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Climate damage projections beyond annual 
temperature

Paul Waidelich    1 , Fulden Batibeniz    2,3,4, James Rising    5, 
Jarmo S. Kikstra    6,7,8 & Sonia I. Seneviratne    2

Estimates of global economic damage from climate change assess  
the effect of annual temperature changes. However, the roles of 
precipitation, temperature variability and extreme events are not yet  
known. Here, by combining projections of climate models with empirical 
dose–response functions translating shifts in temperature means and 
variability, rainfall patterns and extreme precipitation into economic 
damage, we show that at +3 °C global average losses reach 10% of gross 
domestic product, with worst effects (up to 17%) in poorer, low-latitude 
countries. Relative to annual temperature damage, the additional 
impacts of projecting variability and extremes are smaller and dominated 
by interannual variability, especially at lower latitudes. However, 
accounting for variability and extremes when estimating the temperature 
dose–response function raises global economic losses by nearly two 
percentage points and exacerbates economic tail risks. These results call 
for region-specific risk assessments and the integration of other climate 
variables for a better understanding of climate change impacts.

Projections of economic damage from climate change are key for evalu-
ating climate mitigation benefits, identifying effects on vulnerable 
communities and informing discussions around adaptation needs, as 
well as loss and damage financing. On a global or country level, such 
assessments have focused on how projected changes in annual mean 
temperatures affect gross domestic product (GDP)1–4. However, the 
widespread losses in recent years driven by flooding and drought sug-
gest that precipitation variability and extremes are similarly impor-
tant5,6. Anthropogenic forcing is increasing the frequency and intensity 
of precipitation extremes and variability on multiple scales, altering 
daily temperature patterns and driving an overall increase in precipita-
tion over land7,8. Continued global warming is expected to exacerbate 
these trends, potentially with uneven impacts across regions5,9,10. There-
fore, including precipitation, variability and extremes can improve the 
precision, comprehensiveness and interpretability of climate change 
damage estimations11.

Economic damage from climate change can be assessed either 
bottom-up by quantifying, valuating and aggregating specific impacts 
(for example, crop failures or labour supply changes) or top-down 
by identifying the statistical relationship between observed climatic 
shifts and economic growth. While both approaches have advantages 
and limitations, top-down approaches usually neglect climatic shifts 
beyond annual temperature changes12. To address this shortcoming, 
recent studies have estimated the relationship between macrolevel 
income and a wider range of climatic indicators, such as total precipita-
tion13–15, temperature variability16,17 or temperature and precipitation 
extremes and anomalies14,18,19. However, these studies do not investigate 
how much the inclusion of these climate indicators alters previous 
economic assessments of climate change, which is highly relevant for 
policy-making and future adaptation. A notable exception is ref. 15, 
which projects the effects of annual precipitation and temperature 
shifts on inequality. A comprehensive assessment of the projected 
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annual mean temperature and annual precipitation: (1) day-to-day 
temperature variability (how much daily temperatures deviate from 
monthly means); (2) extreme precipitation (the annual sum of pre-
cipitation on days with exceptionally high precipitation exceeding the 
historical 99.9th percentile); (3) monthly precipitation deviation (how 
much monthly precipitation deviates from historical means throughout 
the year); and (4) the number of ‘wet days’ with precipitation above 
1 mm d−1. These indicators have been linked to forcing from GHGs24,25 
as well as to income growth using a global sample14,16. Considering all 
indicators in one coherent estimation framework is crucial because 
variability and extremes correlate strongly with annual temperature, 
total precipitation and each other (Supplementary Fig. 3). Therefore, 
combining dose–response functions from different estimations risks 
double-counting impacts. Notably, our coherent estimation frame-
work14 does not model damage from droughts and heat waves. There-
fore, we include heat in a complementary analysis, whereas we find no 
significant statistical link to economic growth for droughts, potentially 
due to limited spatial and temporal resolution and impact heterogene-
ity across regions (Supplementary Appendix F).

We illustrate our approach for the example of extreme precipita-
tion impacts on economic output for New York State at +3°C of global 
warming (Fig. 1). On the basis of how a given CMIP6 model and scenario 

economic impacts of intense periods of precipitation and temperature 
anomalies, however, is still missing.

In this study, we draw upon recent advances in estimating dose–
response functions, which relate shifts in various climate indicators 
(total precipitation, temperature variability, precipitation anomalies 
and extremes) to GDP changes14. Combining these functions with 
projections from 33 models of Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6), including two large ensembles, we investigate 
how including these indicators affects the understanding of future 
economic impacts at different global warming levels. Variability and 
extremes introduce substantial climatic and associated economic 
uncertainties and we conduct a variance decomposition to determine 
the main uncertainty drivers. Furthermore, we explore how including 
variability and extremes in empirical regressions alters the dose–
response function for annual mean temperature, which the extant lit-
erature has estimated controlling only for annual precipitation1,2,4,20,21.

Projecting GDP impacts for six climate indicators
Compared to annual temperature, future changes in precipitation 
and temperature variability under climate change are subject to high 
uncertainties8,22,23. To capture these uncertainties, we use projections 
from various CMIP6 models10 to analyse four climate indicators besides 
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Fig. 1 | Illustrative example of GDP impact projections for one example 
indicator (extreme precipitation) and region (NY state) at +3 °C global 
warming. a, Projected extreme precipitation under SSP3-7.0 for an example 
model run (ACCESS-CM2, black) and other CMIP6 model runs (grey). Vertical 
lines denote the baseline period (blue) and the +3 °C global warming window 
(brown). b, Dose–response function for extreme precipitation (black line) 
and 95% confidence interval (grey area). Coloured dots and the blue diamond 
represent extreme precipitation levels from a and the baseline period average. 
The red error bar illustrates the difference between the dose–response function 

for an example year (2061) and the baseline average, which equals the projected 
damage for this year. Dose–response function values are transformed from 
the original logarithmic changes to percentage of GDP by exponentiating and 
subtracting one (Methods). c, Distribution of projected extreme precipitation 
damage at +3 °C by CMIP6 model. Boxplot centre, hinges and whiskers denote 
median, upper/lower quartiles and upper/lower deciles, respectively. For the 
CESM2-LE and MPI-ESM1-2-LR large ensembles, the +3 °C global warming-level 
window varies across ensemble members.
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project the respective climate indicator (Fig. 1a), we compare the GDP 
impacts in a given year against the average impacts if the climate were to 
remain constant at levels of a recent baseline period (Fig. 1b)2,15. For each 
model and scenario, the baseline period is the 41-year period during 
which global warming equals the historical warming between 1979 and 
2019 (+0.84 °C), which is the climatic baseline used for estimating the 
dose–response functions used here (Methods)14. We then repeat this 
procedure for different CMIP6 models and potential damage param-
eter estimates based on statistical uncertainty and aggregate results 
to the national level. This yields a distribution of GDP impacts for each 
country featuring all years in each model and scenario associated with 
the same global warming level (Fig. 1c). Therefore, the main sources of 
uncertainty in our GDP impact distribution for a given global warming 
level and territory are (1) internal variability for the same CMIP6 model 
because the magnitude of extremes can vary strongly from year to year 
and, for large ensembles, across model runs, (2) statistical uncertainty 
in the dose–response functions and (3) projection differences between 
CMIP6 models.

Global results
We examine the impact on global GDP for all indicators combined, as 
well as the separate impacts from annual temperature, annual precipita-
tion and the four variability and extremes indicators (Fig. 2a). Global 
GDP is estimated to be 3.2% lower (lower/upper decile: 1.2–5.4%) at 

+1.5 °C of global warming, compared to a world with no further climate 
change beyond recent levels. At +3 °C, global GDP decreases by 10.0% 
(5.1–14.9%). When disaggregated by climate indicator, global impacts 
are strongly determined by the annual mean temperature changes, 
which account for a GDP reduction of 10.0% at +3 °C. This estimate 
is consistent with recent top-down studies focusing exclusively on 
damage from annual temperature changes and projecting impacts of 
7–14% of GDP per capita loss by the end of the century at global warming 
levels of more than +4 °C (refs. 4,8,20); with other top-down studies 
estimating damage even higher2 as a result of their assumption that 
temperature changes impact growth trajectories persistently12,26,27. 
For context, a 10% reduction exceeds the GDP loss of the COVID-19 
pandemic when global growth plummeted from +2.6% in 2019 to −3.1% 
in 2020 or the effect of the global financial crisis in 2009 when global 
output shrunk by −1.3% (ref. 28). Importantly, recent research sug-
gests that damage attributed to annual temperature covers heat wave 
impacts at least partially18. Indeed, when disentangling the two, we find 
that almost half of annual temperature damage can be attributed to 
heat extremes (Supplementary Appendix F).

By contrast, increases in annual precipitation in many areas have 
a small positive impact on global GDP (0.2% at +3 °C warming) and the 
combined impact of the variability and extremes indicators remains 
centred around zero. While this suggests a lack of signal, disaggregat-
ing projections by individual indicators reveals otherwise (Fig. 2b). At 
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Fig. 2 | Distribution and variance decomposition of global GDP impacts.  
a, Points and the error bars centred around them denote the mean and upper-to-
lower-decile range, respectively. ‘Variability and extremes’ comprises the four 
indicators in b. Labelled grey horizontal lines denote example growth rates in 
real GDP28. b, Same as a, with ‘variability and extremes’ impacts disaggregated by 
indicator. c, Variance decomposition for the combined GDP impacts of all climate 

indicators and for indicator-specific impacts. Indicator-specific decompositions 
are feasible because impacts in the underlying regression model are additive 
and hence can be projected separately. For absolute variances and coefficients 
of variation, see Supplementary Figs. 8 and 9. d, Same as c, with ‘variability and 
extremes’ disaggregated by indicator.
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+3 °C, extreme precipitation reduces global GDP by 0.2% (0.1–0.4%), 
with 99% of our impact distribution indicating economic losses as 
extreme precipitation increases around the globe (Supplementary 
Fig. 5). Notably, these impacts are much lower than annual tempera-
ture damage. This is somewhat expected because extremes have a 
lower temporal and spatial correlation. Therefore, aggregation from 
daily, location-specific events to annual indicators and country-level 
projections reduces signals more strongly compared to annual mean 
temperature13,14. However, a 0.2% GDP loss due to extreme precipita-
tion globally for an average year still represents a tenth of the damage 
caused by the catastrophic 2022 floods in Pakistan, estimated at 2.2% 
of GDP29. Global GDP losses from extreme precipitation are compen-
sated, on average, by temperature variability reductions in higher 
latitudes (+0.1% of global GDP at +3 °C)24,30 and fewer wet days (+0.2%). 
However, only 63% and 74% of the impact distribution imply global 
economic gains for these indicators, respectively. Monthly precipita-
tion deviations, on average, add to global GDP losses (0.2% at +3 °C), 
but uncertainty ranges remain centred around zero.

To explore uncertainty drivers, we decompose the variance in GDP 
impacts from each climate indicator into statistical dose–response 
function uncertainty, climate model uncertainty and internal variabil-
ity (Fig. 2c). For annual temperature damage, uncertainty is primarily 
driven by the dose–response function, particularly at higher global 
warming levels. By contrast, impact uncertainty for annual precipita-
tion and variability and extremes is dominated by internal variability. 
Additional analyses focusing on the two large ensembles in our sample 

suggest that this stems primarily from interannual variation within 
model runs rather than differences across ensemble members (Sup-
plementary Figs. 15 and 16). Moreover, disagreement between CMIP6 
models plays either a comparable or a more substantial role than dose–
response function uncertainty for these additional indicators (except 
for monthly precipitation deviation) and is particularly pronounced 
for day-to-day temperature variability and the number of wet days 
(Fig. 2d). Notably, the share of climate model uncertainty decreases in 
global warming for annual temperature impacts but not for variability 
and extremes because even for a stronger global warming signal, GDP 
impact projections do not converge between models.

Country-level results
Because global aggregates risk masking heterogeneities across 
regions, we further investigate the combined country-level GDP 
impacts from all six climate indicators at +3 °C of warming (Fig. 3a). 
All countries face GDP losses, in line with recent evidence that climate 
change might not benefit cooler countries economically20. Impacts are 
more severe in the Global South and highest in Africa and the Middle 
East, where higher initial temperatures make countries particularly 
vulnerable to additional warming. Considering the combined GDP 
impact of all four variability and extremes indicators reveals a clear 
North–South divide (Fig. 3b). While for higher latitudes, the decrease 
in temperature variability and, for some countries, wet days (Supple-
mentary Fig. 5) mitigates overall GDP damage, variability and extremes 
exacerbate GDP losses in most parts of the Global South. However, 
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Fig. 3 | Country-level GDP impacts and uncertainty at +3 °C of global 
warming. a, Mean GDP impact at +3 °C of global warming for sovereign countries 
(other territories in dark grey) considering all six indicators in c, using shapefiles 
from ref. 42. b, Same as a but only considering the bottom four ‘variability and 
extremes’ indicators in c. c, Mean GDP impact (x axis) and share of the impact 

distribution agreeing with the sign of the mean (y axis) for sovereign countries 
by World Bank income group (colour) and the global economy (grey diamond) 
at +3 °C. Middle income comprises lower- and upper-middle-income countries 
for conciseness. Dashed horizontal lines denote thresholds for 66% and 90% 
likelihood following IPCC terminology8.
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these effects vary substantially across the full distribution of projected 
impacts for each country.

Annual temperature is the only indicator where negative impacts 
arise for at least 90% of our impact distribution for all countries (upper 
dashed line in Fig. 3c), including substantial impacts in several colder 
countries partially because the temperature dose-response function 
deployed here implicitly features damages from higher inter-annual 
temperature variability as well (Supplementary Appendix C). Annual 
precipitation increases benefit most countries on average, but for many 
countries, less than two-thirds of the distribution supports the sign 
of expected impacts (lower dashed line). For day-to-day temperature 
variability, we find a clear divide between relatively certain gains for 
a few high-income countries and less certain, smaller losses for many 
lower-income countries as a result of variability increases in lower 
latitudes24. While extreme precipitation increases in most regions, 
projected damages are highest and least uncertain for middle- and 

high-income countries in higher latitudes such as China and the United 
States31. In contrast, low-income countries are more likely to face losses 
from shifts in precipitation deviation and wet days, but high uncertain-
ties limit the conclusions that can be drawn.

Overall impact of including variability and 
extremes
The results in the previous sections seemingly suggest that includ-
ing variability and extremes in GDP impact projections exacerbates 
disparities between higher- and lower-income countries (Fig. 3) but 
does not substantially alter the implications of climate change for 
global GDP (Fig. 2), particularly since annual temperature damages cap-
ture heat wave impacts to some extent already. However, providing an 
apples-to-apples comparison with the recent climate economics litera-
ture requires calculating damage on the basis of the current ‘status quo’ 
approach, which (1) projects only damage from annual temperature 
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Fig. 4 | Comparison with status quo impact projections based on annual 
temperature only. a, Dots represent mean values of the GDP impact 
distribution, while boxplot centre, hinges and whiskers denote median, upper/
lower quartiles and upper/lower deciles, respectively. b, GDP impact of a +1 °C 
increase in the annual temperature of a territory for different initial temperature 
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around them (shaded area). Estimated using Supplementary equation (22) 
and the regression models in Supplementary Table 7 (columns 1, 2 and 5). No 
confidence interval shown for ‘+ Temperature variability’ for visual conciseness. 
c, Difference in mean GDP impacts between our main approach and the status 
quo approach at +3 °C for sovereign countries (other territories marked in dark 
grey), using shapefiles from ref. 42.
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changes and (2) estimates the relationship between income growth and 
annual temperature controlling only for annual precipitation1,2,4,20,21. 
When comparing the resulting global GDP impacts following this sta-
tus quo methodology to our approach, which (1) projects damage for 
all six indicators and (2) controls for all our climate indicators when 
estimating the temperature dose–response function (Fig. 4a), we find 
that including variability and extremes increases global damage at +3 °C 
of global warming by 1.8 percentage points (10.0% instead of 8.2%).

The main reason for this increase is that controlling for variability 
and extremes, instead of only for annual precipitation, increases the 
estimated effect of mean temperature changes (Fig. 4b). The marginal 
GDP impact of a +1 °C rise in annual temperature increases by more than 
0.5 percentage points irrespective of the initial temperature level when 
all climate indicators are included as control variables (red line). Most 
of this effect is driven by including temperature variability (dotted line), 
which leads to higher impacts, particularly for colder regions. There-
fore, the positive impacts of temperature variability in Fig. 3 obscure 
that, in fact, including this parameter leads to higher global damage 
since it disentangles potential benefits of reduced variability from the 
negative effects of temperature increases. As a result, including all 
climate indicators exacerbates GDP impacts across the globe (Fig. 4c).

Exposure to tail risks
Aside from average impacts and the uncertainty around them, prudent 
risk management by policy-makers also requires information about 
tail risks. Therefore, we examine the percentage of the present global 
population living in countries that have a non-negligible chance (at 
least 5%) of suffering from damage exceeding different thresholds at 
different global warming levels (Fig. 5a), both for our main approach 
(solid line) and the status quo approach (dotted line). Even at +1.5 °C, 

tail risks are substantial, with 99% of the global population living in 
countries with a non-negligible risk of suffering GDP damage of 5% or 
higher if all climate indicators are included. Notably, including vari-
ability and extremes increases tail risks considerably (Fig. 5b). While 
under the status quo, 54% of the global population is projected to face 
damage of at least 15% with a likelihood of at least 5% at +3 °C of warming, 
this increases to 68% of the population when variability and extremes 
are included. The share of the global population facing catastrophic 
impacts of 20% or higher with a 5% chance rises from 4% to 17%. How-
ever, disaggregating these results by individual climate indicators 
(Supplementary Fig. 6) highlights that the increase in global exposure 
to catastrophic climate change damage is primarily driven by higher 
temperature damage if underlying regression models control for more 
climate indicators than just annual precipitation and less by the direct 
impacts of these indicators on global GDP.

Discussion
Taken together, our results illustrate that projecting top-down dam-
age of variability and extremes exacerbates global disparities further. 
Aggregate GDP loss projections, however, remain primarily driven 
by the impacts of mean temperature changes, which seem to cover 
economic losses due to heat waves at least partially18—an important 
finding for climate–economy modelling that complementary assess-
ments of economic damage should corroborate to disentangle different 
impact channels better. As a result, overall uncertainty in GDP losses 
is dominated by the temperature dose–response function. However, 
substantial climatic uncertainties still limit the understanding of direct 
impacts by variability and extremes, particularly for low-income coun-
tries, which are expected to suffer the most but exhibit the largest 
uncertainties.

For scholars studying the economic effects of climate change, 
our results suggest a potential downward bias in temperature damage 
estimates by not disentangling the impacts of changes in temperature 
means and temperature variability. Future studies estimating tempera-
ture dose–response functions should test how including variability and 
extremes indicators linked to economic growth alters their findings. 
Notably, such biases could also be caused by other climate indicators 
not explicitly considered here and their direction and magnitude are 
likely to vary by location32. Furthermore, since the signal clarity is 
highest for extreme precipitation, this indicator seems most suitable 
to be included in climate–economy calculations, such as the social 
cost of carbon.

While our results rest on strong empirical foundations and a wide 
range of state-of-the-art climate models, there are several reasons 
why actual GDP impacts may exceed our projections. First, while the 
temperature dose–response function seems to include heat impacts at 
least partially, the dose–response functions used here do not explicitly 
cover important climate extremes, most notably droughts33. Second, 
to be conservative, we abstract from the possibility that climatic shifts 
do not only change GDP growth in a given year but alter a country’s 
long-run growth trajectory persistently. While such persistence in GDP 
losses remains empirically debated1,2,14,21,34, it would increase damage 
estimates substantially26,27. Third, aggregation across time and space 
is more likely to reduce signals in precipitation patterns because of 
their lower spatial and temporal correlation compared to annual mean 
temperature13,14. For these reasons, our results should be seen as an 
important first step, but they certainly do not exclude the possibility 
of larger GDP losses. Furthermore, econometric-based dose–response 
functions such as the ones used here have several limitations; for exam-
ple, the risk of conflating weather impacts with climatic shifts or the 
extrapolation of impacts to warming levels that go far beyond historical 
observations, with the implicit assumption that adaptation remains at 
historically observed levels35,36. In addition, specification questions 
can further exacerbate socioeconomic uncertainties21 and uniform 
dose–response functions for aggregate GDP can mask heterogeneities 
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between countries, sectors and income segments15. Moreover, consid-
ering impacts in percentage of GDP implicitly assigns lower weights to 
poorer regions within countries that are disproportionately exposed 
to climate change risks37. Lastly, the distributions presented here 
might underestimate true climatic uncertainties for at least three 
reasons: (1) measurement imperfections in the reanalysis data under-
lying the dose–response functions, particularly for precipitation and 
lower-income regions32,38; (2) using single runs for most CMIP6 models 
may underestimate tail risk events (Supplementary Appendix E); and 
(3) not all CMIP6 models, despite representing the current frontier of 
global climatic projections, fully capture future changes in temperature 
variability and precipitation24,25,39–41.

Nevertheless, our study represents a key improvement in 
top-down damage projections, highlights the risks of omitting cli-
mate indicators beyond annual temperature, either as impact chan-
nels or control variables, and identifies the most promising fields for 
additional research. Building on our work, researchers could integrate 
further climate indicators, such as droughts, into a comprehensive 
assessment of climate change impacts. Aside from improvements in cli-
mate modelling, particularly for developing countries, this would also 
require more empirical studies to robustly identify the link between 
economic growth and different climatic extremes, ideally combined 
with an improved temporal or spatial resolution17. In addition, future 
research should assess the impact of controlling for these extremes on 
temperature dose–response functions and enhance the understanding 
of potential adaptation mechanisms and the persistence of GDP losses, 
ideally by consistently estimating and implementing persistence for 
each climate indicator under consideration.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-024-01990-8.
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Methods
Climatic data
Daily temperature and precipitation projections are taken from 33 
CMIP6 models under two low-emission scenarios (Shared Socioeco-
nomic Pathways SSP1-1.9 and SSP1-2.6) and one high-emission sce-
nario (SSP3-7.0) to calculate bias-corrected, annual climate indicators 
for the 1850–2100 period. Owing to computational constraints, we 
use only one realization for most model–scenario pairs. However, 
to explore the role of intra-ensemble variation, we include 30 reali-
zations of MPI-ESM1-2-LR and all 100 realizations of the CESM2-LE 
large ensemble under SSP3-7.0, which provides us with a total of 199 
model-realization–scenario pairings (Supplementary Tables 1–3). 
Time series switch between historical scenarios and the respective 
Representative Concentration Pathway (RCP)–SSP pair in 2015 and 
are regridded onto a common 2.5° × 2.5° longitude–latitude grid using 
conservative remapping43.

Consistent with our source of empirically calibrated dose–
response functions, which relies on ERA5 data14, we calculate annual 
average temperature T, annual total precipitation RA as well as four 
climate indicators using the equations listed below before downscaling 
and regridding the annual indicators from 2.5° to 0.25° (the grid resolu-
tion of ERA5). Notably, the indicators used here have been motivated 
and subjected to various robustness checks by previous studies14,16.

Day-to-day temperature variability:

̃Tx,t =
1
12

12
∑
a=1

( 1
Da

Da
∑
d=1

(Tx,d,a,t − T̄x,a,t)
2)

0.5

(1)

where Tx,d,a,t is the temperature for grid cell x of day d of month a in year 
t and Da ∈ {28, 30, 31} is the number of days in the respective month a. 
T̄x,a,t denotes the mean temperature in month a of year t for the respec-
tive grid cell.

Extreme precipitation:

̂RDx,t =
365
∑
d=1

Rx,d,t × I(Rx,d,t > Rx,99p9,base) (2)

where Rx,d,t is the precipitation of grid cell x on day d of year t, I() is an 
indicator function and Rx,99p9,base denotes the 99.9th percentile of daily 
precipitation in grid cell x over a historical baseline period.

Number of wet days with precipitation exceeding 1 mm d−1:

RDx,t =
365
∑
d=1

I(Rx,d,t > 1mmd−1) (3)

Grid-cell-level annual climate indicators are then aggregated to 
the subnational region level (ADM1) using the geospatial data from 
the Database of Global Administrative Areas (GADM, v.3.6) and area 
weighting.

Monthly precipitation deviation, which we calculate only at the 
ADM1 level and not at the grid-cell level, consistent with ref. 14:

RMi,t =
12
∑
a=1

Ri,a,t − R̄i,a,base
σi,a,base

×
R̄i,a,base
̄RAi,base

(4)

where Ri,a,t denotes precipitation totals in month a of year t for a given 
ADM1-level region i. Variables denoted by a bar represent averages 
across the baseline period, either for the full year or for a specific 
month, while σi,a,base denotes the month-specific standard deviation 
across the baseline period for region i. As for all other climate indi-
cators, region-level monthly precipitation Ri,a,t is derived from 
grid-cell-level values based on area weighting.

For the baseline-dependent climate indicators ̂RD and RM, our 
source of dose–response functions14 uses 1979–2019 as the historical 

baseline period, during which global warming relative to pre-industrial 
levels over 1850–1900 averaged +0.84 °C according to Berkeley Earth 
data (the best estimate for the observed warming and, in a previous 
version, used in the IPCC AR6; ref. 8). However, the 1979–2019 time 
period can differ climatically across CMIP6 models, which warm at very 
different paces44. To maintain consistency and ensure that all climate 
indicators are based on the same baseline in terms of global warming, 
we, therefore, identify the corresponding 41-year window during which 
global warming relative to pre-industrial levels over 1850–1900 aver-
ages +0.84 °C for each climate model-realization and scenario. Then, 
we use the +0.84 °C window to calculate all values with a ‘base’ subscript 
in equations (2) and (4). Warming-level windows for each 
model-realization–scenario pairing are calculated following the 
approach by ref. 10 and shown in Supplementary Tables 1–3. However, 
percentile-based indicators, such as our extreme precipitation meas-
ure, can exhibit artificial jumps at the end of the baseline period, caus-
ing potential frequency increases and discontinuities outside this 
period10,45,46. To correct this, we use the bootstrap resampling proce-
dure developed by ref. 46, estimating the percentile applied to each 
year in the baseline period on the basis of the remaining 40 years in the 
baseline period and then using the average across these percentiles 
for all years outside the baseline period. Mathematical expressions for 
the bootstrap resampling procedure and the calculation of global 
warming levels, as well as more information on the suitability of CMIP6 
and ERA5 data to assess variability and extremes, are provided in Sup-
plementary Appendix A.

Bias correction
We bias-correct annual climate indicators using the change factor 
method47, which adds model-projected changes compared to a ref-
erence period to the corresponding reference period average of an 
observational dataset. For any climate indicator C out of the six indica-
tors considered here, bias-corrected values are obtained as follows:

C̄ERA5x,ref + (Cx,t,m,r,s − C̄x,ref,m,r,s) (5)

where Cx,t,m,r,s represents the raw climate indicator output of climate 
model m’s realization r under scenario s in year t for grid cell x. C̄ERA5x,ref  and 
C̄x,ref,m,r,s represent the reference period average in ERA5 and for the 
climate model run, respectively. As a reference period, we use 1950–
1990, during which global warming averaged +0.38 °C according to 
Berkeley Earth. Therefore, C̄x,ref,m,r,s is calculated for the 41-year global 
warming-level window corresponding to +0.38 °C (for the specific 
global warming-level windows, see Supplementary Tables 1–3). We 
bias-correct each annual indicator separately and, for the monthly 
precipitation deviation, apply the change factor method to the underly-
ing monthly precipitation amounts. As a reference period, we use 
1950–1990 because of its low influence of anthropogenic forcing and, 
to avoid impossible values, further impose zero lower bounds for all 
non-negative climate indicators and an upper bound of 365 for the 
number of wet days. In addition, the bias-corrected monthly precipita-
tion deviation in some selected cases yields values that are one or two 
orders of magnitude above the maximum in our raw CMIP6 data. To 
address these outliers, we cap bias-corrected monthly precipitation 
deviation on the basis of the highest values observed for the raw CMIP6 
data for up to +3 °C of global warming (~11.6; Supplementary Table 4), 
which affects only observations beyond the 99.993th percentile of our 
distribution.

Bias-correcting annual climate indicators ensures the highest con-
sistency for each indicator with the ERA5 data used to estimate dose–
response functions by ref. 14 (Supplementary Figs. 1–3). However, it can 
lead to inconsistencies between the different climate indicators derived 
from the same daily temperature or precipitation and, as outlined 
above, to outlier values in a few cases. As a robustness check, we apply 
the change factor method to the underlying daily temperature and 
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precipitation values of an example model run instead, which increases 
the computational burden of bias correction considerably but leaves 
our conclusions unchanged (Supplementary Fig. 4).

GDP impacts
Dose–response functions for subnational economic growth are taken 
from ref. 14, which jointly estimates the impact of all six indicators on 
income per capita growth. The resulting dose–response functions 
for each climate indicator are shown in Supplementary Fig. 7 and the 
underlying regression is reproduced in Supplementary Table 7, column 
5. Importantly, this regression model has been subjected to compre-
hensive robustness checks, such as using alternative datasets and 
variable definitions, controlling for region-specific time trends or 
assessing seasonal heterogeneities14. Mathematically, the specification 
of the regression can be summarized as

gi,t = ∑
C
hC(Ci,t) + αi + δt + ϵi,t (6)

while the full model is written out in Supplementary equation (5). Here, 
gi,t denotes the economic growth of ADM1-level region i in year t, meas-
ured as the first difference of the log-transformed gross regional prod-
uct per capita48. αi, δt and ϵi,t denote fixed effects and the error term and 
hC is the estimated dose–response function specific to climate indicator 
Ci,t where C ∈ {T,RA, T̃, ̂RD,RD,RM}. For instance, for annual precipitation 
RA, the relationship with economic growth is estimated as a quadratic 
relationship such that

hRA(RAi,t) = βRA1 RAi,t + β
RA
2 RA

2
i,t (7)

where βRA1  and βRA2  are the respective regression coefficients.
To calculate the impacts of climate change, we compare annual 

economic impacts against the average impact during the historical 
baseline period for the same model–realization–scenario pairing, 
such that our impacts represent changes from a hypothetical scenario 
in which climate remains constant, following previous studies2,15. As 
a baseline period for GDP impacts, we again use the +0.84 °C global 
warming-level window for a given realization r of climate model m and 
RCP–SSP pair s for consistency with the calculation of our climate indi-
cators. Therefore, annual impacts, in percentage of GDP, of all climate 
indicators combined due to shifts relative to the baseline period are 
calculated as follows

δi,t = exp (∑
C
hC(Ci,t) −

1
41 ∑k∈K

∑
C
hC(Ci,k)) − 1 (8)

where K is the 41-year model–realization–scenario-specific baseline 
period corresponding to +0.84 °C of global warming. Note that we 
exponentiate and subtract one to convert logarithmic changes to 
percentage of GDP, but impacts of different indicators and years are 
added and averaged in log scale. Individual GDP impacts of each climate 
indicator are obtained by using only the respective individual dose–
response function in equation (8), instead of the sum across dose–
response functions ∑ChC(Ci,k). Similarly, the combined GDP impacts of 
variability and extremes are calculated by summing only the dose–
response functions for T̃ , ̂RD, RD and RM in equation (8). More detailed 
mathematical expressions for all steps in equation (8) are provided in 
Supplementary Appendix C.

Importantly, the model specification by ref. 14 features annual 
temperature in first-differences compared to previous years and not 
in absolute levels:

gi,t = …+ βT1 (Ti,t − Ti,t−1) + β
T
2 (Ti,t−1 − Ti,t−2)

+βT3 (Ti,t − Ti,t−1)Ti,t + β
T
4(Ti,t−1 − Ti,t−2)Ti,t−1 +…

(9)

To translate these regression coefficients into impact projec-
tions, we calculate cumulative impacts following ref. 4, such that the 
dose–response function for annual temperature used in equation (8) 
reads as follows:

hT (Ti,t,…) =
t
∑
j=k0

(βT1 (Ti, j − Ti, j−1) + β
T
2 (Ti, j−1 − Ti, j−2)

+βT3 (Ti, j − Ti, j−1)Ti, j + β
T
4(Ti, j−1 − Ti, j−2)Ti, j−1)

(10)

where k0 denotes the first year in the baseline period K. As we discuss 
in Supplementary Appendix C, this procedure implicitly includes 
impacts of inter-annual temperature variability that persist over time.

For extreme precipitation ̂RD, the dose–response function esti-
mated by ref. 14 interacts extreme rainfall with the annual mean tem-
perature T because the marginal impact of extreme precipitation is 
lower in warmer climates. Projecting this out under climate change, 
however, would make the strong assumption that global warming 
increases the resilience of countries to extreme precipitation world-
wide. Because there is no evidence supporting such a positive feedback 
of warming and because the heterogeneity of extreme rainfall effects 
in ref. 14 is equally well-explained by the latitude of a country (see R2 
and Adjusted R2 in Supplementary Table 4 of ref. 14), which is 
time-constant, we hold temperature in the interaction constant at the 
average level during the baseline period such that

h ̂RD( ̂RDi,t) = β
̂RD

1
̂RDi,t + β

̂RD
2

̂RDi,t
1
41 ∑k∈K

Ti,k (11)

When projecting damage of climate change, a core methodo-
logical choice is whether to assume that impacts affect GDP levels, 
such that the economy bounces back in the following year or whether 
to assume that a part of the damage persists and alters the long-run 
growth trajectory. Assuming persistence has a substantial impact 
on damage projections and the associated uncertainty21,26,27. Recent 
empirical analyses differ in methods and outcomes, with no consensus 
yet1,2,12,21,34. To be conservative, here we assume no persistence in imple-
menting δi,t, aside from any persistence implicit in the methodology by 
ref. 4, and provide further mathematical expressions and discussions 
of damage persistence in Supplementary Appendix C. Furthermore, 
by holding historical dose–response functions and baseline periods 
for climate indicators constant, our approach rests on the common 
implicit assumption that future adaptation outcomes mirror historical 
ones2,4,35, in line with the mixed evidence on macro-economic adapta-
tion so far2,20,21. In addition, we follow ref. 27 in equating relative GDP 
per capita impacts with relative GDP impacts (that is, assuming that 
any decrease in GDP per capita is caused by a climate change-induced 
reduction in economic output and not by an increase in population).

Spatial aggregation of GDP impacts
We aggregate the GDP impacts calculated via equation (8) from the 
subnational detail (ADM1) to the country level (ADM0) using GDP 
weighting. For GDP weights, we use 2010 GDP data downscaled to a 
0.5° grid by ref. 49. To deal with 105 outlier grid cells with raw GDP data 
exceeding US$1020, we apply a ceiling at $1010, which is the next highest 
grid-cell GDP value in the dataset. Note that we hold this intracountry 
income distribution constant across all years and SSPs. This simplifi-
cation stems from the SSPs not directly informing spatial intracoun-
try GDP per capita distributions and also prevents our results from 
being driven by changes in the weighting scheme over time rather 
than climatic changes, which is standard practice in the literature2. 
To calculate GDP impacts at the global level, we weigh each country 
i with its share in global GDP in year t as per the respective SSP. Since 
the SSP database does not provide GDP growth trajectories for a few 
sovereign countries, namely Andorra, Liechtenstein, Kosovo, Nauru, 
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North Korea, San Marino, South Sudan and Tuvalu, these economies 
are not represented in our damage projections for the global economy.

GDP impact distribution
To capture dose–response function uncertainty, we draw 1,000 esti-
mates for the dose–response function parameters βRA1 ,βRA2 ,βT1 ,… jointly 
from the multivariate Gaussian distribution estimated by ref. 14 (main 
specification, standard errors clustered at the country level). Applying 
each Monte Carlo draw to each of the 199 model–realization–scenario 
pairings provides us with 199,000 different impact projection pathways 
for each territory. For each model-realization–scenario pairing, we 
then identify the 20-year window corresponding to a global warming 
level of +1 °C, +1.5 °C, +2 °C, +3 °C and +4 °C, respectively, following the 
approach by ref. 10 (for the specific global warming-level windows, see 
Supplementary Tables 1–3. This provides us with a conditional distribu-
tion of GDP impacts for a given territory and warming level. Aside from 
reducing the importance of individual RCP–SSP scenarios, condition-
ing results on global warming levels also reduces the need to omit or 
down-weight ‘hot models’ in CMIP6, which project too much warming44. 
Since not all models reach all warming levels and to prevent the two 
large ensembles from dominating our results, we weight models 
inversely such that each CMIP6 model has the same sampling probabil-
ity for each warming level following ref. 18. All summary statistics of 
the distribution (means, percentiles, variances and so on) are calcu-
lated using these CMIP6 model weights.

Variance decomposition
To decompose the observed variance in our conditional global GDP 
impact distribution for a given warming level, we adapt the approach 
by ref. 50 based on the partitioning method by ref. 51. First, we carry 
out projections using point estimates for all dose–response function 
parameters (abstracting from dose–response function uncertainty) 
and calculate internal variability as the average across CMIP6 mod-
els of each model’s variance of global GDP impacts in a given global 
warming-level window. For CMIP6 models with only a single run in 
our analysis, this within-model variance stems from climatic differ-
ences between different scenario–years, whereas for the two large 
ensembles, it also includes differences between ensemble members. 
Correspondingly, we calculate climate model uncertainty as the 
variance between the mean global GDP impact of CMIP6 models for 
a given global warming level. Lastly, we calculate dose–response 
function uncertainty as the variance across dose–response function 
Monte Carlo draws of the mean GDP impact for each Monte Carlo draw 
(that is, an average across all CMIP6 models and scenario–years in 
the respective global warming-level window). Mathematical expres-
sions for each variance component are provided in Supplementary 
Appendix D. Notably, this approach rests on the commonly made 
assumption that variance drivers are orthogonal, thus abstracting 
from interaction terms52. As a robustness check, we use an alterna-
tive approach by ref. 3 (Supplementary Appendix D), which does not 
affect our conclusions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
CMIP6 temperature and precipitation indicators are available on 
the ETH Zurich CMIP6 repository53. CESM2 large ensemble outputs 
are available at https://www.earthsystemgrid.org/dataset/ucar.cgd.
cesm2le.output.html. Tx5d and PDSI values from ref. 18 (used in Sup-
plementary Appendix F) are available at https://github.com/ccalla-
han45/CallahanMankin_ExtremeHeatEconomics_2022 (ref. 54). The 
historical climate data and the economic growth data to estimate the 
dose–response functions from ref. 14 are available from ref. 55. ERA5 

reanalysis data are available at https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5. Source data are provided with this 
paper. All additional data are publicly available from ref. 56.

Code availability
All scripts used to conduct the analysis and create the figures are pub-
licly available from ref. 56.
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