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RaSMI: Global ranges of building 
material intensities differentiated 
by region, structure, and function
tomer Fishman  1,2 ✉, alessio Mastrucci2, Yoav Peled3, Shoshanna Saxe  4 & Bas van Ruijven2

the construction materials used in buildings have large and growing implications for global material 
flows and emissions. Material Intensity (MI) is a metric that measures the mass of construction 
materials per unit of a building’s floor area. MIs are used to model buildings’ materials and assess their 
resource use and environmental performance, critical to global climate commitments. However, MI 
data availability and quality are inconsistent, incomparable, and limited, especially for regions in the 
Global South. To address these challenges, we present the Regional Assessment of buildings’ Material 
Intensities (RASMI), a new dataset and accompanying method of comprehensive and consistent 
representative MI value ranges that embody the variability inherent in buildings. RASMI consists of 
3072 MI ranges for 8 construction materials in 12 building structure and function types across 32 regions 
covering the entire world. The dataset is reproducible, traceable, and updatable, using synthetic 
data when required. It can be used for estimating historical and future material flows and emissions, 
assessing demolition waste and at-risk stocks, and evaluating urban mining potentials.

Background & Summary
Globally, humanity is faced by parallel challenges of delivering reasonable quality of life to a growing population 
while simultaneously reducing total primary resource use, greenhouse gas emissions and other environment 
impacts. The built environment, made up of buildings and infrastructure, is an important moderator of both. 
On one hand, buildings and infrastructure stock provide innumerable societal services, including dwellings, 
transportation, communication, and capital1. Buildings and infrastructure further determine the shapes of cities 
and have major roles in influencing quality of life and the urban environment. Construction materials play core 
roles as “provision systems” that link human wellbeing with planetary processes2–4. On the other, global pri-
mary resource use is increasingly straining planetary boundaries. Approximately half of all materials excavated 
and manufactured globally each year are for construction5. By 2050 construction resource use is projected to 
expected to double the 40 billion tonnes used in 2010 to up to 90 billion tonnes per year6. Accordingly, construc-
tion materials have received increased attention in sustainability sciences due to their dominance in material 
consumption and related carbon footprints7–10. We know that construction is inducing the extraction and man-
ufacturing of massive quantities of materials but data on where, how, and for what purposes these construction 
materials are used remains sparse. This limited data and knowledge hampers the policy makers, planners and 
engineers’ ability to improve on the current status quo of construction, material use and associated environ-
mental degradation. While over the last 5 years big efforts have been made to increase data and knowledge 
on construction resource use11–15, progress remains slow, methodologically heterogenous, and geographically 
limited. Given the imperatives to act now on material use efficiency all over the world, a faster, more complete 
method and dataset of global resource use for construction is needed. This paper works towards this gap by gath-
ering and standardizing existing data from around the world, this data is enhanced by synthetic data to provide 
material use estimates in buildings for the entire globe that are useable now and updatable as bottom up data 
hopefully continues to improve.

Material intensity (MI) coefficients are a measure of the amount of construction materials embedded in a 
building, relative to its floor area. MIs are calculated by dividing the total mass of the building materials (e.g. 
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structural, enclosure, and finishes) by the total floor area of the building, leading to a ratio of the average mass 
of construction material per unit of floor space (kg/m2) which is a proxy for the function of the building. This 
measure provides insights into the material efficiency of a building. Moreover, it is a simple metric for assessing 
the environmental impacts of a building’s construction materials and life cycle16, and is useful for comparing 
different buildings and their material choices17, embodied emissions18, and energy designs19. The MI values 
of buildings are affected by a variety of factors18, including structural system, building envelope, and interior 
finishes, as well as by architectural designs, construction technologies and techniques, climate and land condi-
tions, local regulations, and function (e.g. a medical building hosting an MRI machine has different floor slab 
requirements than a residential building).

Combined with floor space statistics, MIs are used to describe buildings and their material compositions, 
enabling estimates of the total materials accumulated in historical building stocks and projections of the mate-
rials needed to build future buildings. There is a growing body of literature that utilizes MIs in meso- and 
macro-scale assessments of the built environment, including assessing demolition waste20,21, sectoral environ-
mental impacts and emissions such as embodied GHG22,23, scenarios of future material flows and their future 
impacts24,25, integrated assessment models (IAMs)12,26,27, and spatially explicit building stock accounts to map 
urban mining potentials28–31, socio-economic development trends32–34, and at-risk stocks35–38.

Material intensity data requires access to detailed construction or demolition records to calculate accurately 
and hence has previously been time consuming and difficult to obtain. In recent years, however, several datasets 
of MIs have become available, from individual building by building efforts to larger review datasets based on 
gathering literature or construction company self-reporting. There are now a few relatively rich country-specific 
datasets describing dozens to hundreds of MIs of various building archetypes for China13, the Netherlands14, 
Canada15, Germany39, Sweden40, and Europe41. Furthermore, Heeren and Fishman11 and Marinova et al.12 com-
piled large sets of MI data gathered from the MI and LCA literature, which focuses mostly on individual case 
studies. Recent updates to the Heeren and Fishman dataset which incorporates the Marinova compilation and 
other sources (https://github.com/nheeren/material_intensity_db/) reveal that despite the rapid growth of liter-
ature that reports material intensities, several knowledge and methodological gaps remain:

•	 Even with years of effort by multiple researchers, the available data is measured by the hundreds of data-
points. Given even one city can have hundreds of thousands of buildings, it is unlikely that large data (e.g. 
10,000 + data records) will be available in this field within the decade.

•	 Incomplete and unbalanced geographical coverage. 90% of the 911 datapoints in the updated Heeren and 
Fishman dataset describe MI values in Western Europe, North America, China, and Japan. Several global 
regions – notably in the Global South – have no or very few data.

•	 MI estimation methods and data reporting formats are varied, usually ad-hoc and unique to each study. 
For example, some studies28,32,33,42 distinguish between buildings’ functional use types (e.g. residential, com-
mercial, etc.), others35,38 distinguish between structural construction types (e.g. reinforced concrete, timber 
frame, etc.), or between urban and rural buildings43–45, and in some cases differentiate MIs by age classes30,44. 
Very few studies distinguish multiple such features, and many don’t do so at all. Compounding this issue, 
categorization criteria and even definitions of materials, building functions, and definitions of floor area 
vary across studies and are only sporadically described in detail. Attempts to create systematic reporting 
schemes15,46 have not yet been adopted by the research community.

•	 There exists hardly any study of the consistency, representativeness, variance, and uncertainties of MIs, both 
within individual studies and across sources, despite the clear expectation of variances and uncertainties due 
to the uniqueness of individual buildings47. Individual case studies sometimes compare their MI values to the 
literature. Yet research specifically focusing on this was pioneered by Schiller et al.48 who compared MI values 
and their accompanying attributes between Germany and Japan. The Saxe research group compared residen-
tial MI values both within Canada49 and between Canada and other countries50, also including uncertainty 
scoring for their data. Moving beyond descriptive statistics, Zhang et al.51 assessed the variability of MIs in 
the Chinese database, using a machine learning approach. Nasiri et al.52 assess the causes of variability of MI 
values in Finnish wooden houses, as do Miatto et al.53 innovatively with simulated MI values using building 
information modeling (BIM). Lederer et al. explore the representativeness of MIs47. These are, to the best of 
our knowledge, the only such systematic assessments so far.

Many of these challenges are further described in the comparative MI studies cited above48–51 and in recent 
reviews of material stocks research7,8.

Researchers and policy makers that utilize MIs are therefore limited to data describing building types and 
regions that are well-represented in the body of literature, or are forced to revert to using simple averages and to 
direct copying of MIs from one region or building type to others. These solutions are generally not representative 
and do not capture variability and uncertainties, yet the ability to test the applicability or implications of such 
simplified assumptions is limited due to the lack of data to compare against. The limited research that does exist 
suggest large variations in material types, architecture and construction norms between countries50,54. This hin-
ders the accuracy of both research and policy based on available values, but is hard to correct as the generation 
of new local MI data is very time consuming. Given the temporal imperatives of resource shortages, the circular 
economy and GHG emission reductions actions must then proceed without accuracy.

To address some of these gaps, Vilaysouk et al.55 classified datapoints from Heeren and Fishman’s MI com-
pilation11 into clusters with common attributes leading to distributions of cluster-specific MIs, and proposed a 
decision tree approach to choose MI values from the appropriate cluster. However, that approach was limited by 
data availability to residential buildings without further differentiation, e.g. by region or construction period. 
Zhang et al.51 presented a MI calculator based machine learning analysis on Chinese MI data.
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Here, we present the Regional Assessment of buildings’ Material Intensities (RASMI), a new dataset and 
accompanying estimation method that aims to fill the gaps described above.

The aim of the RASMI dataset is to provide researchers and policy makers with a consistently defined set of 
MI values for each of 32 regions, comprehensively covering the entire world. By combining publicly available 
data into a much larger MI database and by using geographic, structural types and function related sampling 
approaches to develop estimates of MI for any country in the world. The dataset prioritizes the following criteria:

•	 Comprehensive and exhaustive: a full set of non-parametric ranges (distributions) of MI values for construc-
tion materials that are differentiated by region, buildings’ functional use types, and structural construction 
types, covering the entire world. The RASMI dataset is structured in four dimensions:

 1. 8 materials (concrete, steel, bricks, wood, glass, copper, aluminum, and plastics).
 2. 4 structural construction types (reinforced concrete structure, masonry structure, timber structure, 

and steel frame structure).
 3. 3 functional use types (Residential single-family, residential multifamily, and non-residential).
 4. 32 global regions compatible with global IAM applications like the Shared Socioeconomic Pathways 

(SSP)56.
Each datapoint is a range of values that represent one of the unique combinations of these dimensions 
yielding 8 × 4 × 3 × 32 = 3072 MI ranges, in other words, 384 function-structure-region combinations for 
each material. For instance, the material intensity of concrete [material] in steel frame structures [structure 
type] used for multifamily housing [function type] in Japan [region].

•	 Reasonable and coherent: The method we developed assesses the existing coverage of MI data in the body 
of literature for each material-function-structure-region combination, and when necessary incrementally 
increments the data with further MI values based on similarity criteria. This approach produces MI ranges 
that extend from fully descriptive to fully synthetic data, accompanied by metrics of their representativeness.

•	 Reproducible, traceable and updatable: the dataset and its estimation methods and code are fully documented 
and publicly available, enabling to trace back individual MI values to their sources in the literature. Our 
approach allows the dataset to be iteratively updated by incorporating newly published MI values as they 
become available, and can be expanded to further construction materials, further building features, and other 
end-uses beyond buildings such as roads and other infrastructure.

As such, the RASMI dataset is unique in that it aims to answer the question “which MI data are appropriate 
for my country/region of interest?”. This is a question that collections of extant MI values such as Heeren and 
Fishman11, Marinova et al.12, Sprecher et al.14, and Guven et al.15 cannot answer. These different datasets fulfil 
different needs of construction material researchers. It will be useful going forward for the quantity and diversity 
of such MI data to improve, both improving the availability of ground truth data and estimates produced by 
the RASMI method. In this Data Descriptor, we present the method and the first public version of the RASMI 
dataset.

Methods
The method to create the RASMI dataset consists of 4 steps to create unique MI value ranges for each of the 3072 
material-function-structure-region combinations:

 1. Collection and labeling the raw MI data collected from the literature with harmonized descriptive defini-
tions of functional use types, structural construction types, regional location, and other dimensionalities or 
features.

 2. Incremental expansion of MI coverage when required, using similarity criteria to create pools of MI values 
for each material-function-structure-region combination.

 3. Identification of materials with poor MI coverage for which unique material-function-structure-region 
combinations cannot be differentiated.

 4. Calculation of non-parametric statistics for each combination for inclusion in the dataset.

These steps are detailed below.

Labeling of the raw MI data. The source for raw MI data is the updated version of the Heeren and Fishman 
MI database11, here referred to as H&F for short. The H&F MI database consolidates MI data found in the litera-
ture to create a meta dataset.

Individual datapoints in the H&F database cover between one and 21 construction materials out of 32 possi-
ble materials. The H&F database describes each datapoint as-is, maintaining the original description and defini-
tion from the source publications to preserve accurate descriptions of the data. This results in varying definitions 
and descriptions of buildings, reflecting the ad-hoc data creation processes in the data sources, but also reflect-
ing the variability of buildings.

We added to the raw H&F database five new features (i.e. columns) that label the data in a harmonized fash-
ion: structural construction type, functional use type, region, energy efficiency, and data quantification method. 
We labeled each of the H&F datapoints by assigning them one attribute for each feature from the lists in Table 1.

We reviewed the datapoints’ sources for relevant descriptive information for these labels and when possible, 
contacted the original authors for further data. Structure type [S], function type [F], and energy efficiency [E] 
and their subtypes include “Unspecified” labels, for cases in which the sources’ descriptions are general, 
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Feature
Structural construction 
types [14 in 5 groups]

Functional use types [17 in 
6 groups] Region [32 in 5 groups] Energy efficiency [4] Quantification method [3]

Possible labels

S.1 Reinforced concrete 
structure

F.1 Residential single-
family

R.1 OECD and EU member 
states and candidates E.1 Standard Q.1 Real-world single case 

study

  S.1.1 With concrete floor   F.1.1 Detached   R.1.1 Australia and New 
Zealand E.2 Efficient Q.2 Sample/average/

statistics

  S.1.2 Prefabricated   F.1.2 Row house   R.1.2 Canada E.3 Zero energy Q.3 Modeled/hypothetical/
regulations

  S.1.3 Unspecified   F.1.3 Unspecified
  R.1.3 Eastern Europe (excl. 
former Soviet Union and EU 
members)

E.4 Unspecified energy

S.2 Steel frame structure F.2 Residential multifamily   R.1.4 EFTA (Iceland, Norway, 
Switzerland)

  S.2.1 With concrete floor   F.2.1 Low
  R.1.5 European Union member 
states that joined prior to 2004 
(EU-15)

  S.2.2 With steel floor   F.2.2 High   R.1.6 EU member states that 
joined as of 2004 - high income

  S.2.3 Unspecified   F.2.3 Tower
  R.1.7 EU member states that 
joined as of 2004 - medium 
income

S.3 Timber structure   F.2.4 Unspecified   R.1.8 Japan

  S.3.1 Traditional wood F.3 Residential unspecified   R.1.9 Republic of Korea

  S.3.2 Engineered wood F.4 Non-residential   R.1.10 Turkey

  S.3.3 Unspecified   F.4.1 Offices, low   R.1.11 United States of America

S.4 Masonry structure   F.4.2 Offices, high
R.2 Reforming Economies of 
Eastern Europe and the Former 
Soviet Union

  S.4.1 Bricks   F.4.3 Retail   R.2.1 Central Asia

  S.4.2 Stone   F.4.4 Factory
  R.2.2 Eastern Europe, former 
Soviet Union (excl. Russia and 
EU)

  S.4.3 Adobe or mud   F.4.5 Warehouse   R.2.3 Russian Federation

  S.4.4 Unspecified   F.4.6 Civic
R.3 Asian countries excl. the 
Middle East, Japan and Former 
Soviet Union

S.5 Unspecified structure   F.4.7 Unspecified   R.3.1 China (Mainland, 
Hongkong, Macao)

F.5 Informal   R.3.2 Indonesia

F.6 Unspecified function   R.3.3 India

  R.3.4 former Centrally Planned 
Asia

  R.3.5 Other Asia - low income

  R.3.6 Other Asia - medium and 
high income

  R.3.7 Pakistan and Afghanistan

  R.3.8 Taiwan

R.4 The Middle East and Africa

  R.4.1 Middle East Asia - high 
income

  R.4.2 Middle East Asia - low and 
medium income

  R.4.3 North Africa

  R.4.4 South Africa

  R.4.5 Sub Saharan Africa - low 
income

  R.4.6 Sub Saharan Africa - 
medium and high income

R.5 Latin America and the 
Caribbean

  R.5.1 Brazil

  R.5.2 Latin America - low 
income

  R.5.3 Latin America - medium 
and high income

  R.5.4 Mexico

T                                                                                         a             b     le 1. Harmonized features and their possible labels used to label the datapoints in the Heeren and Fishman 
(H&F) MI database.
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unknown, unclear, represent multiple types equally, or represent types other than the listed ones. The structural 
construction type [S] labels reflect the load bearing structure. For example, a building described in its source 
publication as “conventional structure in reinforced concrete, masonry in ceramic blocks”57 is labeled as 
one of the subtypes of reinforced concrete structure [S.1], not as masonry structure [S.4]. The functional use 
type [F] labels reflect the major function described in the data source. The thresholds between the residential 
multi-family [F.2] subtypes are low [F.2.1] up to 5 floors, high [F.2.2] between 7 and 19 floors, and tower [F.2.3] 
over 20 floors, or as defined in the source publication. The civic non-residential subtype [F.4.6] includes schools, 
hospitals, utilities, municipal buildings, libraries, etc.; and the informal type [F.5] describes informal construc-
tion such as shacks and shanties. The definitions of the regions and subregions [R] are taken from the SSP data-
base56. The energy efficiency [E] and the quantification method [Q] labels follow the source publications’ own 
explicit or implicit descriptions. To limit ‘combinatorial explosion’ and due to the limited variance of energy 
efficiency [E] and quantification method [Q] in the data, we use only the top-level labels of structure type [S] and 
function type [F] except for the informal functional use type [F.5] in the next steps.

The most recent update of the H&F database incorporates several other MI datasets from recent years includ-
ing Marinova et al.12, Sprecher et al.14, Guven et al.15, among others. The additional data were identified and 
harmonized with the H&F database using the methods described in its data descriptor article11, and the details 
of updates and newly added sources are tracked on its GitHub repository (https://github.com/nheeren/mate-
rial_intensity_db). Since its original publication in 201911, it has tripled in size from 301 to 910 individual MI 
datapoints, including 332 points newly added for this project, and it now covers 51 countries and regions, col-
lated from 115 scientific publications (Table 2).

These source data most consistently contained information on the structural materials use in buildings, with 
decreased granularity and availability of data on architectural finishes and/or mechanical, electrical and plumb-
ing. Accordingly, main structural materials are the focus of our assessment.

The H&F data supports observations of previous studies50–53,55 that MI values correlate most to construction 
structural types, corresponding the [S] label of our data, and less so to function types [F]. Figure 1 visualizes this 
with two versions of the same set of pairwise MI scatterplots, colored by structural type in panel a or function 
type in panel b. Each subplot visualizes a pair of the four structural materials (concrete, bricks, wood, and steel) 
and every scatterpoint is a datapoint in the H&F database. The distributions of each material per structure type 
are added on the edges of the scatterplots.

Figure 1a shows that structural construction types [S] tend to have relatively unique MI value ranges, which 
manifest as identifiable areas of same-colored areas across the pairwise plots. For example, the space occupied by 
scatterpoints in the concrete-steel panel shows that in these two materials are complementary (annotated A in 
Fig. 1a): generally, more concrete means more steel. This complementarity is especially prominent in reinforced 
concrete structures. In comparison, the general L-shape of the distribution of points in the concrete-wood scat-
terplot implies that these two materials act as substitutes in construction (annotated B in Fig. 1a): there is either 
relatively high wood MI with low concrete MIs, mostly in timber structures, or low MIs of wood but high MIs of 
concrete in reinforced concrete structures, and these two structure types occupy different spaces in the plot. This is 
in contrast to the visualization of the same data but colored by functional use types in Fig. 1b. Only the single-family 
residential data occupy fairly unique spaces in the pairwise panels of Fig. 1b, and the distributions of MIs of the 
other function types rather overlap in space. These observations are supported by nonparametric statistical tests 
(Kruskal-Wallis, Kolmogorov-Smirnov, and Anderson-Darling tests, code and results available in the repository).

These observations suggest that knowing the MI values of the four structural materials can infer the struc-
tural construction type [S] of a building, but not the functional use type [F]. This is visualized with a single dat-
apoint marked by a + in Fig. 1, for which both the structure and function were not specified in the data source. 
Based on its location in relation to other datapoints in the panels of Fig. 1a, it can be inferred that this datapoint 
describes a reinforced concrete structure. However, a similar inference cannot be made for its function, which 
may be nonresidential or multifamily residential.

Material
Number of raw MI 
datapoints (out of 906)

Coverage of function-structure-
region combinations (out of 384 
possible combinations per material) Gini coefficient MI data sources

Concrete 812 91% 0.685 14–17,19–24,28–33,35,36,38–42,44,45,47,57,61–134

Wood 759 85% 0.725 14–17,19–24,28–33,35,36,38–42,44,45,61–117,135–141

Steel 698 79% 0.706
14–17,22–24,28–33,35,36,38–45,61–63,65–70,72–

79,81,83,84,86–91,93,95,98,99,101–103,105–113,118–

130,136–140,142–145

Glass 498 69% 0.746
14–17,19,21,23,24,28–32,35,39,40,44,45,61–63,65–

71,75–78,80–88,90,91,93,94,96,98,99,101–104,118,120–

124,141,142,146,147

Brick 464 54% 0.811*
14,15,20,21,23,24,28,29,31–33,39–42,44,45,61–

63,70,71,74,75,81,84–100,119,121,122,132,137,138,145

Plastics* 186 33%* 0.888* 15,21,28,31,39,40,61,62,65,67,71,80–88,118–120,133,138

Aluminum* 153 36%* 0.844* 15–17,19,28,29,31,35,39,61–79,118,119,131,138,142,147

Copper* 81* 12%* 0.953* 28,40,61–63,118,138,148

Table 2. Statistics of the coverage of data by material, used to determine the approach to estimate ranges of 
MI values for each material-function-structure-region combination. *indicates a statistic that doesn’t pass the 
criteria.
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We thus used supervised machine learning to assign one of the defined structure types for the 237 datapoints 
whose structure type was labeled as unspecified structure [S.5]. We trained a random forest classifier model 
using the MI values of the four structural materials (concrete, steel, wood, and bricks) of the 673 datapoints 
already labeled with a top-level structure type [S.1 – S.4]. We then used the trained model to predict the struc-
ture type of the 237 unspecified datapoints. The random forest classifier consistently performed better than 
other models (neural network, k-nearest neighbors, and logistic regression) in cross validation and random 
sampling tests of training and test sets. This step is implemented in Python using the Orange suite58, and the 

kg/m2

kg/m2

A: complementary materials 
B: substitute materials

A

B

Structural construction types
(load bearing structure)

Reinforced concrete
Masonry construction
Timber construction
Steel construction
Unspecified construction, 
unspecified function
(one example)

(a)

kg/m2

Functional use types

Nonresidential
Residential, single family
Residential, multi-family
Residential, unspecified
Unspecified construction, 
unspecified function
(one example)

(b)

kg/m2

Fig. 1 Pairwise (two at a time) scatterplots and distributions of concrete, steel, wood, and bricks material 
intensities (kg/m2) of the Heeren and Fishman database11, classified by (a) buildings’ structural structure types, 
and (b) functional use types. Refer to the main text for the annotations in panel (a).
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workflow and test results are available in the RASMI GitHub repository (https://github.com/TomerFishman/
MaterialIntensityEstimator).

Incremental pooling of MI datapoints using similarity criteria. In order to estimate plausible MI 
ranges for each region and building type, each of the 384 possible function-structure-region combinations per 
material require a minimum pool of 30 MI value datapoints (we discuss the choice of 30 in the technical vali-
dation section). For combinations that do not have 30 datapoints in the database, we iteratively increment the 
number of datapoints by adding similar datapoints in the following order:

 1. MI datapoints of the same structure type [S] and region [R.x.x] but different function type [F] are added: 
unspecified [F.6] are added to non-residential [F.4], residential unspecified [F.3] are added to the specified 
residential types [R.1] and [R.2], followed by [F.6].

 2. MI datapoints of the same structure type [S] and function type [F] but from the top-level macro-region 
[R.x] are added.

 3. MI datapoints of the same structure type [S] and top-level macro-region [R.x] but different function type 
[F] are added, with the same rules as in step 1.

 4. MI datapoints of the same structure type [S] and function type [F] from all regions [R] are added.
 5. MI datapoints of the same structure type [S] and all regions [R] but different function type [F] are added, 

with the same rules as in step 1.

At every incrementation iteration, the datapoints that are already included are duplicated to give them more 
weight, so that local data and more closely-similar is represented at higher weight in the estimation of range 
statistics in the next step. This incremental expansion process halts once at least 30 datapoints (including those 
duplicated) have been collected, or once the five increment steps have been exhausted.

The incremental pooling process is exemplified in Fig. 2. On its left, the extant raw datapoints that describe 
concrete MIs of residential multifamily buildings with a reinforced concrete structure in the EU15 region are 
already sufficient (over 30 datapoints) and used as-is to create MI ranges with zero iterations of incrementation. 
The center is an example of two increment iterations: the number of extant raw datapoints that describe concrete 
MIs of residential multifamily buildings with a reinforced concrete structure in the Canada region are insuffi-
cient. The pool of MIs undergoes two incrementation steps before MI ranges can be created. On the right, no 
extant datapoints describe concrete MIs of residential multifamily buildings with a reinforced concrete structure 
in the Taiwan region. The pool of MIs undergoes four incrementation steps before MI ranges can be created. The 
number of iterations is stored as an indicator of representativeness of the MI data in the datapoints pool for each 
material-function-structure-region combination. This and the following steps are carried out in Python code, 
available in the RASMI GitHub repository.

MI values pooling for materials with poor data. Pooling MI values with the similarity criteria pro-
cess described above requires diversity and good coverage of MI values to culminate in unique MI datapoint 
pools for each of the function-structure-region combinations. However, some materials are insufficiently cov-
ered in the extant data to create unique MI value ranges for each of the function-structure-region combinations, 
because the number of datapoints that describe these materials’ intensities is low or because they cover few types 
of material-function-structure-region combinations.

We identify materials with poor coverage in the extant data if they match at least two of three criteria: (1) less than 
15% of the extant raw datapoints in the H&F data11 include values for the material in question, (2) these extant data-
points cover fewer than 50% of the 384 possible function-structure-region combinations, and (3) the extant datapoints 
are unequally distributed among the combinations, i.e. they belong to only a handful of function-structure-region 
combinations rather than a diversity of combinations, as indicated by a Gini coefficient higher than 0.8. This also 
highlights areas where future data collection can most contribute to data diversity and coverage.

Table 2 shows that in the extant H&F data, concrete, wood, steel, glass, and brick have good coverage and 
therefore utilize the similarity criteria approach to increment their MI pools. Copper fails all three coverage 
criteria, and plastics and aluminum fail two of the three.

For the materials with poor MI data, all of these materials’ raw datapoints are used to create global value ranges 
for all function-structure-region combinations regardless of function type, structure type, or region. For example, 
all 186 plastics MI datapoints are used as the same pool for all combinations. Datapoints are given more weight in 
the pools of the function-structure-region combinations that they originate from. For instance, 47 MI datapoints 
describe plastics in Canadian [R.1.2] single-family [F.1] timber housing [S.3], so these 47 datapoints get a bigger 
weight than the other 139 plastics MIs in the Canada-residential single family-timber combination’s pool.

Calculation of non-parametric statistics. At the end of the previous steps, each of the 3072 
material-function-structure-region combinations have pools of at least 30 MI datapoints. We then estimate 
non-parametric frequency statistics, namely the 0th, 5, 25, 50 (median), 75, 95, and 100th percentiles from these pools. 
We do not fit any types of probability distribution functions to these pools of datapoints for several reasons. First, there 
is no theoretical or empirical support in the literature for the type of function that would a-priori describe distributions 
MI values that we are aware of. Second, as exemplified in Fig. 2, visual inspection of the datapoint pools don’t point 
toward a generalizable distribution: many pools are asymmetrical, and some are bi- or multimodal. Third, the synthetic 
MI value pools aren’t a statistical sample from a population of MI values, meaning that no inference can be made on the 
characteristics of the “true” population. Rather, the non-parametric approach doesn’t assume a distribution, and the 
percentile statistics form a seven-number summary of value ranges for each of these combinations that match the aim 
and criteria of our dataset: comprehensive and exhaustive, reasonable and coherent, and reproducible and traceable.

https://doi.org/10.1038/s41597-024-03190-7
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Data Records
The RASMI data record is available in Zenodo59, mirroring versions in the RASMI GitHub repository. The file 
name contains the date of estimation, serving as version number. The Zenodo version used for this data descrip-
tor is v2023090559. The MI ranges data record described in this data descriptor is MI_ranges_20230905.xlsx.

The data structure has four dimensions: 8 materials × 4 structure construction types × 3 functional use 
types × 32 regions, leading to 3072 unique combinations. Each combination has a range of MI values represent-
ing the unique material-function-structure-region combination. This range is composed of seven percentiles: 

Fig. 2 Three examples (of 0, 2, and 4 iterations of increment) of the creation of a pool of datapoints for 
estimation of concrete material intensity (MI) ranges. The pools are visualized as histograms and the resulting 
MI ranges as boxplots.

https://doi.org/10.1038/s41597-024-03190-7
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the 0th (minimum), 5th, 25th (1st quartile), 50th (median), 75th (3rd quartile), 95th, and 100th (maximum) 
percentiles. For example, the pair of 25th and 75th percentiles form the interquartile range of plausible MIs for 
a given function-structure-region combination.

The data record of the MI ranges is stored as a Microsoft Excel spreadsheet for ease of use. The spreadsheet 
contains eight sheets, one for each material. The sheets are identically structured. The columns describe the 
function-structure-region combination, the SSP macro-region, the number of MI datapoints originally in the 
H&F database, the number of increments to add further MI datapoints, the final number of MI datapoints after 
incrementation, and the seven percentile values described above. The rows are the 384 function-structure-region 
combinations for that material.

Table 3 demonstrates the data record structure, with the first two and last two rows of the concrete MI 
ranges. Row 0 is the concrete MI range for nonresidential reinforced concrete buildings in China, an example 
of a range estimated as-is from 35 datapoints originally describing such buildings. Row 1 is an example of com-
pletely synthetic data, the concrete MI range for nonresidential reinforced concrete buildings in Indonesia, for 
which no data exists in the H&F database and the MI range is estimated from 38 datapoints collated through 
one incrementation iteration. The 0th and 100th percentiles values of the two match, reflecting the increment of 
datapoints from the Chinese ones to the Indonesian ones. Likewise, the MI ranges in row 382 for single-family 
residential timber structures in the former Soviet Union Eastern Europe region and row 383 for Russia are iden-
tical to each other and are composed of 133 MIs pooled together.

Accompanying the main MI ranges data record file is a second Excel file, MI_data_20230905.xlsx which 
contains the raw MI datapoints used to estimate the MI ranges for each material-function-structure-region. For 
each such datapoint, four attributes are described: its original material-function-structure-region combination, 
record ID number in the H&F database, value, and in which increment iteration they were added. This accom-
panying file serves to document the MI pool, to trace back the incrementation process, and enable estimation of 
other statistics as needed.

technical Validation
One of the factors that could potentially influence the MI ranges is the number of raw MI datapoints in the H&F 
dataset and their values. We tested the influence of this by leaving a random 10% of the 906 H&F datapoints out 
and re-running the range estimation process with n = 815 MIs. Independently repeating this 20 times, this test 
provides cross validation results. On average, 49% of the left-out datapoints’ values are within the newly calcu-
lated interquartile range (25th–75th percentiles range) of their respective function-structure-region MI range. 
This percentage grows to 84% datapoints fitting inside the 5%–95% percentile range.

This exercise also enables to test the percent changes in the resulting MI ranges compared to those created 
with the full data. The relative differences per material and range percentile are presented in Table 4, averaged 
for all combinations and across the 20 independent runs of this test. Overall, the MI ranges are prone to changes 
in values subject to the available raw MI data – which matches the objective of this dataset to reflect the availa-
bility of MI data. However, in most cases the changes are low. The three central 25th, 50th, and 75th percentiles 
are relatively insensitive to the reduction of raw MI datapoints, and the edge percentiles are more sensitive. The 
lowest 0th and 5th percentiles are most sensitive to the availability of data, because they are subject to the values 
of outlier MI datapoints. Nevertheless, in absolute terms the changes in kg/m2 for these two low-end ranges are 
negligible.

function structure region5_32 region5
raw_H-F_
db_count

increment_
iterations

incremented_
count p_0 p_5 p_25 p_50 p_75 p_95 p_100

0 NR C ASIA_CHN ASIA 35 0 35 140.3 420.4 713 1088.7 1568 2195.7 2694.1

1 NR C ASIA_IDN ASIA 0 1 38 140.3 444.7 725.6 1091.8 1625.8 2104 2694.1

⋮

382 RS T REF_EEU-FSU REF 0 1 133 5 48.5 229.2 351.2 468 861.8 1563.2

383 RS T REF_RUS REF 0 1 133 5 48.5 229.2 351.2 468 861.8 1563.2

Table 3. Sample of the data record with the first two and last two for concrete MI ranges.

Percentile 0th 5th 25th 50th 75th 95th 100th

concrete +1.0% +0.8% +1.3% −0.3% +0.7% −0.6% −1.4%

brick +11% +45% +4.7% +0.1% +0.0% −0.1% −1.2%

wood +36% −0.2% +1.7% +1.5% +0.4% +0.9% +2.9%

steel +25% +11% +2.4% +4.4% +0.9% +1.9% −1.9%

glass +41% +7.3% +2.0% +0.2% +2.3% −1.0% −2.7%

plastics +0.0% −0.3% −0.2% +0.1% −0.7% +6.2% −5.3%

aluminum +0.0% −0.1% +8.9% +2.0% +7.2% −7.6% −1.5%

copper +1.7% +49.2% −0.4% +1.0% +2.8% +10% −5.0%

Table 4. Percent changes in the values of the MI range percentiles when leaving 10% of the input MI data out.

https://doi.org/10.1038/s41597-024-03190-7
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The second factor that may influence the MI data ranges is the minimal number of pooled MIs after 
which the incrementation halts. This number is set at 30 MIs, which serves as a balance between data avail-
ability and parsimony. With current raw MI data availability of the H&F dataset, only 22 of the 3072 
material-function-structure-region combinations have at least 30 datapoints that can be used directly to 
draw percentiles of value ranges. Increasing the minimum datapoints to 35 decreases the number of those 
direct-to-use combinations to 16 or down to 11 if 40 is set as the halting value. This would mean that fewer com-
binations would be described as-is rather than incremented by MIs from other building types or regions, leading 
to less representativeness in the results. Additionally, increasing the minimum number of datapoints leads to 
incrementation with MIs from less-similar regions, leading to the same outcome. Nevertheless, we compared the 
MI ranges obtained with at least 30 datapoints to the MI ranges that would be obtained if it was set to different 
values, and the differences are negligible. For example, the average value of the medians change by only 0.4% to 
2% if the minimum was set to 10 less or 10 more incremented datapoints, respectively.

Usage Notes
Using material intensity ranges. The MI data in RASMI are intended to be used as ranges, to promote the 
inclusion and communication of the uncertainties inherent in buildings’ materials. For example, using the equa-
tion material stock = floor area × material intensity, one can estimate the plausible range of material stocks that 
compose (and were required to construct) a single-family house with a reinforced concrete structure of 120 m2 
total floor area in Brazil (Table 5).

The RASMI MI ranges can be visualized as box-letter plots (Fig. 3). In each material-function-structure-region 
combination, the median (50th percentile, in white in the figure) is the ‘average’ central value of material inten-
sity in units of kg/m2 of floor area. The interquartile range (25th and 75th percentiles) in the central thicker 
boxes in the figure bound the middle half of the MIs pooled for creation of the MI range and so they represent 
the most plausible ranges of MIs in each combination. These three percentiles fit most uses and applications of 
MI data.

The 5th and 95th percentiles expand the range to include less-likely MI values, as they describe 
90% of the MI pool. The 0th and 100th percentiles are the minimum and maximum MI values in the 
material-function-structure-region combination’s range, which should be used with attention, because they may 
originate from unrepresentative outlier data from the H&F database.

Figure 3a exemplifies the MI ranges for the EU15 region. Patterns such as high MI ranges of wood in timber 
construction and high MI ranges of brick in masonry construction are visible.

The ranges for concrete, brick, wood, steel, and glass are mostly from datapoints originating in the literature 
(i.e. no iterative increments were required). This can be compared to Fig. 3b that shows ranges for the Middle 
East Medium Income region, whose ranges are mostly synthetically produced by addition of MI datapoints from 
similar function types and other regions. The nearly identical ranges of the low-value plastics, aluminum, and 
copper within and between the two regions reflect the poor representation of these materials in the raw data, 
which led to the use of all extant datapoints to create their ranges.

The estimated ranges make it clear that material intensities vary greatly both within and between regions, 
types of structure, and types of building functions. The ranges capture both the aleatory uncertainty (varia-
bility) of material intensities between buildings of the same type, and the epistemic uncertainty arising from 
the different methods, system boundaries, definitions, etc. of the diverse data sources. At this point in time a 
differentiation between these two uncertainty types60 can’t be made for building MI values, and therefore epis-
temic uncertainties can’t be minimized because of the ad-hoc and arbitrary nature of the data sources. The high 
top-range MI of glass in nonresidential reinforced concrete in the EU15 in the top row of Fig. 3a exemplifies this. 
The value of around 20 kg/m2 in the extreme end of the range stands out, and it could originate from a measure-
ment error in the source data or from an MI of a true glass-intensive building such as a glass-cladded office tower.

Therefore, the MI ranges of RASMI candidly communicate that both variability and biases exist in MI val-
ues. These observations lead us to discourage usage of only the median values as sole point estimates of MIs in 
studies, and rather to accompany the medians with at least the interquartile range bounded by the 25th and 
75th percentiles in order to truthfully convey the embodied uncertainties in building materials research. At the 

Material

RASMI [R.5.1] Brazil, [F.1] Single-
family residential, [S.1] Reinforced 
concrete MIs (kg/m2)

House floor area (m2)

Material Stocks (kg)

25th
Median 
(50th) 75th 25th

Median 
(50th) 75th

Concrete 480.6 807.6 1,114.5

× 120 m2 = 

57,672 96,907 133,741

Steel 15.6 21.2 35.3 1,872 2,544 4,232

Brick 52.9 234.0 488.9 6,347 28,080 58,667

Wood 19.5 69.0 90.0 2,341 8,280 10,800

Glass 1.51 2.00 2.54 181.4 240.0 304.8

Plastics 0.39 1.20 3.00 47.1 143.9 359.6

Aluminum 0.13 0.49 1.07 15.5 58.8 128.4

Copper 0.08 0.18 0.27 10.1 21.9 32.0

Table 5. Example of the usage of the material intensity ranges (25th, 50th, and 75th percentiles) to estimate the 
material stocks of a 120 m2 house.
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same time, since the H&F database retains outlying values that may end up as the minimum (0th percentile) and 
maximum values (100th percentile) of the RASMI ranges, we advise using the 5th and 95th percentiles as the 
extreme MI ranges rather than the 0th and 100th percentiles when describing less common MI values.

The MI ranges data here is reflective of past construction and current norms. It is most useful for estimating 
the material stock at a neighborhood, city, region or country scale and for estimating future flows of materials to 
increase building stock. At the scale of an individual building the MIs calculated here will have high uncertainty 
but can still provide a rough estimate of the materials needed for construction and/or the materials stocked in a 
building and available for recycling at the end of the life. The foundational data from RASMI comes from exist-
ing studies and buildings, as such it represents the range of current practice, uncertainty is higher in translating 
RASMI to future constructions that deviate in large ways from current construction approaches (e.g. showcase 
sustainability buildings).

Material intensity combinations. Certain material MI combinations are unlikely, such as a building with 
high MIs of both concrete and bricks (which act as substitutes to some extent, compared to the complementa-
rity of concrete and steel), and this is reflected in the differentiation between structure types. Nevertheless, the 
estimation of the MI ranges is done per material, and so doesn’t address the relative intensity of one material 
compared to the others within each function-structure-region combination. For example, within the MI ranges 
of the eight materials in a certain function-structure-region, the RASMI approach on its own cannot prescribe 
whether it’s more “realistic” to couple the 75th percentile MI value of concrete with the 75th percentile MI 

(a)

(b)

Fig. 3 Letter value plot examples of the MI value ranges of the 8 materials (horizontal, note the varying scales), 
grouped vertically by functional use types and by structural construction type. (a) ranges for the EU15 region, 
(b) ranges for the Indonesia region.
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value of bricks or to couple it with the 25th percentile of bricks, because this would require understanding of 
building engineering, which our statistical approach doesn’t include. In practice, one option is to consistently use 
the same percentile values of all materials to e.g. represent the “heaviest” and “lightest” likely buildings in a 
function-structure-region combination, as sensitivity scenarios. Furthermore, the raw MI datapoints in the H&F 
database can be used for a separate analysis of the relative intensities of materials in building types – a characteristic 
that we implicitly used to label unspecified structure types – though this is outside the scope of the RASMI dataset.

Functions, structures, regions, and further dimensions. Beyond function types, structure types, and 
regions, building material intensity values can be differentiated by further dimensions or features such as by 
energy efficiency or by construction period. Although information for both of these features is included in the 
raw MI data of the H&F database, we opted not to differentiate combinations by any further features because of 
the multiplicative nature of such differentiations. For example, adding a differentiation of just two construction 
periods (e.g. pre- and post-1950) to the current 3072 combinations would double the combinations to 6144 and 
dramatically reduce the number of extant MIs in each combination. Most of the combinations are already virtu-
ally empty prior to incrementing. Adding more dimensions would only intensify this, and make the incrementing 
process unwieldy and less meaningful.

Similarly, we decided not to differentiate the building material intensities by definition of floor area, because 
of lack of evidence of MIs differing across floor area definitions and only partial data availability. While this 
attribute is recorded as part of the H&F database, less than half of the datapoints (49%) can be associated with a 
clear definition of floor area. Among them, the majority (46% of all datapoints) use gross floor area and just 27 
datapoints (3% of all datapoints) use net floor area. Yet, their Mis are within range of the other datapoints and no 
significant differences could be detected.

Data updates. The RASMI data will be kept up-to-date by collating MI values into the H&F database as they 
are found in the literature appear in new publications. The value range estimation process will be re-run with 
any new MI values at least once a year and the new ranges will be made available on the GitHub repository, with 
date-based versioning. As more raw MI data becomes available through research, more dimensions such as con-
struction periods can be easily added to our procedure. Likewise, with more and better data on other materials 
(e.g. architectural finishings), the same process demonstrated here can be used to expand to MI ranges beyond the 
eight main structural materials. In this regard, our estimation approach also highlights the inequality of current 
data coverage in different global regions, especially in the Global South, and the need for efforts by the scientific 
community to address these knowledge gaps. Furthermore, the code can be forked to differentiate MIs by other 
features than function type, structure type, or regions. Likewise, different definitions of features than the ones we 
use are possible, for example different region classifications than the 32 SSP regions, or breaking up highly aggre-
gated regions with already rich data like the EU15 to sub-regions like North European EU countries and South 
European EU countries, thus capturing the material intensities of their unique construction styles.

code availability
The entire workflow is available in the RASMI GitHub repository (https://github.com/TomerFishman/
MaterialIntensityEstimator): the methods for creating the MI value ranges are implemented in Python 3 code, 
and the random forest classification of structure types is implemented in the Orange machine learning and data 
mining suite58.

The GitHub repository also stores the resulting data and supporting figures. Released versions of the data are 
archived in Zenodo. The Zenodo version used for this data descriptor is v2023090559.
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