen et al., 1997) is available. In relation to PPP,
the carrier-phase integer ambiguity resolution (AR) step
that underpins the concept of PPP-RTK (Teunissen and
Khodabandeh, 2015; Li et al., 2022b), or also known as
PPP-AR (Glaner and Weber, 2021; Chen et al., 2021),
has not been implemented so far.

The developed engine allows satellite-specific VTEC
time series to be extracted based on the KF-based CCL
approach, in which leveling biases are separated from
VTEC on a satellite-by-satellite basis and reinitialized for
each new satellite arc or whenever a cycle slip occurs. Cur-
rently, differential code biases (DCBs) cannot be estimated
and external products need to be used instead. For IGS sta-
tions, the DCB information can be provided to the engine
as either files with GNSS bias products as produced by
CODE (DCB files), which applies only to GPS and GLO-
NASS observations, or by using files in the BIAS SINEX
(BSX) format, where the same parameters are available



G. Kłopotek et al. Advances in Space Research xxx (xxxx) xxx
but for multiple GNSS constellations. The latter option
allows also different pairs of observations and frequencies
to be utilized to form a geometry-free linear combination
of pseudorange and carrier-phase observations.

2.4.1. Analysis Setup

The GNSS processing strategy in relation to this activity
can be divided into two steps. In the first step, RINEX
observations from geodetic-grade stations are processed
in order to obtain precise coordinates, SINEX TRO files
and SINEX ION files. The parametererization of the
solve-for parameters estimated in our analysis approach
and in relation to that step is highlighted in Table 1 and
Table 2 for extraction of ZTD and VTEC, respectively.
The subsequent step concerns alternative sources of GNSS
observations (in this case smartphone data), which are pro-
cessed mainly in the baseline mode in order to derive ZWD
in a relative manner and using (so far) CCL to extract
VTEC. The parameterization applied in that case is shown
in Table 1 and Table 2 for extraction of differential ZWD
and VTEC, respectively.

Relative positioning, exploiting double differencing of
measurements, on short baselines allows single-frequency
GNSS observations to be utilized for deriving rover posi-
tion and differential ZWD (Webb et al., 2016; Fermi
Table 1
GNSS data processing strategy in CamaliotGNSS for IF-PPP an
difference approach) based on high-grade and smartphone-base
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et al., 2019) without the need for handling of the satel-
lite/receiver clock contributions (the double-difference
approach virtually eliminates clock errors) and differential
ionospheric delays as their impact in this case is negligible
(due to the spatial behavior of the ionosphere). The pre-
mise in this case is that the neglected ionospheric effects
on relatively short baselines do not corrupt the solve-for
parameters. The important prerequisite is that the ZWD
time series of the reference station are available and not
estimated during the processing as almost parallel signal
paths of the receivers to the same satellite prevent the
simultaneous estimation of ZWDs for each station forming
short or moderate baselines (same situation applies to local
multi-station GNSS networks). As a result, baseline pro-
cessing provides a relative estimate of the ZWD that is
expressed with respect to the value established for the ref-
erence station. In our case, the ZTD estimates from step
one and stored as SINEX TRO files can be used to supply
the relative positioning with tropospheric estimates for the
base station. As this is a local technology (range of tens of
kilometers), the proposed single-frequency baseline
approach requires, however, a dense network of reference
stations to provide regional coverage for processing of
smartphone observations. This is however, not an issue
when considering alternative GNSS data as a complemen-
d single-frequency (L1/E1) baseline processing (the double-
d GNSS observations. Process noise abbreviated as PrNo.



Table 2
GNSS data processing strategy in CamaliotGNSS concerning the
KF-based CCL for VTEC extraction applied to high-grade GNSS
observations and smartphone data. Process noise abbreviated as
PrNo.
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tary source of information that could be potentially used to
densify the current network of high-end receivers com-
monly used for atmospheric monitoring.

The analysis strategy applied to smartphone data differs
from the approach including geodetic-grade stations in two
aspects. In general, the utilized SNR mask needs to be
lower in order to not exclude a large number of decent
observations. The latter are characterized on average by
approximately 10 dB-Hz lower carrier-to-noise density
ratio (C/N0) than those collected with high-end antennas
and receivers (Zhang et al., 2020). In addition, different val-
ues are applied concerning observation weighting, but the
approach utilizing elevation-dependent weighting remains
unchanged.

In terms of ionosphere extraction from smartphone
data, some changes with respect to the parameterization
applied for geodetic-grade stations are made mainly to
reduce the negative impact of potentially poor observations
on the precision and trend of the STEC time series. Apart
from the different stochastic models used and a lower SNR
mask applied, no observations below 30� are included in
the processing. By default, the smartphone-related obser-
vations are recorded with a sampling rate of a single sec-
ond. In our case, the observations are down-sampled to
two seconds (to save computing time) and carrier smooth-
ing of code observations is introduced in order to diminish
the negative impact of outliers in the pseudorange measure-
ments at both L1 and L5 frequency bands.
10
2.5. Machine Learning with the CAMALIOT SW

The most computationally demanding stage in the case
of modernML/DL pipelines is the model training part, with
the training data size and the complexity of the employed
ML model architectures as the main contributing factors.
In order to address that, the developed ML/DL framework
utilized across the components of the CAMALIOT SW
leverages the combination of Apache Spark, TF2, Horo-
vod, and Open MPI to support model prototyping with
the use of either scikit-learn, which covers standard ML
models, or TF2, which is utilized commonly for DL. In both
cases, distributed/parallel training is performed on Spark
executor nodes as SparkApplications. Such a combination
of open-source libraries (Apache Spark, TF2 and Horovod)
has several benefits such as high-throughout batch/continu-
ous processing or distributed model training. In order to
train the models prototyped with scikit-learn, the joblib-
spark library serves as a means for executing parallel jobs
on Spark executor nodes. Such an approach unifies data
processing and model training with the use of various
libraries and encapsulates them within a single ML pipeline.
Based on the consistent set of GNSS-related estimates such
as VTEC or ZWD with the simultaneous use of auxiliary
variables related to troposphere and space weather as input
features, the goal behind the development of the dedicated
ML/DL models is the spatial representation of those two
variables with utmost accuracy as well as short- to mid-
term forecasting of those parameters. In this regard, exam-
ple studies related to the CAMALIOT project are shown,
e.g., by Crocetti et al. (2022) or Soja et al. (2023). The same
concept is investigated byMao et al. (2023) to generate ML-
based GIM using multi-GNSS data and the KF-based CCL
approach.

3. Results

This section provides information on the quantity of the
GNSS data collected throughout the course of the con-
ducted crowdsourcing campaigns (an intrinsic part of the
activity) with the use of the developed Android application.
This is followed by example processing results related to
ZTD and STEC derived with the use of the developed
GNSS engine and based on the GNSS observations from
permanent GNSS stations and data acquired with the use
of Xiaomi Mi 8 during local measurement sessions.

3.1. Quantity of Crowdsourced GNSS Observations

The two conducted crowdsourcing campaigns resulted
in a significant amount of GNSS observations that were
collected per day. The daily quantity and volume of the
observations as collected with the use of the CamaliotApp

instances and submitted to the CAMALIOT SW (the
CamaliotIngest component) are shown in Fig. 4



Fig. 4. Quantity and volume of community data collected as zip archives
throughout the course of activity with the use of the developed
CAMALIOT Android application. The number of log files corresponds
to the quantity of the compressed text files (CSV files containing raw
GNSS observations) that were uploaded by the registered users. The
crowdsourcing campaigns concern days 76–334 (inclusive) of 2022.

Fig. 5. ZTD time series (and their formal errors) at (a) WTZR00DEU and
(b) AIRA00JPN for 18.05.2023 (doy 138). The ZTD time series from
CamaliotGNSS (blue) derived with IF-PPP and based on both GPS and
Galileo observations are shown along with equivalent estimates by NGL
(orange), and CODE (black). Here, estimates from the CamaliotGNSS
engine obtained through the EKF combined run with 30-s observation
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Over twelve thousand registered application users from
various parts of the globe were interested in contributing
to this activity, some of who have retained an ongoing
interest in contributing to data collection (See et al.,
2023). As the crowdsourced observations were collected
in an uncontrolled manner, initially the size of the incom-
ing files varied significantly until the continuous mode
was introduced to control the data flow in this regard
and achieve quasi-continuous and stable data ingestion at
the server side. The introduction of the continuous mode
in CamaliotApp is visible in Fig. 4 as a radical change in
the number of collected files that occurs around day 140
of the year.
sampling are shown with a 5-min resolution.

Fig. 6. Baseline processing results for the ZIM200CHE-WAB200CHE
and ZIMM00CHE-WAB200CHE baselines. Shown are dZWD time series
with formal errors (confidence interval of 68%) over the period of 24 h for
May 18th, 2023. Unlike ZIM200CHE, ZIMM00CHE does not support
Galileo observations and only GPS observations were used in the solution.
ZIM200CHE and ZIMM00CHE abbreviated as ZIM2 and ZIMM,
respectively.
3.2. GNSS Processing

3.2.1. High-Grade GNSS Observations

This subsection is dedicated to the example tropospheric
and ionospheric estimates derived with CamaliotGNSS
and using multi-constellation GNSS observations from
selected IGS stations. In terms of ZTD, the applied pro-
cessing strategy concerning IF-PPP and baseline processing
is summarized in Table 1. For the sake of comparison with
smartphone-related estimates, carrier-phase integer ambi-
guity resolution, which is applicable in the presented con-
text only in relation to baseline processing, was not
applied in the analysis.

ZTD time series from the IF-PPP approach for stations
WTZR00DEU and AIRA00JPN for a single day from the
year 2023 are shown in Fig. 5, complemented with external
and publicly available ZTD estimates. The latter include
time series produced by the Nevada Geodetic Observatory
11



Fig. 7. STEC time series (and their formal errors) using GPS and Galileo
observations from a) WTZR00DEU and b) AIRA00JPN for 18.05.2023
(day of year 138) reduced by the STEC generated with the use of GIM by
CAS. The differences from a 30-s solution are shown with a 5-min
resolution as a function of satellite elevation. Color-coded are satellite-
specific differences. For GPS, 1C-2W pair of observations was used for the
geometry-free combination, whereas Galileo-related geometry-free com-
bination was created with the use of 1C-5Q and 1X-5X pairs for
WTZR00DEU and AIRA00JPN, respectively.
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(NGL) with the use of GipsyX (Bertiger et al., 2020), and
CODE based on the solutions from the Bernese GNSS
Software (Dach et al., 2015). An example tropospheric cor-
rections (dZWD) and their formal errors at ZIM200CHE
and ZIMM00CHE derived from baseline processing at
L1/E1 are shown in Fig. 6 for a 24-h period from the year
2023. The time series of the co-estimated positions (for the
same period) are given in addition in Appendix A. In both
cases, WAB200CHE station was used as a reference, which
results in tropospheric corrections that reflect the change in
tropospheric conditions between stations separated by
approx. 5.2 km. Concerning two rover stations,
ZIMM00CHE and ZIM200CHE are separated by a dis-
tance of approx. 19 m with the height difference of approx.
0.1 m. For the considered period, the median difference of
dZWD for ZIM200CHE with respect to the dZWD derived
at ZIMM00CHE is �0.7 mm with the sample standard
deviation of the epoch-specific dZWD differences of
1.00 mm.

CamaliotGNSS allows VTEC to be derived using the
EKF-based CCL approach, currently with the use of
DCB information provided externally. As they are gener-
ated on an operational basis with a daily resolution, satellite
and station biases computed by the Institute of Geodesy
and Geophysics (IGG) of the Chinese Academy of Sciences
(CAS) in Wuhan are used here (Wang et al., 2016). The
GNSS processing strategy for the CCL-based satellite-
specific VTEC determination using GPS (G) and Galileo
(E) observations is summarized in Table 2. As a validation
of the implemented VTEC extraction approach, STEC time
series based on the GNSS observations from two selected
IGS stations (WTZR00DEU and AIRA00JPN), experienc-
ing different ionospheric conditions, are shown in Fig. 7 in
the form of differences between satellite-specific STEC
derived with the use of CamaliotGNSS and the same quan-
tities calculated based on publicly available GIM. For the
sake of consistency in terms of the utilized DCB informa-
tion, GIM as disseminated by CAS were used here for
calculating the STEC differences.

The median offset between the satellite-specific STEC
time series for WTZR00DEU and those generated with
the use of GIM is 0.92 TECU and 0.87 TECU for the
group of GPS and Galileo satellites, respectively. In the
case of the ARIA00JPN station, the same quantity is larger
for both constellations and amounts to 2.39 TECU and
3.25 TECU for GPS and Galileo satellites, respectively.
Note that the results shown in Fig. 7 concern the period
of high solar activity.

3.2.2. Smartphone Observations

The following subsection is dedicated to results concern-
ing the smartphone observations. Those were collected
with CamaliotApp running on Xiaomi Mi 8, hereafter
referred to as XIM8, which supports dual-frequency obser-
vations. The resulting CSV files (native format of the devel-
oped application) were then converted to RINEX-3 files
with our custom RINEX converter. As an additional fea-
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ture, the same converter is also available in CamaliotApp.
The measurement platforms, consisting of a holder and a
radome, used during the measurements are shown in
Fig. 8, where XIM8 was placed both horizontally and ver-
tically. The installed measurement platforms were located
in a close vicinity to the ETH200CHE station, hereafter
abbreviated as ETH2, that served in this case as a means
of validation of the smartphone-derived tropospheric and
ionospheric results. In terms of the observation continuity,
the utilized smartphone has its limitations and did not
allow continuous recording over periods spanning several
days. After some trial runs and screening through available
options in the settings, XIM8 was able to continuously
record 1-s data over a period of up to 24 h without any
human intervention during the performed measurement



Fig. 8. Two platforms used during measurements carried out with Xiaomi
Mi 8 and CamaliotApp. a) location of the smartphone collecting data
between 26/04/2022 12:00 UTC and 27/04/2022 12:00 UTC (day of year
116, 117) and between 28/04/2022 07:30 UTC and 29/04/2022 00:00 UTC
(day of year 118), b) the measurement platform (the radome located in the
background) utilized for measurements carried out on 17/05/2023 and 18/
05/2023 (day of year 137 and 138). The platform in the foreground utilized
during measurements carried out (in 2022) on day of year 116, 117, and
118.
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sessions. Prior to collecting the measurements, duty cycling
was also disabled through the change of the available set-
tings in the Android OS in that regard. In relation to
carrier-phase observations, duty cycling has a negative
impact on the GNSS analysis as it results in unwanted cycle
slips.

For smartphone observations, baseline processing on
short to moderate baselines can be used to retrieve the tro-
pospheric contribution alongside the smartphone coordi-
nates based on single-frequency observations, which in
this case are L1 and E1, corresponding to GPS and Galileo
frequency bands, respectively. The applied processing strat-
egy is given in Table 1. In order to be compliant with the
common observation resolution of geodetic-grade data
that is publicly available to the analysis, baseline process-
ing was carried out with smartphone observations that
were down-sampled to 30 s. The created baseline consisted
of a smartphone and a geodetic-grade GNSS receiver that
was utilized as a base station. The base station (Septentrio
PolaRx5 with the JAVAD GrAnt G3T antenna), hereafter
referred to as PRTW, was located on top of the Prime
Tower in the city of Zürich, which is approximately
2.4 km from both ETH2 and XIM8, with the height differ-
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ence between PRTW and ETH2/XIM8 of approx. 17 m.
For validation purposes, ETH2 was used in conjunction
with the same base station to produce reference differential
ZWD (dZWD) time series for the same time period. The
differential ZWD acquired with the described approach
for both of the employed baselines are shown along with
their formal errors in Fig. 9 for the period between
26/04/2022 12:00:00 UTC and 27/04/2022 12:00:00 UTC
and period between 28/04/2022 00:00:00 UTC and
29/04/2022 00:00:00 UTC. The time series of the co-
estimated smartphone position based on those two sessions
are given in Appendix A. The average number of satellites
that were used in baseline processing involving XIM8
amounts to nine for both periods considered. The RMS
differences between the dZWD time series derived using
XIM8 and ETH2 are 2.60 mm and 3.05 mm for the first
and the second period, respectively.

Similarly to the utilization of IGS stations for iono-
sphere delay retrieval, KF-based CCL can be utilized to
derive STEC time series from dual-frequency smartphone
observations by forming an L1/L5 geometry-free linear
combination of the observations. The applied processing
strategy is given in Table 2. The 2-s observation resolution
was chosen in order to reduce the processing time while
including sufficient amount of good observations that
KF-based CCL requires to properly separate leveling
biases from ionosphere delays. The STEC extraction was
complemented here also with DCB data from BSX files
with the exception that the constellation-specific receiver
DCB (RDCB) has to be either derived addtionally or set
manually. In our case, the RDCBs for GPS and Galileo
were set to zero and only the relative change with respect
to the reference satellite-specific STEC time series was
investigated. STEC time series from ETH2 served in this
case as a means to validate the time series obtained with
XIM8. The remaining non-zero offsets between the created
time series were reduced by calculating the median offset
between those two types of STEC time series to facilitate
the comparison of differences in the relative change of
ionosphere over the course of the considered periods. The
calculated and reduced offsets can be mainly associated
with the lack of information on the RDCBs for both sta-
tions and the antenna phase-centre offsets (PCOs) for the
smartphone.

The results from KF-based CCL processing of dual-
frequency observations are shown in Fig. 10 in the form
of satellite-specific differences between STEC time series
obtained with XIM8 and ETH2 and based on the observa-
tions recorded in the period between 17/05/2023 18:00:00
UTC and 18/05/2023 18:00:00 UTC. For the first consid-
ered period, the relative satellite-specific variations of
STEC are characterized by RMS differences below 0.55
TECU, with the exception that for E09 this statistic
increases to 1.14 TECU, which can be explained by the last
period, in which a significant deviation between STEC time
series based on XIM8 and ETH2 is visible for that satellite.
For the second period, the smartphone-based STEC time



Fig. 9. Time series of differential ZWD with related formal errors (confidence interval of 68%) from baseline processing concerning the ETH200CHE-
PRTW and XIM8-PRTW baselines for two different observing sessions a) doy 116–117 with the smartphone placed vertically during the measurements, b)
doy 118 with the smartphone placed horizontally during the measurements. ETH200CHE abbreviated as ETH2.

Fig. 10. STEC time series (with corresponding formal errors) generated using a geometry-free combination of observations collected with XIM8 and
based on the CCL approach with 2-s obs. resolution. a, b) STEC time series of good quality extracted using GPS and Galileo observations from XIM8 and
reduced by STEC time series generated using observations from ETH2 and satellite-specific median offset between the two types of time series, c, d)
corresponding time series of satellite elevation angles during the measurement session. Observation pairs for ETH2: 1C-2W (GPS) and 1X-5X (Galileo).
Observation pairs for XIM8: 1C-5Q (GPS and Galileo). The time series shown with the 30-s resolution.
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series exhibit less agreement with the time series acquired
with ETH2 with an average RMS of 1.11 TECU. In both
periods, multiple epochs with noticeable outliers are visi-
ble, too.
4. Discussion

The outcomes of the conducted crowdsourcing cam-
paign demonstrated a potential for involving the crowd
in contributing to the field of GNSS by collecting measure-
ments on a voluntary basis. Neither the discussion on the
quality and characteristics of the collected observations
nor the quality of the solve-for parameters from crowd-
sourced data is discussed in this contribution. This is a
topic for a separate study, which also requires further
refinement of the GNSS engine for its use in conjunction
with such data as they require special treatment, e.g., in
terms of the ionosphere handling for single-frequency
observations (Deng et al., 2009) or outlier removal. How-
ever, one can state with great certainty that only a small
fraction of the collected observations might be of satisfac-
tory quality for their use in the aforementioned use cases
due to the way in which such observations might have been
collected. Nevertheless, the crowdsourced GNSS data and
the collection process demonstrated in this activity may
provide further insights concerning, for instance, model-
specific performance of smartphones in terms of carrier-
phase observation quality and integrity or how one could
14
revise such data collection campaigns in the future in order
to increase the number of GNSS observations of sufficient
quality for their use in atmospheric research.

In terms of the performance of the GNSS engine form-
ing a part of the proof-of-concept cloud-native software,
one can notice, in general, a good agreement between the
obtained ZTD time series from the IF-PPP processing
mode, as described in Section 3.2.1 for two selected IGS
stations, and the external tropospheric products generated
with the use of state-of-the-art GNSS analysis software
packages. However, in order to improve the quality of
the solve-for parameters and their consistency with respect
to external products, further work would be required in
terms of the PPP module of CamaliotGNSS in order to
implement the missing models and identify improper mod-
eling of the individual effects that undifferenced GNSS pro-
cessing is sensitive to. Introduction of new processing
modes such as UC-PPP might be also of benefit for simul-
taneous retrieval of VTEC and ZTD based on geodetic-
grade GNSS observations or low-cost devices. In general,
the VTEC extraction method based on UC-PPP might be
beneficial for the creation of global or regional ionospheric
models as this is a method that is characterized by better
precision and consistency compared to the CCL-based
VTEC retrieval (Xiang et al., 2019). Of benefit could also
be a work towards real-time processing for both real-time
troposphere and ionosphere products or exploitation of
the PPP-RTK approach. Those are not yet supported in
the developed engine.
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The single-frequency baseline processing was useful to
acquire tropospheric estimates from smartphone observa-
tions. In terms of the approach, it is similar to the investi-
gation made by Stauffer et al. (2023), but with few
differences. Apart from utilization of a different smart-
phone model, the processing was made on a much shorter
baseline, with much lower temporal resolution, and by uti-
lizing a combined EKF run with a slightly different param-
eterization. In addition, no subsequent processing of the
resulting tropospheric time series was made here. In gen-
eral, the vertical orientation of the phone (day of year
116–117, 2023) in our case turned out to be more beneficial
than the horizontal orientation (day of year 118, 2023) as
the derived dZWD time series correspond more closely to
the reference time series acquired with the use of the
high-end GNSS station.

The derived satellite-specific VTEC time series are gen-
erally in good agreement with GIM in terms of the trend.
The CCL approach implemented in CamaliotGNSS has
not yet been refined in order to properly handle observa-
tions collected from smartphones or non-IGS receivers.
In those cases, the estimation of receiver DCB (while using
external information on the satellite DCBs) is required in
order to express the VTEC estimates in an absolute man-
ner. Apart from the standard approaches where the local
ionosphere model is used to separate the ionosphere from
instrumental effects (Zhang et al., 2018; Xu et al., 2022),
for special cases as those including smartphones, one could
derive receiver DCBs using an alternative approach, either
with the use of external TEC products or based on the rudi-
mentary assumptions concerning the stability of the recei-
ver DCBs and the spatial behavior of the ionosphere on
local scales (Otsuka et al., 2000; Arikan et al., 2008),
assuming that the sufficient number of observations is
available for the analysis and taking into account the
impact of the time-varying receiver DCB on the STEC
retrieval accuracy. In terms of the high temporal resolution
of observations that was applied to retrieve STEC time ser-
ies from local measurements with Xiaomi Mi 8, this was
mainly performed in order to diminish the negative impact
of spurious observations on the estimates. In relation to the
same smartphone model and a similar smartphone orienta-
tion, STEC extraction has already been undertaken by Xu
et al. (2022) who used the entire 1-s data set in the analysis.

Currently, there are a few technical aspects that limit the
accuracy of smartphone-based positioning and the quality
of the derived troposphere-related or ionosphere-related
parameters. Among others, an important factor to consider
in relation to smartphones is a less stable tracking loop
compared to high-grade GNSS receivers, resulting in a
more frequent loss of lock causing more cycle slips. The
orientation of the phone (vertical or horizontal) also tends
to play a major role in the availability of carrier-phase
observations and the quality of the solve-for parameters.
Throughout the course of the activity, it was noticed that
placing the smartphone in a vertical position is beneficial
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due to the greater availability and integrity of the GNSS
observations per epoch. Such an observation tends to be
also claimed in other studies related to the processing of
smartphone-based GNSS observations (Yong et al., 2021;
Li et al., 2022a). Another factor that needs to be taken into
account when coping with smartphone observations is the
lower level of multipath suppression of the built-in smart-
phone antennas compared with external antennas that
are used in conjunction with either low-cost or high-end
GNSS receivers (Li and Geng, 2019). In order to address
this issue, recognized approaches for multipath mitigation,
as applied to static GNSS observations (Dong et al., 2016),
could potentially be transferred to static smartphone mea-
surements in order to improve their usability for scientific
investigations. In a more direct approach, the utilization
of an external low-cost antenna (Li et al., 2022c) could
be beneficial to further reduce the impact of this error
source on the target parameters. In our case, the most pro-
nounced impact on the results was the lack of the ability of
Xiaomi Mi 8 to continuously collect data over long periods
of time, which we connect to hardware and software con-
straints. There are, however, other smartphones for which
such a problem does not exist and GNSS data collection
could span long periods of time (Stauffer et al., 2023). With
advances in research on the utilization of smartphones for
precise positioning or atmospheric sounding, dedicated cal-
ibration efforts with the aim of deriving reliable antenna
PCO and phase-centre variation of smartphone antennas
would also be of benefit for improving the accuracy of
the estimates (Darugna et al., 2020).

5. Conclusions and Outlook

This contribution provides a general overview concern-
ing the proof-of-concept cloud-native software developed
to meet the goals of the CAMALIOT project. In addition,
the description of the approach for consistent processing of
GNSS observations collected by high-end receivers and
smartphones is presented. This is complemented with
example processing results concerning both types of GNSS
data. In this case, the aim of the GNSS analysis was to
derive tropospheric and ionospheric estimates from both
single-frequency and dual-frequency GNSS observations.

The CAMALIOT project was an ESA NAVISP Ele-
ment 1 project (NAVISP-EL1-038.2) that consisted of a
set of activities covering acquisition of GNSS observations
from the modern generation of smartphones and the devel-
opment of a cloud-native software dedicated to GNSS pro-
cessing and ML at scale based on both conventional and
crowdsourced GNSS observations complemented with
auxiliary data sets and models relevant to the troposphere
and ionosphere.

The CAMALIOT software encompasses acquisition,
ingestion, and pre-processing of smartphone-based GNSS
observations, aggregation of the data into the data lake
(object storage), and their conversion to RINEX files.
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The integral part of the software are ML-related compo-
nents with the aim of performing a fusion of GNSS-
based tropospheric and ionospheric products with relevant
models and indices of various spatio-temporal resolution
and latency. As a part of this activity, an Android applica-
tion was also designed, implemented and made publicly
available in order to collect GNSS observations at scale
from a wide range of smartphones as operated by the reg-
istered application users throughout the course of the two
dedicated crowdsourcing campaigns. This resulted in a sig-
nificant amount of GNSS observations that were collected
per day and are available for the subsequent analysis. That
part of the activity demonstrated the capacity of the
CAMALIOT SW to collect GNSS observations at scale.

In terms of the GNSS analysis, the related processing
component includes a dedicated engine (CamaliotGNSS)
that has been established in order to process heterogeneous
GNSS data in a consistent manner. The engine employs an
Extended Kalman Filter with a smoother to make use of
both forward and backward filter solutions. Concerning
processing of diverse GNSS observations, a two-step
approach is proposed, where in the first step ZTD and
STEC are retrieved from GNSS observations collected by
geodetic-grade static GNSS stations. This is achieved by
applying the carrier-to-code leveling and precise point posi-
tioning to retrieve ionospheric and tropospheric estimates,
respectively. The second step concerns alternative sources
of GNSS data, such as smartphones, for which one applies
carrier-to-code leveling and a single-frequency double-
difference approach to retrieve STEC and differential
ZWD, respectively. Concerning the latter, this is performed
on short to moderate baselines in order to avoid the nega-
tive impact of the ionosphere delays on the target
parameters.

Example processing results in relation to ZWD and
STEC concerning both types of aforementioned GNSS
observations were derived by employing CamaliotGNSS
and validated with the use of the reference time series
and external products. Smartphone observations were col-
lected with the use of the developed Android application
running on Xiaomi Mi 8. The latter was placed both verti-
cally and horizontally during local measurement sessions.
In general, the extracted STEC and differential ZWD time
series are in a good agreement with respect to the reference
data. However, special attention needs to be paid when
processing smartphone observations to acquire reliable
atmospheric estimates. This includes additional processing
steps, custom parameterization of the solve-for parameters,
or the orientation of the smartphone itself. Currently, there
are also a few technical aspects that limit the accuracy of
smartphone-based positioning and quality of the derived
troposphere-related or ionosphere-related parameters.

The outcomes of the CAMALIOT project and the
developed proof-of-concept cloud-native software will be
useful for extending the existing infrastructure of the
GNSS Science Support Centre of ESA. Due to the way
in which raw observations are stored and submitted to
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the centralized server, crowdsourcing of observations from
smartphones with the use of the proposed approach could
be seamlessly extended to data from motion and environ-
mental sensors for their potential use in various domains.
Although the primary focus of the activity was the collec-
tion of GNSS observations from smartphones, the pro-
posed architecture could be also utilized to collect
various data from other types of receivers/sensors with
data transmission capabilities such as low-cost GNSS recei-
vers or devices mounted on ships, trains, drones, or vehi-
cles. The proposed scalable architecture for processing
crowdsourced GNSS observations and data fusion with
the use of ML could, therefore, be extended to accommo-
date new IoT data sources for future GNSS science use
cases.
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Appendix A. GNSS Position Time Series

This section contains a summary of the results concern-
ing coordinates derived with the use of CamaliotGNSS
that was utilized to analyze GNSS observations collected
by selected IGS stations and Xiaomi Mi 8, with the latter
employed during two local and controlled measurement
sessions.

Time series of the estimated positions in the north (N),
east (E), and up (U) components (and their formal errors)
at ZIM200CHE and ZIMM00CHE derived from baseline
processing (carrier-phase ambiguity parameters treated as
float) at L1/E1 are shown in Fig. A1 for a 24-h period from
the year 2023. The related parameterization is given in
Table 1. In both cases, WAB200CHE was used as a refer-
ence station, which led to utilization of two approx. 5.2-km
baselines in the analysis. For both stations, the position
change with respect to the position derived at the initial
epoch is characterized with the sample standard deviation
of below 0.36 mm when taking into account all three posi-
tion components.

Time series of the position estimates (carrier-phase
ambiguity parameters treated as float) of Xiaomi Mi 8
and ETH200CHE obtained as a result of the single-
frequency baseline processing (see Table 1) are shown in
Fig. A2. Smartphone observations were collected during
two dedicated local measurement sessions. The base station
Fig. A1. Baseline processing results (float carrier-phase ambiguity param-
eters) for the ZIM200CHE-WAB200CHE and ZIMM00CHE-
WAB200CHE baselines over the period of 24 h for May 18th, 2023. a)
time series of position estimates for ZIM200CHE in north (N), east (E),
and up (U) components expressed with respect to the estimates at the
initial epoch, b) the number of GPS and Galileo satellites available and
utilized for each epoch for the ZIM200CHE-WAB200CHE baseline, c)
time series of position estimates for ZIMM00CHE in N, E, and U
components expressed with respect to the estimates at the initial epoch, d)
the number of GPS satellites available and utilized for each epoch for the
ZIMM00CHE-WAB200CHE baseline. ZIMM00CHE does not support
Galileo observations. ZIM200CHE and ZIMM00CHE abbreviated as
ZIM2 and ZIMM, respectively.

Fig. A2. Baseline processing results (carrier-phase ambiguity parameters
treated as float) concerning the XIM8-PRTW and ETH200CHE-PRTW
baselines for two different observing sessions (a-d: doy 116–117, year 2022;
e-h: doy 118, year 2022). a, e) time series of position estimates for XIM8 in
north (N), east (E), and up (U) components expressed with respect to the
estimates at the initial epoch, b, f) the number of GPS and Galileo
satellites available and utilized for each epoch for the XIM8-PRTW
baseline, c, g) time series of position estimates for ETH200CHE in N, E,
and U components expressed with respect to the estimates at an initial
epoch, d, h) the number of GPS and Galileo satellites available and utilized
for each epoch for the ETH200CHE-PRTW baseline. ETH200CHE
abbreviated as ETH2.
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(Septentrio PolaRx5 with the JAVAD GrAnt G3T
antenna) was located on top of the Prime Tower in the city
of Zürich, which was approx. 2.4 km from the location of
both ETH200CHE and the employed Xiaomi Mi 8. The
latter is abbreviated as XIM8.

For the two considered periods, the change in the esti-
mated position components for XIM8 varies significantly
compared to the same quantity derived for ETH200CHE.
For the first period, the sample standard deviation of the
change in the N, E, and U components with respect to
the first epoch amount to 0.68 mm, 1.87 mm and
1.68 mm, respectively. Regarding the second observation
period, where the phone was placed horizontally, the posi-
tion change with respect to the first epoch is characterized
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with the sample standard deviation of 1.31 mm, 3.18 mm,
and 2.21 mm in the N, E, and U components, respectively.
For ETH200CHE, the same metrics for three position
components are at large below 0.28 mm and 0.47 mm for
the first and the second considered period, respectively.
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