

Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

: Case Studies from South Korea and Italy

15 April | 2024

Hyun-Woo Jo Postdoctoral Fellowship

¹⁾ OJEong Resilience Institute (OJERI), Korea University

²⁾ Agriculture, Forestry, and Ecosystem Services (AFE) Research Group Biodiversity and Natural Resources (BNR) Program, IIASA

Forest Fire Dynamics Interplay of Biophysical and Anthropogenic Factors

2 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Comparison of Modelling Methods Process-Based Model & Machine Learning

	Process-Based Model	>>> Hybrid <<<	Machine Learning	nine Learning			
 Already struct Predictable f	ctured and guided by human knowledg for unseen dataset	ye. •	Powerful tool for solving complex problems Efficient at optimization by its nature of end-to-end learning				
 Decreasing p complex for Setting approx 	performance when the problem is too modeling opriate parameters is time-consuming	•	Need large amount of data for training Unpredictable for unseen dataset				
۲ 	Transferring Human Model generalization	Knowledge into Ar Training efficiency	Artificial Intelligence				
			International Partitute for				

Pros

Cons

Transferring IIASA's Forest Fire Model (FLAM) into the Neural Networks (FLAM-Net)

Transferring IIASA's Forest Fire Model (FLAM) into the Neural Networks (FLAM-Net)

Preserving Gradients Log-Transformation on Probabilities $f_e(E_f)$ $\frac{\partial L}{\partial P_{1\cdot 2\cdot 3}} P_3 P_2 \leq \frac{\partial L}{\partial P_{1\cdot 2\cdot 3}} P_3 \leq \frac{\partial L}{\partial P_{1\cdot 2\cdot 3}}$ P_1 $P_x = f_p(E_f) = \min\left(1, f_e(E_f)\right)$ P_{1.2.3} **P**_{1·2} 0.8 $(\exists \exp\left(-f_{softplus}\left(-\ln\left(f_{e}(E_{f})+\varepsilon\right)\right)\right) \approx P_{x}$ $ln(P_1)$ ∂L Р -0. $\frac{1}{\partial P_{1\cdot 2\cdot 3}}P_3P_1$ *∂L* $\frac{\partial L}{\partial P_{1\cdot 2\cdot 3}}P_{1\cdot 2}$ $ln(\underline{P_{1\cdot 2\cdot 3}})$ Forward propagation $\partial \ln(P_{1\cdot 2\cdot 3})$ $ln(P_{1\cdot 2})$ P_3 0.4 Back propagation ∂L *∂L* (partial derivates) $ln(P_2)$ $\partial \ln(P_{1\cdot 2\cdot 3})$ $\partial \ln(P_{1\cdot 2\cdot 3})$ -0.2 (2) $f_{softplus}(-\ln(f_e(E_f) + \varepsilon))$ ∂L $\partial \ln(P_{1.2.3})$ (1) $-\ln(f_e(E_f) + \varepsilon)$ ∂L 0.8 12 $ln(P_3)$ $\overline{\partial \ln(P_{1,2,3})}$ Back propagation E_f (partial derivates)

Log-transformation allows for expressing very small number, which has advantage on modeling disaster probability

5 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Transferring IIASA's Forest Fire Model (FLAM) into the Neural Networks (FLAM-Net)

U-Net

Feature

Restoration

Label

Parameter Optimization Results Interpreting Biophysical & Anthropogenic Factors

Parameter Optimization Results Interpreting Biophysical & Anthropogenic Factors

8 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Month-Wise Validation

Pearson's r

Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Avg.
0.789	0.986	0.854	0.694	0.959	0.871	0.726	0.785	0.431	0.987	0.757	0.698	0.795
There is a strong seasonal pattern of frequent forest fire in spring. Does it merely reproduce this pattern? Or able to differentiate among the same seasonality Overall high month-wise Pearson's r Only 17 fire events observed over 6-year in September						B0 B0 B0 B0 C C C C C C C C C C C C C			250- 200- 150- 100- 50-	250 200 150 100 50		
(smallest among the months)							0	20 Observa	40 ation) 100 Obser) 200 vation

9 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Future Projection Impact of Population Density

Rapidly decreasing population after 2050, while hotspots keep formed near metropolitan cities

10 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Future Projection Impact of Fuel Load (Forest Management)

SSP 5-8.5

Current Management

- Clear-cut of 15,000 ha per year (legal final cutting age)
- Thinning practices at a rate of 30% of AGB across 165,000 ha per year

No Management

- No clear-cut
- No thinning practices

National Management Plan (6th) in the Future

- Clear-cut of 35,000 ha per year
- Thinning practices at a rate of 30% of AGB across 165,000 ha per year

12 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Future Projection on Fire Frequency

Peak fire frequency between 2030 and 2050

14 | Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction

Conclusion

IIASA's FLAM incorporates process-based algorithms for interpreting biophysical and anthropogenic factors affecting forest fires.

FLAM-Net effectively integrates FLAM processes into a machine-learning framework, augmented with additional algorithms tailored to national contexts. i.e. agricultural burning and its seasonal patterns, as well as a diverse range of fire hotspots near metropolitan cities in South Korea.

The optimization of FLAM-Net yields interpretable insights into future fire frequency*, while enhancing its applicability through end-to-end optimization capabilities.

* FLAM includes algorithms for estimating burned area, while FLAM-Net was examined only for frequency.

Thank you.

International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1, A-2361 Laxenburg, Austria

iiasa.ac.at

(X) @IIASAVienna

@iiasavienna

- iiasa.ac.at/contact
- (f) IIASA
- @IIASALive

 \bigcirc

(in) iiasa-vienna

Hyun-Woo Jo Postdoctoral Fellowship

 ¹⁾ OJEong Resilience Institute (OJERI), Korea University
 ²⁾ Agriculture, Forestry, and Ecosystem Services (AFE) Research Group Biodiversity and Natural Resources (BNR) Program, IIASA

endeavor4a1@gmail.com johyunwoo@iiasa.ac.at